

ECSEL2017-1-737451

FitOpTiVis

From the cloud to the edge - smart IntegraTion and OPtimisation
Technologies for highly efficient Image and VIdeo processing Systems

Deliverable: D2.1 Component models, abstractions,
virtualization and methods

Due date of deliverable: (31-05-2019)

Actual submission date: (12-06-2019)

Start date of Project: 01 June 2018

Duration: 36 months

 Responsible: CUNI

Revision: final version

Dissemination level

PU Public

PP Restricted to other programme participants (including the Commission
Service

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (excluding the Commission
Services)

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 2 of 95

DOCUMENT INFO

Author list

Author Company E-mail

Marc Geilen TUE m.c.w.geilen@tue.nl

David Millán ITI dmillan@iti.es

Carlo Sau UNICA carlo.sau@diee.unica.it

Tomas Bures CUNI bures@d3s.mff.cuni.cz

Petr Hnetynka CUNI hnetynka@d3s.mff.cuni.cz

Vaclav Camra CUNI camra@d3s.mff.cuni.cz

Pablo Sánchez UC sanchez@teisa.unican.es

Fernando Manteca UC mantecaf@teisa.unican.es

Martijn Hendriks TUE m.hendriks@tue.nl

Pablo Chaves SCHN Pablo.chaves@se.com

David Pampliega SCHN David.pampliega@se.com

Hossein Elahi TUE g.elahi@tue.nl

Shayan Tabatabaei TUE s.tabatabaei.nikkhah@tue.nl

Freek van den Berg TUE f.g.b.v.d.berg@tue.nl

Twan Basten TUE a.a.basten@tue.nl

Document history

Document
version #

Date Change

V0.1 18-10-2018 Starting version, template

V0.2 23-4-2019 Description of UML Marte, virtualization methods and models

V0.3 5-5-2019 Description of DSL and component abstractions

V0.4 9-5-2019 Added mathematical component model

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 3 of 95

V0.5 16-5-2019 Added introduction and reference architecture

V0.6 27-5-2019 Integrated changes to DSL and component model

V0.7 29-5-209 Unified style of figures with component architecture. Fixes in
DSL examples.

V0.8 30-5-2019 Incorporated updates from UC and additional fixes in figures
and DSL examples

V0.9 31-5-2019 Complete version for internal review

Sign off 3-6-2019

V1.0 7-6-2019 Final version

Document data

Editor Address data Name: Marc Geilen

Partner: TUE

Address: De Zaale, Eindhoven, The Netherlands

Phone: +31-402473091

Distribution list

Date Issue E-mailer

12-06-2019 Final fitoptivis-wp2@lists.utu.fi

 Patrick.vandenberghe@ecsel.europe.eu

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 4 of 95

Table of Contents
1. EXECUTIVE SUMMARY .. 7

2. INTRODUCTION ... 8

2.1 Overview of requirements ... 8

2.2 Motivation ... 8

2.3 Objectives ... 9

2.4 Relation to Other Work Packages .. 10

2.5 Overview of the Document .. 11

3. REFERENCE ARCHITECTURE ... 12

3.1 Proposed Solution ... 12

3.2 Template Solutions .. 14

4. COMPONENT ABSTRACTIONS .. 17

4.1 State-of-the-Art and Related Work 18
4.1.1 SYSML ... 18
4.1.2 IEC 61131 .. 19
4.1.3 IEC 61499 .. 19
4.1.4 AADL ... 19
4.1.5 KOALA ... 20
4.1.6 PROCOM ... 20
4.1.7 FRACTAL (THINK AND MIND) .. 21
4.1.8 SOFA 2 AND SOFA-HI .. 21
4.1.9 BLUEARX .. 21
4.1.10 AUTOSAR .. 22
4.1.11 UML-MARTE .. 22
4.1.12 MATHEMATICAL COMPONENT MODELS 22
4.1.12.1 Behaviour Interaction Priority BIP ... 22
4.1.12.2 Contract-based frameworks ... 23
4.1.12.3 Multi-objective optimization techniques .. 24

4.2 Basic terminology and definitions 24

4.3 Detailed description of the reference architecture model .. 28
4.3.1 BLACK-BOX VIEW .. 28
4.3.2 WHITE-BOX VIEW ... 31
4.3.3 COMPONENT CONFIGURATIONS ... 32
4.3.4 EXAMPLE: COMPONENT ABSTRACTION IN VR USE CASE 33

4.4 Mathematical Component Framework for Quality and
Resource Management .. 35

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 5 of 95

4.4.1 COMPONENT FRAMEWORK DEfiNITION 35

5. DOMAIN SPECIFIC LANGUAGE FOR THE COMPONENT
ABSTRACTION ... 40

5.1 Example .. 40

5.2 Specification .. 43
5.2.1 IMPORT ... 44
5.2.2 BUDGET INTERFACE DEFINITION .. 44
5.2.3 CHANNEL INTERFACE DEFINITION .. 44
5.2.4 COMPONENT DEFINITION ... 45
5.2.4.1 Interface usage predicates ... 46

5.2.5 PROPERTY PREDICATES .. 46
5.2.6 SUBCOMPONENT PREDICATES ... 47
5.2.7 CONSTRAINT PREDICATES .. 48
5.2.7.1 And-predicate ... 48
5.2.7.2 Or-predicate ... 48
5.2.7.3 Implication-predicate .. 49
5.2.7.4 Runs on / Outputs to predicates ... 49

5.2.8 EXPRESSIONS ... 49
5.2.8.1 Inline arrays ... 50
5.2.8.2 Inline objects (composite values).. 50

5.2.9 BOOLEAN EXPRESSIONS ... 50
5.2.9.1 Comparison expressions .. 51
5.2.9.2 In-expression.. 51

5.2.10 QUALITY EXPRESSIONS ... 51
5.2.11 SYSTEM .. 52

6. VIRTUALIZATION MECHANISMS ... 53

6.1 Introduction .. 53

6.2 State-of-the-Art .. 53
6.2.1 VIRTUALIZATION MODELS .. 54
6.2.2 VIRTUALIZATION FOR QUALITY AND RESOURCE MANAGEMENT

 57

6.3 Virtual Platform Models ... 59
6.3.1 EXAMPLE INSTANCE: VIRTUAL PLATFORM MODELS IN

COMPSOC 60
6.3.2 EXAMPLE INSTANCE: VIRTUAL PLATFORM MODELS IN PREESM/

SPIDER 61

6.4 Quality and Resource Management Conceptual Architecture
 61

6.4.1 EXAMPLE INSTANCE: QUALITY AND RESOURCE MANAGEMENT
IN COMPSOC ... 62

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 6 of 95

6.4.2 EXAMPLE INSTANCE: QUALITY AND RESOURCE MANAGEMENT
IN SPIDER 63

7. INSTANCES OF THE REFERENCE ARCHITECTURE 65

7.1 Component Abstractions for Multi-Source Streaming 65

7.2 Component Abstractions for an Industrial Inspection System
 70

7.3 Model-based component abstraction 73
7.3.1 COMPONENT MODELLING IN UML-MARTE 75

7.4 Component Abstractions for Time Sensitive Networks 78

7.5 Component Abstractions for High-availability Seamless
Redundancy in Remote Terminal Units .. 80

7.6 Component Abstractions for People Tracking System 81

7.7 Component Abstractions for Action Recognition 83

8. CONCLUSIONS .. 86

9. REFERENCES .. 87

10. APPENDIX A GRAMMAR OF THE DSL ... 91

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 7 of 95

1. Executive summary

This report represents Deliverable D2.1 and documents the outcomes of the activities in
WP2, Tasks 2.1 (Component Abstractions) and 2.2 (Virtualization Mechanisms) of the
FitOpTiVis project during the first year of the project, starting from M4. The main
objective of this deliverable is to establish the first version of the reference architecture
to be used in the activities and use cases of the project. A conceptual architecture is
introduced that describes the common elements in the work developed in the project. It
provides template solutions that require further detailing and specialization for the
individual use cases and application domains.

A component abstraction is defined with which platform and application components
developed in the project can be uniformly modelled in terms of a defined set of
interfaces. The intention of this abstraction is to define the common aspects only, and
to position them in a common architecture but to leave room for domain-specific
refinements to be made to specialize models, architectures and methods for the
individual developments in the project.

Virtualization mechanisms are introduced pertaining to the architectural concepts and
the modelling of virtual resources and their abstract budgets to achieve predictable and
composable application behaviour and resource reconfiguration options. The methods
of implementing virtualization in hardware and/or software are subjects of WP4.

The content of this deliverable contributes to achieve MS3 (Preliminary components and
methods release with standalone assessment).

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 8 of 95

2. Introduction

2.1 Overview of requirements
In this section we describe the driving requirements of FitOpTiVis on the component
abstractions.

The main purpose of the FitOpTiVis component model is to define video processing
pipelines out of hardware and software components and to facilitate quality and resource
management for such pipelines. The goal of the component model is to allow design
space exploration and run-time adaptation. As such, the component model should
allow associating configuration parameters with components (such as supported
resolution, fps, etc.) and allow reasoning about dependencies of these
configuration parameters across components (both hardware and software) in the
pipeline.

The component model is going to be applied on new components, but also on existing
components where the intellectual property protection does not allow detailed modeling
of the internals of the component. As such the component model should provide
hierarchical abstractions that allow a large scale from very fine-grained components
(on the level of data processing tasks) to coarse-grained components (on the level of
devices with embedded software).

The component model should be used by partners in the project and other scientific and
industrial users that have no extensive background in component modeling or
component-based architectures, as such the component model should be easy to
use. This in particular means that it should provide only constructs that are needed
in the project and that the semantics of the constructs should be tailored to the
needs and the domain of the project. Additionally, the component model should
have textual notation, which simplifies sharing the models and working with the
models. This is facilitated with the introduction of a DSL.

2.2 Motivation
WP2 addresses Objective 1 of the FitOpTiVis project.

Objective 1: Template solutions for: component abstractions (covering video
and imaging tasks and heterogeneous processing, storage and network
devices and components); virtualization supporting scalability, portability and
composability principles; multi-objective quality and resource management
(support for run-time decision making, adaptation, (re-) distribution and
upgrades).

Image and video pipelines will be detailed into a reference architecture and a virtual
platform consisting of abstract components. The architecture and models will emphasize
multi-objective optimisation including performance and energy. The use cases will be
built on top of a concrete version of the reference architecture.

The use cases, component applications and platforms in the project span a wide range
of technologies, methods and tools. It is not possible to build a single integrated

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 9 of 95

hardware, software and tooling framework in which all activities are integrated, nor would
this be desirable, since different domains have and need their specialized models,
methods, tools, and hardware, software and middleware platforms.

The range of use cases and technologies in the project share common solutions and
principles that are being explored and developed in the project. Those solutions and
principles can be applied across many of the separate domains. These common
solutions can only be effectively identified and developed when the individual
developments are positioned within a shared framework, architecture and established
common models and abstractions.

In this deliverable, we establish the first iteration of such solutions and principles in the
form of a reference architecture and template solutions that capture the essential
concepts and the common approach. A component abstraction is introduced that
characterizes the aspects of components that are deemed most important to explicitly
expose in FitOpTiVis. Those aspects are their input and output streams, their provided
and/or required resource budgets, the configurations they support and the aspects of
quality or cost that can be optimized.

2.3 Objectives
The main goal for this deliverable may be stated as follows.

Goal: establish a common reference for component abstraction and the concept of a
virtual platform. The reference architecture will be provided in the form of template
solutions for a flexible virtual platform built from the component abstractions and offering
multi-objective run-time optimisation support for quality and resource management.

To realize this goal, the deliverable pursues the following objectives.

• [Section 3] Provide a reference architecture for the FitOpTiVis innovations.
Introduce the common conceptual elements in the image and video pipeline
systems of FitOpTiVis and their inter-relations.

• [Section 4] Provide a common component abstraction that describes the main
aspects of the elements from which FitOpTiVis systems are built and provide a
compositional model in which components can be composed into applications,
platforms and systems.

• [Section 4.5] Provide means to model multi-objective quality and resource
optimization and management (support for run-time decision making, adaptation,
(re-) distribution and upgrades).

• [Section 5] Provide template solutions to define abstract components (covering
video and imaging tasks and devices and components) using a domain-specific
language (DSL).

• [Section 6] Provide virtualization mechanisms supporting scalability, portability
and composability principles.

• [Section 7] Evaluate the reference architecture and template solutions for
selected domain specific approaches and systems.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 10 of 95

2.4 Relation to Other Work Packages
This section summarizes the relations between the work in WP2 and the work reported
in this deliverable and other work packages and their deliverables.

• WP1, Requirements and validation and result analysis
WP1 defines the use cases that are used to validate all project results. WP2 will
explicitly consider the requirements derived from the use cases, in particular, the
various types of components used in the cases and the quality metrics used to
evaluate them.
Deliverables D1.1 and D1.2 provide the detailed specifications of the use cases
and requirements. This includes the components, the optimization metrics and
relation to project Objective 1, the use of the reference architecture.

• WP3, Design-time support
WP3 will develop model-based design-time methods with concrete models that
are instances of the generic component abstraction in the template solution of
WP2. The concrete design methods provide, besides the devices and
components that are efficient, functional, etcetera, also the necessary
information as required by the WP2 component abstractions and interfaces.
Deliverable D3.1 provides first versions of the design-time optimization,
deployment and programming strategies that will be aligned with the reference
architecture in follow up steps.

• WP4, Run-time support
WP4 will implement middleware and platform components that conform to the
virtualization and quality and resource management approach (developed in
WP2) of the FitOpTiVis reference architecture as instances of the template
solution for run-time management.
Deliverable D4.1 provides preliminary run-time models and support for energy,
performance and other qualities. In subsequent steps, monitoring techniques will
be used to provide an online view of the system status from the perspective of
the reference architecture and its component model, e.g., the set points in which
components are operating, their quality metrics, virtual platforms and budget
allocations.

• WP5, Devices and components
WP5 will develop high-performance, energy-efficient processing and
communication devices and components that conform to the reference
architecture. Their development specifically considers the key aspects that
characterize components in the component model, reconfiguration, qualities,
inputs, outputs and budgets. Human and machine-readable descriptions of the
components are made using the DSL (Domain Specification Language)
introduced in this deliverable that enables automated processing of the
components at design-time or run-time.
Deliverable 5.1 Components Analysis and Specification presents an analysis of
the state-of-the-art of existing components for computation and networking. The
inventory will be used to validate the proposed component abstractions to see if
the properties and configurations of such components can be (accurately)
modelled and the construction of systems from such components can be
compositionally determined from the component models.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 11 of 95

• WP6, Use Cases and demonstrators
The template solutions of the FitOpTiVis reference architecture developed in
WP2 will be used in the demonstrators planned in WP6 for the project use cases.
Domain-specific and or use-case specific solutions will be shown, but they will
be shown to be instances of a common architecture and to exhibit common
principles and solutions.

2.5 Overview of the Document
The remainder of the deliverable is structured as follows. Section 3 introduces the
reference architecture and the proposed solutions for the FitOpTiVis project, including
the way it is envisioned to present template solutions. Section 4 presents the component
abstractions that are used in the project to characterise the various platform and
application components with which the project activities will be dealing. It includes a
discussion of the literature, a conceptual model and a mathematical model that allows a
precise abstraction and a framework to express multi-objective optimization goals.
Section 5 defines the domain specific language for component models. (A full definition
is given in Appendix A.) Section 6 discusses the conceptual modelling virtualization
mechanisms, virtual platforms and quality and resource management architecture.
Section 7 shows initial modelling efforts to validate the reference architecture and
component abstractions currently defined.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 12 of 95

3. Reference Architecture

3.1 Proposed Solution
The FitOpTiVis project considers a wide diversity of platforms, resources, applications,
methods, tools and objectives. One could not aim for one solution to fit all needs and
concerns simultaneously. It is important that commonalities between the approaches
and use cases are found and exploited such that reusable results can be achieved and
can be applied across different domains and use cases.

The FitOpTiVis project addresses the concern of diversity by the definition of a reference
architecture that captures what is common to the use case of the project and to the
domain of image or video pipelines for CPS on a heterogeneous network spanning the
cloud to the edge. Individual use cases and individual developments in the project will
consider their specialized version and additional detail, but they will be positioned with
respect to the framework of the reference architecture to identify common problems and
solutions and to ensure consistency and they can leverage the framework.

The proposed solution includes the following ingredients.

• A reference architecture is defined that captures the common assumptions and
approaches in the project. The use cases will be positioned in terms of the
elements of the reference architecture.

• A common component abstraction is defined that represents a shared abstract
view of platform and applications components establishing their properties. It
includes an abstract component model and compositions that build system
models . The model focuses on aspects of data streams (re)configuration,
virtualization, heterogeneity, resource sharing and (multi-objective) quality.
It is anticipated that specialized application domains in the project have their own
domain-specific refinements in the form of more detailed or additional models,
but that these are consistent with the architecture.

• As the detailed models are domain-specific, likewise, the various solutions
developed in the project will be diverse and domain-specific, whether they are
run-time methods, design-time method, virtualization techniques, etcetera. The
project intends to identify common solutions and general patterns of solution
strategies in the form of template solutions, which are reusable elements
amenable to be applied in different contexts.

The project defines a reference architecture as a common reference for component
abstraction and the concept of a virtual platform. The overview of the reference
architecture is visualized in Figure 1. More precise definitions are given in Section 4.3—
4.5.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 13 of 95

Resource and Quality Management

Design time methods
and optimization

Run-time methods and
optimization

Fi
tO

pT
iV

is
 R

ef
er

en
ce

 A
rc

hi
te

ct
ur

e

Platform Devices and networks: considered to meet the use case requirements

Physical resource
availability

Component abstractions
and models

Allocation to physical
devices and networks

Use cases: CPS image and video processing applications with strict power budget and quality
(performance) requirementsApplications

Tasks QualityComponent abstractions
and models

Platform Component Abstractions

Virtual Platform

Abstract Application

Abstract Application Components

Figure 1: FitOpTiVis Reference Architecture

The top side shows concrete applications and the bottom side the concrete platform of
a system under consideration. The reference architecture is concentrated in the yellow
box between them. It deals with abstractions of applications and platform. Applications
are considered as a collection of tasks. Applications can be potentially configurable at
design-time reconfigurable at run-time. They are considered to have alternative
configurations or set points that are explicit in the architecture model. We do not insist
that all applications are (re)configurable. Some applications may have a trivial set of
configurations, or just a single possible configuration. In general, configurations are
characterized by different workloads on the execution platform and different quality
provisions to the user of the application (for example, power consumption or latency).
Different configurations are associated with a set of application parameters. In the
framework, application tasks are modelled as application components, and the collection
of applications components of an application are referred to as an abstract application.

The platform (bottom) side is abstracted as a virtual platform. It is assumed to be
(re)configurable and resources can, in general, be shared by different applications. This
does not mean that in all possible instances resources shall be shared by multiple
applications. Resource virtualization is a particular emphasis of the FitOpTiVis project

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 14 of 95

and the architecture likewise assumes that resources provide virtual resources to
applications in the form of a virtual execution platform.

The abstract applications and the abstract virtual platforms are brought together by a
resource and quality management framework. This framework is responsible for finding
feasible and optimal combinations of applications and platforms, and for finding the
optimal set points of the components. The combinations need to match, which requires
both application models and platform models have appropriate models of their resource
requirements and resource provisions, respectively. As illustrated in the figure, part of
this optimization work is done at design-time when components are designed and
developed, and part of this work may be done at run-time when more information may
be available, but less time to take and enforce any decisions.

We anticipate that large differences may exist in how the resource and quality
management is implemented and executed in different domains, but the expected
common approaches are captured in the architecture.

3.2 Template Solutions
The project intends to identify common solutions and general patterns of solution
strategies in the form of template solutions, which are reusable elements amenable to
be applied in different contexts. We identify what solutions are investigated and
formulate initial concepts in this deliverable. They will be further detailed and evaluated
in the project.

The project will specifically pursue the following classes of template solutions.

• The common conceptual model of the component abstraction itself. It is
introduced in detail in Section 4. It defines what elements are commonly
expected to be defined and how they are related. It also defines how components
are composed into systems and how requirements on compositions are
expressed, for instance the satisfaction of requirements, compatibility of inputs
and outputs, and matching provision and requirements of resource budgets.

• A domain-specific language (DSL) that provides a human and machine-readable
version of the abstract component models, their compositions and quality- and
resource management requirements and objectives. The language supports the
evaluation of completeness, uniformity and consistency of the many specific
models that are made in the project. It also allows automation and tool support
for common analysis and synthesis techniques (such as visualization or code
generation) or model transformations. Detailed components in the project should
be supplemented with a manifest description in this DSL. An initial version of this
DSL is introduced in Section 5.
It is anticipated that some of the specific application domains and use cases in
the project will develop their own, specific refinements of the DSL in a ‘domain-
specific DSL’ or ‘DSDSL’.

• A precise, semantics of the component abstraction is given in terms of a
mathematical description of components and their composition operators. The
composed system is provided with a semantics in terms of the constraints on the
combined collection of configuration parameters and matching inputs and
outputs, and well-defined multi-objective optimization objectives based on

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 15 of 95

ordering of budgets and qualities. The precise details of composition operators
are expected to be domain specific. The overall problem of configuration,
mapping and selection of set points can be captured in terms of a multi-objective
constrained optimization problem. Conceptually and possibly in prototype
experiments, generic constraint solving algorithms may be applied to find optimal
solutions. It is expected however, that such solutions are insufficient in practice
and domain-specific solutions and heuristics should be employed to determine
good solutions in practice. The semantics is elaborated in Section 4.

• A virtual platform model that defines how resources and their sharing are
modelled through virtual resources that are provided by virtualization
mechanisms in their implementation. This allows, ideally, resources to be shared
by multiple applications while providing well-defined resource budgets, to the
individual applications and providing support for (re)configuration of virtual
resources and their resource budgets. The virtual platform model is elaborated
in Section 6.3.

• A quality and resource management (QRM) architecture describes how the
required information, activities and responsibilities, such as optimization,
monitoring, configuration, calibration, resource management, may be divided
between different elements of the architecture and between design-time and run-
time activities. The QRM architecture is introduced in Section 6.4.

Applications

Application component abstractions

Abstract Application

Quality and resource management

Virtual platform

Platform component abstractions

Platforms

R
ef

er
en

ce
 A

rc
hi

te
ct

ur
e

Ap
pl

ic
at

io
n-

to
-p

la
tfo

rm
 m

ap
pi

ng

Figure 2: FitOpTiVis Template Solutions

Figure 2 illustrates how the reference architecture and template solutions are
instantiated in different, more refined incarnations for different application domains. The
definition of the reference architecture facilitates the relation to the work in other work
packages as follows.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 16 of 95

• WP3 develops model-based design-time methods with concrete models (grey)
that are consistent with the generic component abstraction of the template
solution (blue) of WP2. Ideally tool chains produce descriptions of the abstract
component models automatically.

• WP4 creates run-time management solutions (grey) that are in line with the
template quality and resource management (blue) laid down in WP2.

• WP5 creates (re)configurable devices and components (grey) and their
component abstractions that are instances of the template solution (blue) of WP2

• WP6 demonstrates that detailed solutions in the 10 use cases.

The reference architecture and its template solutions are not expected to be directly
used on any specific design problems or in any specific domain, use case or
demonstrator. Instead, we expect the architecture and templates to be instantiated and
specialized for a particular domain.

Specialized component models may be used that best characterize the application and
or platform components that are common in a particular domain, such as timed dataflow
models for real-time streaming data processing, or UML state diagrams for component-
based, control-oriented software components.

Similarly, it is expected that different domains employ their own, specialized budget
descriptions, specialized composition operators, specialized specification languages,
mapping strategies, optimization strategies, and so forth.

Also, every domain typically has its own favoured analysis, and design-space
exploration tools and methods and synthesis strategies.

We expect that the different use cases in the FitOpTiVis project will each use such a
specialization of the architecture and solutions, but that they will all respect the overall
architecture, which means in particular that they will follow the component model
outlined in Section 4 and use the common DSL of Section 5, or a specialization thereof
to model the system components. The applicability of the architecture to the various use
cases should serve as a validation of the core concepts in the architecture.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 17 of 95

4. Component Abstractions

In this section, we overview the basic component abstractions used in FitOpTiVis. We
present the conceptual model and we introduce a mathematical model.

Though in the software engineering community and literature the "component" may refer
to many different things, it is typically used in the sense of "a constituent part" of a
system. For example, the UML 2 defines "component" as an entity with the following
properties [OMG2017b]:

• A Component represents a modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its environment.

• A Component is a self-contained unit that encapsulates the state and behaviour.
• A Component specifies a formal contract of the services that it provides to its

clients and those that it requires from other Components or services in the
system in terms of its provided and required Interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required
interfaces (encompassing both their static as well as dynamic semantics).

• A Component is a substitutable unit that can be replaced at design-time or run-
time by a Component that offers equivalent functionality based on compatibility
of its Interfaces. As long as the environment is fully compatible with the provided
and required Interfaces of a Component, it will be able to interact with this
environment.

• A Component has an external view (or “black-box” view) by means of its publicly
visible Properties and Operations.

• A Component also has an internal view (or “white-box” view) by means of its
private Properties and realizing Classifiers – i.e. internal architecture typically
consisting of internal composition of components.

In FitOpTiVis, we follow this generally accepted view of a component and see a
component as an abstraction of a hardware/software subsystem. We also identify
important quality properties that are relevant to the FitOpTiVis subject matter of quality
and resource management and make it possible to attach them to components or their
constituents (interfaces in particular). This makes it possible to:

• reason, at design-time, about a system as of a composition of components and
their configurations. This makes it possible to predict the overall properties of the
system before the system is actually built.

• to relate, at run-time, monitored properties of a system to its constituents and
thus to reason, still at run-time, about the system and to be able to adapt some
of its parameters.

Compared to the traditional software engineering view of a component, the important
distinction in FitOpTiVis is that the project takes a systems view, where a component
can be realized by hardware, software or both. This makes it possible to describe a large
span of options ranging from DSPs, FPGAs, to processing performed by GPU-
accelerated cloud VMs (Virtual Machines) and containers.

Another important distinction of FitOpTiVis is its focus on quality and resource
management. Related to this and to the fact that the hardware and software components

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 18 of 95

can be combined is that it provides both (1) a data processing workflow view (i.e., the
steps in the video processing pipeline) and (2) the deployment architecture (i.e., that a
software component runs on a particular hardware component).

In order to perform the design-time exploration and run-time adaptation, the component
abstractions in FitOpTiVis need to allow for specification of configuration options and
quality properties (along with budgets and costs).

The component abstractions are traditionally represented by a component model, which
defines the component structure and meta-data and the component composition
mechanism. In this section, we provide such a component model – called the FitOpTiVis
component model. In Section 5, we then describe the textual representation (i.e., a
domain specific language – DSL) that we developed for defining the components.

4.1 State-of-the-Art and Related Work
In this section we analyze several existing related components models on how they
approach the FitOpTiVis requirements on the component abstractions. Based on this
analysis, we build the component abstractions and bring them together as the FitOpTiVis
component model and the DSL to describe them (as described further in this section
and Section 5).

4.1.1 SysML
The Systems Modeling Language (SysML)1 [OMG2017a] is a dialect of the Unified
Modeling Language (UML) [OMG2017b]. Since its origins it has evolved into a standard
for the Model-Based Systems Engineering (MBSE) applications. As such, it aims to unify
all the various documents that are created during different stages of the software
engineering process into a single document used by architects, developers, domain
experts and maintainers alike. Therefore, it contains structures to allow all these various
groups to express their view on the system.

Compared to UML, SysML removes Activity diagrams, Block definition diagrams and
Internal block diagrams. On the other hand, it adds the Requirement diagrams, which
provide modeling constructs for text-based requirements, and the parametric diagrams,
which describe constraints among the properties associated with blocks. The parametric
diagrams could be used to express various constraints, relations of qualities and the
configuration parameters of described components. Importantly, the SysML allows
description of both the software and hardware components and allocation of the former
ones to the latter ones.

In relation to requirements of FitOpTiVis, SysML provides means for describing most of
the required parts (components, their composition, etc.). However, having a significantly
broader scope, it is cluttered with many concepts that are not necessary for the
FitOpTiVis objectives, which makes it very difficult to use by partners. Similarly, the
lack of precise semantics makes it difficult to directly use SysML for automatic design

1 https://sysml.org/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 19 of 95

space exploration and for run-time adaptation. Also, SysML primarily uses graphical
notations only and the textual representation, which is based on XMI (XML Metadata
Interchange), is intended for serialization only. This further decreases flexibility and
leanness in design as opposed to the DSL descriptions we intend to use.

4.1.2 IEC 61131
The IEC 611312 is a microcontroller architecture standard made by the International
Electrotechnical Commission. It has support for CPU instructions, functions (made from
CPU instructions), sensor and actuator interfaces, human-machine interfaces, power-
supply interfaces, and communication interfaces.

For our use case, it provides inspiration for components, and for specifying inputs and
outputs. It has no support for specification of configurable component quality
properties that could be used in design exploration and run-time adaptation of quality
and resource aspects. Also, it does not explicitly support hierarchical composition.

4.1.3 IEC 61499
The IEC 614993 standard is an extension of the IEC61131 (Section 4.2.2) standard for
distributed industrial automation systems. It adds support for event-based processing
and composition of function blocks.

Like the IEC 61131 it lacks support for component configurations and quality
properties needed for design exploration and run-time adaptation. Unlike IEC 61131, it
does allow for the composition of function blocks.

4.1.4 AADL
The Architecture Analysis & Design Language (AADL)4 [FGH2006] has been introduced
in 2004 by Society of Automotive Engineers as a modeling language for model-based
description and analysis of complex systems in terms of interactions of components.
The AADL language does not limit design description to software components, but it
covers also description of computational platform elements (e.g., processor or memory)
and mapping of software components to hardware.

In AADL, components are divided into three main categories: (i) Application
components, which are software components such as processes, threads,
subprograms, (ii) Execution platform components, which are hardware components
(e.g., processor, memory), and finally (iii) Composite components (also called systems)
composing other components together (both hardware and software). Component
interfaces (also called features) can be of several types – for data and event passing,
method calls, and direct data access. Application components also have properties that

2 https://webstore.iec.ch/publication/62427

3 https://webstore.iec.ch/publication/5506

4 http://www.aadl.info/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 20 of 95

specify them, e.g., timing properties or constrains for binding executable threads to
processors. AADL offers support for modes and switching among them. A mode in AADL
is a distinct configuration of a component. Mode transitions are controlled by a state
machine and enabled by events defined in behavior of components. Modes can specify
different configurations of component composition, different call sequences, and multiple
properties of components.

AADL supports many of the features required in our project – either directly or they can
be modeled in terms of existing features. However, for our needs, AADL is too complex
and requires rather in-depth knowledge of component concepts and would be hard
to use by non-expert users.

4.1.5 Koala
Koala [OLK+2002] is a component framework developed by Philips and targets
consumer electronics. The primary goal of Koala is to easily manage the complexity of
embedded software used in consumer electronics and to handle the large diversity of
such devices. The component model of Koala is heavily inspired by Microsoft’s COM
and Darwin [MK1996] component models. Koala offers hierarchically composed
components and in addition to the primitive and composite components Koala also
defines modules. A module is a basic compositional unit and from an implementation
view, it corresponds to a single source code file. To handle diversity of devices, Koala
offers diversity interfaces and switches. The diversity interface is a required interface
intended for configuration, i.e., setting parameters. A switch is a module connecting
several components together and its functionality is controlled through the diversity
interface. Based on the values of the diversity interface parameters, the switch chooses
which components are effectively connected.

For our needs, Koala does not support description of hardware components. The
quality properties along with budgets and costs would be very hard to model.

4.1.6 ProCOM
The ProCOM [SVB+2008] component model distinguishes two levels of granularity –
ProSys and ProSave. ProSave, the lower layer, operates with low-level passive (i.e.,
cannot initialize a new thread) and hierarchically structured components. Computation
on this level is based on the pipes-and-filters paradigm; the functionality of the ProSave
component is described as a set of services. The communication between components
is realized by data ports (for passing data) and triggering ports (for passing signals).
Each service contains one input port group and several output port groups. ProSys, the
upper layer, describes a set of concurrent components, which are called subsystems in
order to distinguish them from the lower-level ProSave components. These subsystems
can run potentially on several computation hardware nodes. A ProSys subsystem is
composed of a set of concurrent functionalities that can be either event driven or
periodic. The only way for ProSys subsystems to communicate with each other is by
sending asynchronous messages via channels. Channels are strongly typed and
support multiple senders and receivers. A ProSys subsystem may be modeled as an
assembly of ProSave components but can be also implemented directly or as a
composition of other ProSys components. Behavior of components is formally specified
by a formalism based on finite state machines.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 21 of 95

As the Koala above, the ProCOM does not model the hardware components and also
the quality and budget properties would be very hard to model.

4.1.7 Fractal (THINK and MIND)
The Fractal [BCL+2006] component model is a classical component model with
hierarchically composed components. By itself, the Fractal is only an abstract
specification and there exist multiple implementations targeting different domains. For
our needs, the most related implementations are THINK [FSL+2002] and MIND5, which
both of them target development of embedded systems. As they are implementations of
Fractal, the components are defined by their provided and required interfaces and they
can be hierarchically nested. In addition to business interfaces, the components provide
control interfaces via which it is possible to manage component lifecycle, configure
components, etc.

The main difference to the THINK is that MIND supports for different hardware platforms
explicitly expressed using descriptors. As in case of the component models above,
Fractal also lacks good support for component configurations and modelling
quality and budget properties.

4.1.8 SOFA 2 and SOFA-HI
SOFA HI [HBP+2009] is a profile of the SOFA 2 component framework [BHP2006] for
development of high-integrity real-time embedded systems. SOFA 2 has a very similar
set of features as Fractal, i.e., there are hierarchical components with provided and
required interfaces. In SOFA 2, the components have explicitly defined their interface
and implementation. Also, the connections among components are modeled via
connectors, which are considered as first-class entities. SOFA 2 allows for modelling
dynamic architectures (via reconfiguration patterns); SOFA HI restricts dynamism to
mode switching.

For our needs, SOFA 2 does not model explicitly the hardware components and as
above, quality and budget properties cannot be easily modelled.

4.1.9 BlueArX
BlueArX [KRS+2009] is a component framework developed and used by Bosch. It is
intended for use in automotive domain, especially in embedded devices. BlueArX
focuses on the design-time component model to support constrained domains
considering various non-functional requirements while providing multiple views of a
developed system. BlueArX uses a common hierarchical component model. The static
view defines two types of components, an atomic component, which has an
implementation, and a structural component, which are composed of other atomic and/or
structural components. Components have interfaces dividable into two types – import
and export interfaces. Connections between interfaces are implicit based on the
interface names. These connections are implemented using a special type of variables

5 http://mind.ow2.org/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 22 of 95

called messages; a component specifies its message access properties in its interface
description. The dynamic view consists of component scheduling specification, which
contains mapping of services to periodic or event-triggered tasks and the order of
services inside these tasks.

For our needs, the BlueArX does not model hardware components and also its
implementation is not available.

4.1.10 AUTOSAR
AUTOSAR6 is a software architecture for development of automotive electronic control
units (ECUs). It defines composable components with explicitly defined interfaces,
properties, configuration and adaptation management, etc.

For our needs, it supports (directly or indirectly) many of the required features. However,
it is so closely tied to the automotive domain that it is not easily applicable to another
domain.

4.1.11 UML-MARTE
As it has been commented in the SysML section, UML lacks the specific semantics
required to fully support specification, modelling and design of current electronic
embedded systems. The embedded system models need to reflect systems integrating
multiple applications and diverse software platform components, e.g., embedded RTOS,
middleware, drivers, etc. Similarly, current hardware architectures rely on multi-core
processors, surrounded by many hardware devices for communication, storage,
sensing, and actuation. In addition, several types of analysis are applied (e.g.,
schedulability, timed-simulations, etc.) which require to add additional information to the
model, e.g., annotations of extra-functional properties related to timing, memory sizes,
energy, etc. In this context, the standard MARTE profile was developed [OMG2018] to
model and analyse real-time embedded systems, providing the concepts needed to
describe real-time features that specify the semantics of this kind of systems at different
abstraction levels.

For the needs of high-level specification MARTE is, however, too complex. It also lacks
simple textual notation that would allow easy sharing of models. As such, we do not
use MARTE as the first-line language, but rather, in one of the specific application
domains, as a more detailed model to which specifications of some FitOpTiVis
component model are translated to (see Section 7.3).

4.1.12 Mathematical Component models

4.1.12.1 Behaviour Interaction Priority BIP

To modelling heterogeneous real-time components, the BIP (Behaviour, Interaction,
Priority) framework has been introduced in [BBS2006]. The lower level describes the
behaviour of a component. The middle layer addresses the interaction between

6 https://www.autosar.org/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 23 of 95

components. The top-level describes the scheduling information. In BIP, systems are
constructed from atomic components, which are finite-state automata extended with
data and ports. Data transfer is the means of interaction between components. The
algebra for this interaction is presented in [BS2008].

The first version of BIP systems is static, which means that components and interactions
between them are fixed at design-time. To address dynamism of a real-time system,
Dy-BIP, representing a dynamic extension of the BIP framework, is introduced in
[BJM+2012]. Dy-BIP offers primitives to model dynamic architectures. Transition
systems are used as the atomic primitives. Transitions are labelled with ports, action
names, and constraints for interaction with other components. Each atomic component
provides its own interaction constraints at each computation step.

The next generation of BIP is the Dynamic Reconfigurable BIP (DR-BIP) component
framework capturing three types of dynamic changes, namely, different configurations
of a component, creation, and deletion of components, migrations of components
between predefined architectures. The formal definition of this model can be found in
[BBB+2018].

The BIP model only considers applications as components. Therefore, it is not able
to address dynamism on the hardware side. BIP focuses primarily on functional
behaviour and interaction rather than resource usage and aspects of quality.

4.1.12.2 Contract-based frameworks

For simplicity, modularity and scalability, the design and verification should be performed
at the component level. The correctness of component behaviour may depend on the
behaviour of components with which it interacts. This method is referred to as contract-
based design, because for decomposing systems into components it makes
assumptions on the environment and in turn provides guarantees to the
environment [CGP2008].

In their terminology, horizontal contracts are those for components at the same level of
abstraction, representing different components of the system, while vertical contracts
span different levels of abstraction of the same components [NSS+2012]. In contrast,
the vertical relations in our terminology (see Section 4.4) refer to resource budgets
between application and platform components, while horizontal composition to the
exchange of data between components.

In the contract-based framework, each component has some implementations defining
the behaviour of that component. These are usually deterministic and do not limit the
environment. These are the main differences between contract (their component
abstraction) and the implementation of a component. The guarantees of the model must
be realized by an implementation. Components with contracts have an elegant
compositional semantics in terms of sets of behaviours [NS2018]. When a contract
guarantees more with fewer assumptions than another contract, the former is called a
refinement of the latter. It may substitute for the former in any situation without violating
any constraints. Similarly, we may consider the introduction of abstraction and
refinement relations between component abstractions, for example if a component
provides better qualities for less resource usage.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 24 of 95

The contract-based frameworks provide a very generic framework but lack the
concrete syntax and support for specific constraints and compositions. There is
a lack of tools supporting contract-based design, except for the domain of formal
verification. The contract-based frameworks do not address dynamism typical of
reconfigurable and adaptive systems.

4.1.12.3 Multi-objective optimization techniques

In many fields of study such as business, economics and engineering, one often
considers two or more objectives for optimization (for example, latency and cost
minimization) along with constraints on such metrics. Constraints are non-negotiable
limits on some properties, while objectives are the negotiable properties. For instance,
we might have a constraint on the minimum frame rate of a streaming application and
would like to trade off power consumption for latency.

To find optimal solutions to multi-objective problems, one often considers Pareto
optimality, named after economist Vilfredo Pareto. He identified solutions that helped
some people (some objective metrics) without hurting anyone else (other objective
metrics) [P1971]. In FitOpTiVis, we intend to use the concept of Pareto optimality and
additionally explore the use of the algebraic framework introduced in [GBTO2007] for
compositional reasoning about optimality of systems of components. This approach
allows us to describe the design decisions for composing components either by
connecting inputs and output or by matching provided and required resource budgets.
The mathematical component framework for quality and resource management,
introduced in Section 4.5, shows how this algebra provides functionality for component
abstractions, in more detail.

4.2 Basic terminology and definitions
Building on the analysis of the related work and on the experience with developing and
extending various component models (ProCOM [SVB+2008], SOFA 2 [BHP2006],
SOFA-HI [HBP+2009], Fractal [BCL+2006], DEECo [BGH+2013]), we define the basic
abstractions of the FitOpTiVis component model as follows.

A component in the FitOpTiVis component model is the primary constituent of a system.
A component can be a hardware component (e.g., a camera or a processing unit), a
software component (e.g., a functional unit or a driver) or both (e.g., a smart camera).
Components can have associated configuration parameters and can be composed
together to form an architecture.

On the finest level of granularity, components can be divided to platform components
and application components.

Platform components represent parts that are generic with respect to a particular
application use. They provide computation means to execute actual data processing
tasks. Examples of platform components include: Raspberry Pi board with Raspbian,
Openstack node, a particular VM, FPGA.

Application components on the other hand represent the computation task specific to an
application. Examples include: OpenCV-based routine, Docker image, routine on FPGA.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 25 of 95

The relation between platform and application components is that an application
component is hosted (runs on) on a platform component. In some cases, the same
component can be both application and platform – e.g., a virtual machine component is
hosted (as an application component) on an OpenStack node platform component but
itself acts as a platform component for applications hosted on the virtual machine.

Application components can be connected to create data processing pipelines. Similarly,
an application component may be connected to a platform component to signify the
application component is hosted on the platform components.

The connection between components is realized through bindings between
component ports.

Components can be composed to form larger components, e.g., applications or
(virtual) execution platforms. In this respect, an abstract application is a composition
of application component abstractions that provides functionality to a user. A virtual
execution platform is a composition of virtual platform components that can run an
application. An abstract application executes on a virtual execution platform, or virtual
platform; a virtual platform exposes a collection of resource budgets to the abstract
application. Abstract applications and virtual platforms collect all information needed for
quality and resource management.

Components may have multiple configurations. A component configuration consists
of configuration parameters (set points) that control characteristic properties of the
components called qualities. Examples of configuration parameters include: fps, video
frame resolution. Examples of qualities include: memory consumption, code size,
processing speed. There are trade-offs between configurations and qualities – e.g.,
bigger video frame resolution requires more memory and leads to lower frame rate, an
Openstack node can host VMs with 8GB of memory or up to twice as much VMs with
4GB of memory.

The configuration of a components (or some of its parameters) may be set at design-time
(in case the configuration leads to recompilation of the component or reinstall of a
component) or at run-time. The parameters that are (re)configurable at run-time are
set via a dedicated run-time interface as developed in WP4.

An example of these component concepts is given below. We assume a smart camera
component. As a black-box, this component combines both hardware and software in
one package. Table 1 lists different configurations (rows). Each configuration is
described by a combination of particular choice of configuration parameters (columns).

Table 1: Smart camera component configurations.

Mode Frame rate (fps) Biometric
parameters Faces Raw frames

1 1 + - -

2 1 + + -

3 1 + + +

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 26 of 95

4 10 - + +

5 10 - - +

6 30 - - +

These example configuration options describe that the camera has selectable frame rate
(1, 10, and 30 fps) and can detect biometric parameters and faces. It can also provide
the entire video frame. However, only certain combinations of these parameters are
possible. If for instance biometric parameters are to be provided by the camera, the
frame rate is fixed to 1 reading per second.

When face detection is requested, the camera can process the video with up to 10 fps.
The maximum frame rate of 30 fps is achievable only when both the detection of
biometric parameters and faces is disabled.

In addition to these configuration parameters, the camera may consume different
amounts of energy. Such energy consumption can be viewed as a quality parameter of
the component. We assume that considering the provided features, frame rates and
energy consumption, all its configurations are Pareto optimal.

For the smart camera example, frame rate, biometric parameters, faces and raw frames
output are the configurable parameters that determine its set points. Frame rate and
power consumption are considered its qualities.

This example modeled using our component abstractions is shown in Figure 3. The
architecture of the example contains two application components – sensor task and
control host task – and two platform components – smart camera and cloud compute
platform. The components are composed together via two principal types of bindings –
“provides data to” and “runs on”. In this example, the sensor task sends data from face
recognition to access control task, which grants/denies physical access to identified
persons. As the two tasks are application components, they need to be executed
somewhere. The execution happens via a platform component. The composition of an
application component with a platform component happens through the “runs on”
binding. In the example below, the sensor task component runs on the smart camera,
the access control host task runs on cloud compute platform.

Given the typical way of laying out the application components above the corresponding
platform components, we also term the “provides data to” composition as horizontal
composition and the “runs on” composition as vertical composition.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 27 of 95

Figure 3: Example component model architecture of a biometric access application.

Application and platform components can be made at various granularities and / or
hierarchically. For instance, the sensor task and the access control task can be
abstracted together as the Biometric access control application. This application is in
this case the top-level application component. In the same way, the smart camera and
the cloud compute platform components can be abstracted as the Virtual execution
platform, which is the top-level platform component.

Similarly, if needed a component may be further decomposed to an architecture of fine-
level components. For instance, the sensor task can be decomposed to a pipeline of 4
tasks as shown in Figure 4. Note that as the sensor task itself has two ports (one for
providing data to access control task and another for being hosted on the smart camera).
The sub-components inside the Sensor task delegate to these ports on the outer
boundary.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 28 of 95

Figure 4: Example of the biometric access application with decomposed sensor tasks.

Components may also include any number of vertical layers as shown in Figure 5. The
example depicts a pipeline that does part of the video processing in the cloud. Here the
presence of the cloud creates two layers of platform components as the container/VM
instance is virtualized on top of the cloud.

Figure 5: Example of a model with multiple platform layers.

4.3 Detailed description of the reference architecture model
The main constituent of the FitOpTiVis component model is the component. The
component has a black-box and white-box view.

4.3.1 Black-box view
In the black-box view, the component exhibits multiple ports as shown in Figure 6. Every
component provides the following six types of ports: supports, requires, inputs, outputs,
parameters and qualities.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 29 of 95

To graphically distinguish the nature of the ports, we exploit the graphical notation of
UML 2 Component Diagrams.

We denote the supports port as vertically facing port terminated by a lollipop (circle).
The supports port is the platform-component part of the composition between a platform
and application component. It abstracts the provided resource budget.

The requires port is denoted by vertically facing port terminated by a socket (half-circle).
The requires port is the application-component part of the composition between a
platform and application component. The requires ports abstracts the required budget.
It serves as an abstraction for settings of configuration parameters and reflecting
qualities and costs in the application component.

The inputs port is denoted by horizontally facing port terminated by a socket. It
represents the intake of data (typically a video stream).

The outputs port is denoted by a horizontally facing port terminated by a lollipop. This is
a counterpart of the inputs port. It represents the egress of data (typically a video
stream).

The parameters port exhibits the configuration parameters of the platform component.
They are the parameters that can be set to determine the configuration in which the
component operates.

The qualities port exposes the relevant qualities/costs of the platform component. It
determines what aspects of quality and aspects of cost, which may vary across the
different configurations, are exposed to be used to express constraints and requirements
for quality and resource optimization purposes.

Figure 6 Ports of the components

Components can be connected together to form architectures. In this composition, only
requires-supports and inputs-outputs connections can be formed, as shown in the
figures below.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 30 of 95

Figure 7: Horizontal composition by connecting inputs and outputs

Figure 8: Vertical composition by connecting requires and supports ports

The ports further need to be compatible, e.g., video streams have to be of the same
encoding, need to be related in terms of frame rate or resolution.

Similarly, when application components and platform components are composed, the
budget supported by the platform component should match with the budget required by
the application component. This does not necessarily mean that they need to be equal.

Budgets are not necessarily quantitative (scalar numbers) but may include diverse
aspects and can be defined at different levels of abstraction.

• A budget may reflect the availability of a feature (e.g., security).
• A budget may include a level of guarantee (e.g., hard real-time vs soft real-time).
• Platform components may enforce budget restrictions on an application

component, or monitor if an application stays within its budget.

To reflect this formally in the component model, each port is associated with an interface
type. The interface type may define a number of properties that further characterize the
contract between two interconnected components. The properties reflect the budgets,
quality metrics, resource costs and configurations. The properties may be of different
data types – numeric, Boolean, discrete.

When components are connected, a relation is established between properties of
components. The connection can be made only between compatible ports. From this

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 31 of 95

perspective, two ports are compatible if they have compatible interface types and values
properties (on the two respective ports) are also compatible. Trivially, if the ports have
the same interface type and have the same property values, they are compatible.

4.3.2 White-box view
The white-box view allows modeling the internal structure of a composite component.
This makes it possible to hierarchically elaborate a component as a composition of other
components. The internals of a component are specified as an architecture of
interconnected sub-components. This internal architecture follows the same rules as
described in the previous section.

To align the internal architecture with the black-box view, the unconnected ports of the
sub-components are delegated to ports on the outer boundary of the composite
component. This is depicted in Figure 9, which shows 4 levels of nesting.

Figure 9: Component composition

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 32 of 95

On the first level, there is one component that is realized by both hardware and software.
Internally, the component is split to an application component and platform component.
The application component is internally modeled as two tasks. The platform component
internally consists of two layers – the execution platform and the virtual execution
platform on top of it. Both the execution platform component and the virtual execution
platform component are internally modeled as collections of resources.

The component model thus allows decomposition to an arbitrary level of detail.
Generally, the rule of the thumb is to go to such a level of detail that is necessary to
model all quality properties, budgets and costs that need to be brought in in the design
optimization phase (WP3) and the run-time adaptation (WP4).

4.3.3 Component configurations
An essential feature of the FitOpTiVis component model is that it explicitly captures the
potential design space of component configurations. The component design space in
FitOpTiVis is captured by component configurations, internal component properties (to
reflect qualities, budgets, costs), and by constraints over the properties.

In particular, a component configuration reflects a discrete variant of the component.
The configuration determines the ports (including their cardinality) and mapping of
internal component properties to properties of ports. Furthermore, it determines the
constraints over the properties. As such, the configuration determines both the black-box
and the white-box view of a component.

Recalling the example with smart camera – the camera has 6 configurations as given in
the table in Section 4.3. In configurations 1-3 it has an outputs port for providing
biometric data; in configurations 2-4, it has an outputs port for providing face data; and
in configurations 3-6, it has an outputs port for providing video data. In all configurations,
the component has an internal property FPS (frames per second). The configuration
defines constraints over the FPS property: it is 1 for configurations 1-3, 10 for
configurations 4-5, and 30 for configuration 6. The constraints further bind the internal
FPS property with the FPS property on the respective output ports.

Figure 10: Smart camera configurations

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 33 of 95

Additionally, the configuration determines also the required budget / cost consumed.
This comprises the energy consumption and GPU allocation, for example.

While in this example, the FPS was fully determined by the configuration, it is also
generally possible to see the FPS property as a scale. The configuration then only
specifies the permitted range and the dependency between the FPS and cost (e.g., the
energy consumption).

This way, the component configurations, properties and constraints together with the
component architecture form a design space. Searching the design space for the most
fitting configuration and assignment of properties with respect to a cost (e.g., the energy
consumption) can be seen as a constrained optimization problem.

4.3.4 Example: Component Abstraction in VR Use Case
In the context of use case UC-2, Virtual Reality, advanced virtual reality (VR) techniques
require high performance computation under stringent latency requirements. Future low
latency network services enable the use of remote acceleration of the computation on
devices in the edge or the cloud to improve quality of a VR application. We assume in
this example that the application and acceleration use OpenCL to define kernels that
can be accelerated. Moreover, we assume through portable OpenCL solutions such as
POCL [JSS+15] and POCL remote (investigated in FitOpTiVis, WP4) that the application
may choose to use a remote OpenCL device for high quality results, or a local device
when such a device is not available, or when accessing it would incur too much latency
for the application.

hand-held device
with POCL remote

5G network cloud accelerator
with POCL remote

connection
OpenCL acceleration

(number, device type)

stereoscopic VR
application

OpenCL acceleration+
GP computation

configurations:local rendering /
remote acceleration

constraint: latency < 200ms

processing latency = compute latency +
network latency + accelerator latency

low power proc+
OpenCL accelerator

latency latencylatency, power

latency, power

latency, rendering quality

rendered video graphics

VR processing

VR processing

Figure 11: Model of the remote configuration of a stereoscopic VR application

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 34 of 95

The local device is assumed not to be able to deliver the same quality as the remote
device. A (simplistic) model of this system in the component abstraction is given by three
platform components, the hand-held device, the network and the cloud accelerator. The
network offers communication service between the hand-held device and the
accelerator. For the sake of this simple example, the budget provided by the network
platform component is a connection, which is characterized by its latency only. The cloud
service platform component has OpenCL devices of particular type(s) as its resources
and the virtual resource it offers is defined by the number and type of the device.

The application supports two configurations, one corresponding to the local acceleration.
It requires no budget from network or cloud service, but only an OpenCL device on the
local platform. The application quality includes two aspects, the latency of the
application, and the quality of the rendering. We assume that there is a constraint on the
latency as stereoscopic VR applications may cause nausea when the latency is too
large. The second configuration employs remote acceleration. It requires a network
budget to realize a connection to the cloud service. The application latency depends on
the network latency. It also requires a budget from the cloud accelerator. In this
configuration the application delivers higher quality, but (possibly) at a larger latency.

The OpenCL standard includes device types and application models (kernels) but does
not include an explicit resource management architecture. (Figure 12 illustrates the
concepts and terminology of the OpenCL architecture.) Some of the properties of
component may be determined through online monitoring or calibration, such as the
latency of the network connection.

Figure 12: Concepts and terminology in the OpenCL architecture

Platform component abstraction: A platform is: "The host plus a collection of devices
managed by the OpenCL framework that allow an application to share resources and
execute kernels on devices in the platform."

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 35 of 95

The easiest way to characterize budgets from an OpenCL component is as a set of
available devices by their types (CPU/GPU/accelerator), possible even including specific
make and/or generation. Since OpenCL does not aim to provide performance portability
of applications across various heterogeneous devices, applications are often tuned to a
set of targeted GPU models or product families. This means that the “budgets” required
by an application may need to be very specific to guarantee that a previously measured
performance is reachable with the application. A more refined and challenging model
would be to characterize the accelerator through generic performance metrics.

4.4 Mathematical Component Framework for Quality and
Resource Management
In this section we give a precise, composition mathematical component model that can
be used as an underlying model or semantics for the conceptual component abstractions
that have been introduced. It introduces components with their configurations and
properties in a multi-objective optimization setting and it defines compositions of
components into larger components and systems that form the platforms, virtual
platforms and applications of the reference architecture.

Components are the building blocks of our framework. Their configurations model the
(re)configurable set points of each of them. The set points are characterized by their
inputs and outputs and provided and required budgets and qualities. The qualities of the
component refer to the properties that we want to optimize, for instance, latency,
throughput, energy consumption, cost. We use concepts from the Pareto algebra
framework defined in [GBTO2007] to capture quality and resource management in a
compositional way.

4.4.1 Component Framework Definition
Within the mathematical component model, we assume the existence of the following
sets:

• 𝐶𝐶𝑆𝑆 is a set of component configurations,
• 𝐵𝐵 is a set of budgets with a partial order ≼𝐵𝐵,
• 𝐹𝐹 is a set of inputs and outputs with a partial order ≼𝐹𝐹,
• 𝑄𝑄 is a set of qualities with a partial order ≼𝑄𝑄.

Budgets, inputs and outputs, and qualities are all equipped with an ordering relation that
distinguishes better values from worse values. For example, a smaller required budget
is better than a larger required budget, and vice versa for provided budgets of
components. The relation is assumed to be a partial order, which allows also certain
values to be declared incomparable. For uniformity of the model we assume that also
inputs and outputs have such an ordering. A ‘better input’, for instance, could be one
that accepts a wider input data type. A better output could provide a wider set of output
ports. Qualities of components are naturally also ordered to provide a basis for (multi-
objective) optimization.

The configuration of a component is determined by the values of configuration
parameters that can be set from outside of the component. We abstract from the

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 36 of 95

connection between parameters and the configurations in this section on the
mathematical model. The sets 𝐵𝐵, 𝐹𝐹 and 𝑄𝑄 are quantities in the sense of the Pareto
algebra framework [GBTO2007]. Note that elements of these sets can have an arbitrarily
complex (or arbitrarily simple) structure. Of particular interest for the FitOpTiVis
components model is that they can be composed, hierarchically. A single budget can
include, for example, both a processor and a memory budget.

When components are composed together into a new component, their inputs, outputs,
budgets and qualities are combined. To formalize this, we require the existence of an
addition (+) operation on 𝐵𝐵, 𝐹𝐹 and 𝑄𝑄 that is monotone in the following sense:

𝑎𝑎 ≼ 𝑏𝑏 ∧ 𝑐𝑐 ≼ 𝑑𝑑 ⇒ 𝑎𝑎 + 𝑐𝑐 ≼ 𝑏𝑏 + 𝑑𝑑

which means that the composition of components agrees with the defined notion of
better and worse, i.e., if one component is better than another, and we compose the
better component with the same third component, the resulting composition should be
better than the composition obtained from the worse component with the third
component. This is a natural property to expect, but it needs to be formulated in the
mathematical framework.

Note that we shall not define the details of the addition operator, as it is considered to
be domain-specific. I.e., it depends on the types of components being used what the
appropriate operator is. Some examples are given below.

We also require the existence of a − operation on 𝐵𝐵 and 𝐹𝐹 that models what happens
when budgets, inputs or outputs are (partially) satisfied/ consumed. We also need
monotonicity for this relation:

𝑏𝑏 ≼ 𝑎𝑎 ∧ 𝑐𝑐 ≼ 𝑑𝑑 ⇒ 𝑏𝑏 − 𝑑𝑑 ≼ 𝑎𝑎 − 𝑐𝑐

Example 1 (Budgets). A storage budget can be modelled by a natural number: the
number of bytes available for storage. Clearly, (ℕ,≤) is a partially-ordered set, and the
usual + and − operations on ℕ satisfy the monotonicity requirements.

Example 2 (Inputs and outputs). Let 𝑉𝑉 = {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}, to consider combinations of
audio and/or video inputs or outputs. For this we define 𝐹𝐹 as the powerset of , i.e., 𝐹𝐹 =
℘(𝑉𝑉) = �∅, {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}, {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}, {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}�. The partial order is given by set inclusion:
𝑓𝑓1 ≼ 𝑓𝑓2 if and only if 𝑓𝑓1 ⊆ 𝑓𝑓2. Furthermore, 𝑓𝑓1 + 𝑓𝑓2 is defined as 𝑓𝑓1 ∪ 𝑓𝑓2, and 𝑓𝑓1 − 𝑓𝑓2 is
defined as 𝑓𝑓1\𝑓𝑓2. Basic set theory gives us that these operations satisfy the monotonicity
requirements.

We can now define a component as follows.

Definition 1 (Component). A component is a tuple (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞), where

• 𝐶𝐶 ⊆ 𝐶𝐶𝑆𝑆 are the configurations of this component,
• 𝑣𝑣:𝐶𝐶 → 𝐹𝐹 gives the inputs for each configuration,
• 𝑣𝑣:𝐶𝐶 → 𝐹𝐹 gives the outputs for each configuration,
• 𝑟𝑟:𝐶𝐶 → 𝐵𝐵 gives the required budget for each configuration,
• 𝑝𝑝:𝐶𝐶 → 𝐵𝐵 gives the provided budget for each configuration,
• 𝑞𝑞:𝐶𝐶 → 𝑄𝑄 gives the quality for each configuration.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 37 of 95

A component instance is a component in combination with a specific configuration. A
component instance thus gives concrete values for the input, output, required budget,
provided budget and qualities.

The following defines relate our components to the corresponding concepts of Pareto
algebra.

Definition 2 (Component configuration space). The component configuration space is
the set 𝒮𝒮 = 𝐹𝐹 × 𝐹𝐹 × 𝐵𝐵 × 𝐵𝐵 × 𝑄𝑄.

Definition 3 (Component instance). Let 𝑀𝑀 = (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞), and let 𝑐𝑐 ∈ 𝐶𝐶. The 𝑐𝑐-instance
of 𝑀𝑀, denoted by 𝑀𝑀(𝑐𝑐), is the tuple �𝑣𝑣(𝑐𝑐), 𝑣𝑣(𝑐𝑐), 𝑟𝑟(𝑐𝑐),𝑝𝑝(𝑐𝑐), 𝑞𝑞(𝑐𝑐)� ∈ 𝒮𝒮. We let 𝐶𝐶(𝑀𝑀) denote
the set {𝑀𝑀(𝑐𝑐)|𝑐𝑐 ∈ 𝐶𝐶} ⊆ 𝒮𝒮.

To define a partial order on the component instances in the component configuration
space 𝑆𝑆, we use the partial orders on 𝐹𝐹, 𝐵𝐵 and 𝑄𝑄.

Definition 4 (Dominance). Let 𝑠𝑠1 = (𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1, 𝑞𝑞1) ∈ 𝒮𝒮, and let 𝑠𝑠2 = (𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2, 𝑞𝑞2) ∈
𝒮𝒮. We say that 𝑠𝑠2 dominates 𝑠𝑠1, denoted by 𝑠𝑠1 ≼ 𝑠𝑠2, if and only if 𝑣𝑣2 ≼𝐹𝐹 𝑣𝑣1 ∧ 𝑣𝑣1 ≼𝐹𝐹 𝑣𝑣2 ∧
𝑟𝑟2 ≼𝐵𝐵 𝑟𝑟1 ∧ 𝑝𝑝1 ≼𝐵𝐵 𝑝𝑝2 ∧ 𝑞𝑞1 ≼𝑄𝑄 𝑞𝑞2.

A component instance is thus dominated by another component instance if it has at least
the same input and required budget, and at most the same output, provided budget and
qualities. In such a case one would argue that the configuration that leads to instance 𝑠𝑠1
should never be preferred over the configuration of 𝑠𝑠2 and should be considered
redundant. The definition shows a fundamental distinction between how inputs and
outputs and required and provided budgets are treated in the component scope. Loosely
spoken, a component instance dominates another component instance if it requires less
and provides more. Configurations that lead to dominated instances are ideally
eliminated at design-time. Sometimes configurations turn out to be dominated in a
particular run-time situation. In that case they may be eliminated at run-time in a quality
and resource manager.

We lift the dominance relation to sets of configurations as follows. Let 𝑆𝑆1,𝑆𝑆2 ⊆ 𝒮𝒮. Then
𝑆𝑆2 dominates 𝑆𝑆1, 𝑆𝑆1 ≼ 𝑆𝑆2 if and only if for every 𝑠𝑠1 ∈ 𝑆𝑆1 there is some 𝑠𝑠2 ∈ 𝑆𝑆2 such that
𝑠𝑠1 ≼ 𝑠𝑠2. We say that 𝑆𝑆 ⊆ 𝒮𝒮 is Pareto minimal, denoted by 𝑚𝑚𝑣𝑣𝑚𝑚(𝑆𝑆), if and only if not 𝑠𝑠1 ≼
𝑠𝑠2 for any 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆. Two configuration sets 𝑆𝑆1,𝑆𝑆2 ∈ 𝒮𝒮 are Pareto equivalent, denoted by
𝑆𝑆1 ≡ 𝑆𝑆2 if and only if they dominate each other, i.e., 𝑆𝑆1 ≼ 𝑆𝑆2 ∧ 𝑆𝑆2 ≼ 𝑆𝑆1. With these
definitions on the configuration space and component instances we define the notion of
a Pareto-minimal component.

Definition 5 (Pareto-minimal component). Let 𝑀𝑀 = (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞) be a component. Its
Pareto-minimal version, denoted by 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀), is the smallest component (with the least
number of configurations) that is Pareto equivalent to 𝑀𝑀.

Below we specify two composition operators for components. We show that they satisfy
two properties that are needed for efficient compositional reasoning [GBTO2007]. The
first property states that the Pareto-minimal component is a proper abstraction for the
composition operators given in [GBTO2007] (denoted by ∗):

𝐶𝐶(𝑀𝑀1 ∗ 𝑀𝑀2) ≡ 𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1) ∗ 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀2)�

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 38 of 95

If a composition operator satisfies the equation above, then components can safely be
minimized to its Pareto-optimal configurations during the composition process. This may
result in an exponential reduction of the number of possible combinations for
composition. The second property states that a composition operator preserves
minimality:

𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1 ∗ 𝑀𝑀2)� = 𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1) ∗ 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀2)�

When such an operator is applied to compose minimal components, then minimization
after the composition is not needed.

Below we define the two composition operators and show that they satisfy the former
property, but not the latter.

Definition 6 (Horizontal Composition). Let 𝑀𝑀1 = (𝐶𝐶1, 𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1,𝑞𝑞1) and 𝑀𝑀2 =
(𝐶𝐶2, 𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2,𝑞𝑞2) be components. Their horizontal composition, denoted by 𝑀𝑀1 ⇒ 𝑀𝑀2,
is a new component (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞) where

• 𝐶𝐶 = 𝐶𝐶1 × 𝐶𝐶2
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + �𝑣𝑣2(𝑐𝑐2)− 𝑣𝑣1(𝑐𝑐1)�,
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = �𝑣𝑣1(𝑐𝑐1)− 𝑣𝑣2(𝑐𝑐2)�+ 𝑣𝑣2(𝑐𝑐2),
• 𝑟𝑟(𝑐𝑐1, 𝑐𝑐2) = 𝑟𝑟1(𝑐𝑐1) + 𝑟𝑟2(𝑐𝑐2),
• 𝑝𝑝(𝑐𝑐1, 𝑐𝑐2) = 𝑝𝑝1(𝑐𝑐1) + 𝑝𝑝2(𝑐𝑐2), and
• 𝑞𝑞(𝑐𝑐1, 𝑐𝑐2) = 𝑞𝑞1(𝑐𝑐1) + 𝑞𝑞2(𝑐𝑐2).

Note that the configurations of the new component include all combinations of the
configurations of its constituent components. A practical implementation may need to
address this combinatorial explosion of possibilities. The reduction to optimal
configurations may help, but not generally solve this issue. Effective search strategies
and (domain-specific) heuristics need to be applied.

The operator preserves Pareto equivalence, so it is fine to reduce component models to
their Pareto minimal configurations.

Example 3 (Horizontal Composition). Using the input/output from Example 2 and the +
and − operators defined in the example, we may compose a component with no inputs
and the output {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣} in configuration 𝑐𝑐1 with another component with input
{𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣} and no outputs in configuration 𝑐𝑐2. According to the definition of the composition
we obtain a new component with input 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + �𝑣𝑣2(𝑐𝑐2) − 𝑣𝑣1(𝑐𝑐1)� = ∅ +
({𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}\{𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}) = ∅ and output 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = �𝑣𝑣1(𝑐𝑐1) − 𝑣𝑣2(𝑐𝑐2)� + 𝑣𝑣2(𝑐𝑐2) =
({𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}\{𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}) + ∅ = {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}. I.e., all inputs are satisfied and the audio output
remains available for further composition.

Definition 7 (Vertical Composition). Let 𝑀𝑀1 = (𝐶𝐶1, 𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1,𝑞𝑞1) and 𝑀𝑀2 =
(𝐶𝐶2, 𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2,𝑞𝑞2) be components. Their vertical composition, denoted by 𝑀𝑀1 ⇑ 𝑀𝑀2, is
a new component (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟, 𝑝𝑝, 𝑞𝑞) where

• 𝐶𝐶 = 𝐶𝐶1 × 𝐶𝐶2
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + 𝑣𝑣2(𝑐𝑐2),
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + 𝑣𝑣2(𝑐𝑐2),

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 39 of 95

• 𝑟𝑟(𝑐𝑐1, 𝑐𝑐2) = 𝑟𝑟1(𝑐𝑐1) + �𝑟𝑟2(𝑐𝑐2) − 𝑝𝑝1(𝑐𝑐1)�,
• 𝑝𝑝(𝑐𝑐1, 𝑐𝑐2) = �𝑝𝑝1(𝑐𝑐1) − 𝑟𝑟2(𝑐𝑐2)�+ 𝑝𝑝2(𝑐𝑐2), and
• 𝑞𝑞(𝑐𝑐1, 𝑐𝑐2) = 𝑞𝑞1(𝑐𝑐1) + 𝑞𝑞2(𝑐𝑐2).

The vertical composition operator preserves Pareto equivalence.

Example 4 (Vertical Composition). Vertical composition can be illustrated using the
budget of Example 1, where memory requirements are modelled with a natural number
indicating the number of bytes required. It is easy to see that the + en – operators keep
track of the available memory and remaining memory requirements. Note that this rather
simple model ignores relevant issues such as paging and fragmentation.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 40 of 95

5. Domain Specific Language for the Component
Abstraction

In this section we describe the proposed Domain Specific Language (DSL) for modelling
FitOpTiVis applications and platforms. First, we describe it informally on a simple
example (Section 5.1). Then, the complete grammar of DSL is explained in full detail
(Section 5.2). The formal definition of the grammar in EBNF is available in Appendix A.

5.1 Example
As an example application, we use a simplified version of the video processing
application introduced in Section 4.3 and depicted in Figure 13.

Figure 13: Example model of a video processing application.

The source of the video data is the Camera. It represents a component that is both
software and hardware. The raw data stream from the camera is consumed by the
Encoder component, which processes the raw data and passes the processed data to
the Web Service component, which has a user interface for viewing videos by
consumers. Both the Encoder and Web Service are software components and thus they
need a platform component for execution. It is represented by the OpenStack
component that provides virtual machines (note the asterisk at its supports interface,
which means that there can be multiple interfaces of the same type, i.e., in our case, the
single OpenStack component can provide several virtual machines).

The types of the horizontal interfaces, i.e., the types for inputs and outputs of
components, are defined via the channel keyword. The types of vertical interfaces, i.e.,
the supports and requires of components, are defined via the budget keyword. Both
kinds of the interfaces can define a number of properties. The listing below defines the
types of interfaces (one vertical and two horizontal) for the example application.

budget VirtualMachine {
 property memory;
 property core_count;
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 41 of 95

channel VideoStream {
 property resolution;
 property fps;
 property encoding;
 property audioBitrate;
}

channel AudioStream {
 property audioBitrate;
}

The budget interface VirtualMachine represents a virtual machine supported by the
OpenStack component and required by the software components. It defines its aspects
of memory and core_count describing the virtual machine properties that are required
or provided, respectively. The input/output interface channel VideoStream used
between the software components and the camera has the properties resolution,
fps and encoding describing the video stream passing through the ports of the
component and audioBitrate describing the audio stream bitrate. The input/output
interface AudioStream has only one quality, audioBitrate.

Component types are defined via the component keyword. Each component type can
define its inputs/outputs and supported/required interfaces. The listing below shows the
definition of the Camera component, which can operate in two modes, i.e.,
configurations. Either, it can operate as an audio-video source, or as only an audio
source (only the microphone is used).

Either of the two configurations has a single output, which is parametrized with actual
values for the interface’s properties. In each configuration, the component defines also
its own qualities and parameters that serve to further parameterize a corresponding
configuration.

The specification assigns options for parameters or values for qualities. It further
establishes a relation between properties of ports and the component’s parameters and
qualities. In this respect, it is important to note that the equals (=) sign in the examples
does not denote an assignment, but an equality constraint.

component Camera {
 configuration AudioVideo {
 outputs VideoStream out {
 resolution = {width: 1920, height: 1080};
 fps = this.fps;
 encoding = “raw”;
 };
 parameter fps in [25, 30];
 quality power_consumption = 5; /* Watts */
 }

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 42 of 95

 configuration AudioOnly {
 outputs AudioStream out {
 bitrate = 256;
 }
 quality energy_consumption = 2; /* Watts */
 }
}

Similarly, the definition below describes the Encoder component with one input, one
output, and one required interface.

component Encoder {
 inputs VideoStream raw;
 outputs VideoStream encoded;
 raw.fps = encoded.fps;
 raw.resolution = encoded.resolution;
 encoded.encoding = “mp4”;
 requires VirtualMachine vm {
 memory >= 1024;
 core_count >= 1;
 }
}

The OpenStack component below has also defined properties. The component qualities
are, like interface qualities, unspecified by default. The values will be specified or filled
in later stages (e.g. when the entire system is being specified). Component qualities are
also subject to constraints. Alternatively, the qualities can have an initial constraint. This
constraint is by design equality-only.

Importantly, the vm supported interface can exist in several instances, i.e., it is defined
as an array (with its size in the square brackets).

component OpenStack {
 parameter instance_count;
 parameter memory_per_instance_MB in [1024, 2048, 8192];
 parameter cores_per_instance in [1, 2, 4];

 quality memory_consumption = instance_count *
 memory_per_instance_MB;

 supports VirtualMachine vm[instance_count] {
 memory = memory_per_instance_MB;
 core_count = cores_per_instance;
 };
}

Finally, the WebService component consuming the processed video stream is quite
straightforward.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 43 of 95

component WebService {
 inputs VideoStream in;
 requires VirtualMachine vm {
 memory >= 1024;
 core_count >= 1;
 }
}

Lastly, there is a single composite component representing the whole application. It
instantiates and connects all the component types described above. As the Encoder
requires the input of the VideoStream type, the Camera component can be used only
in its AudioVideo configuration.

system Application {
 component OpenStack os {
 node_count = 1;
 }
 component Camera camera {
 configuration = AudioVideo;
 }
 component Encoder enc;
 component WebService sink;
 camera.out outputs to encoder.raw;
 enc.encoded outputs to sink.in;
 enc.vm runs on os.vm;
 sink.vm runs on os.vm;
}

5.2 Specification
This section describes the created DSL formally. To show its syntax we use the EBNF
(Extended Backus-Naur Form) notation. The complete set of syntax rules is presented
in Appendix A.

The DSL is white-space insignificant and case-sensitive. Comments are written the
same way as in C, C++, Java and other languages with roots in C. Thus, // starts a
comment till the end of a line, while /* and */ surround multiline comments. Nested
comments are not supported.

Identifiers (further denoted as <ID>) are sequences of characters, where the first
character can be any letter or underscore (‘_’), followed by an unlimited number of
letters, digits or underscores. Each identifier has to consist of at least one character.

Strings (further denoted as <StringLiteral>) are sequences of characters surrounded
using either quotation marks (“”) or apostrophes (‘’). The backslash character (\) is used
for escaping (like in C, Java and other languages).

A file written using our DSL comprises of 5 possible elements, which can repeat
indefinitely. These 5 elements are import statement, budget definition, data channel
definition, component definition and system definition.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 44 of 95

<Model>: { <Element> }

<Element>: <Import>
| <BudgetDefinition>
| <ChannelDefinition>
| <ComponentDefinition>
| <SystemDefinition>

5.2.1 Import
Syntax:

<Import>: “import” “(“ <StringLiteral> “)” “;”

Example:

import(“interfaces.fit”);

The import element declares usage of definitions from another resource (e.g., from a
file). The import will not transitively import other elements as specified by the target
resource. In case of name collision, the element(s) in the current file take precedence.

5.2.2 Budget interface definition
Syntax:

<BudgetDefinition>:
 “budget” <ID> “{“ { <PropertyDefinition> } “}”
<PropertyDefinition>:
 “property” <ID> ‘;’

Example:

budget foo {
 property q1;
 property q2;
 property q3;
}

The budget definition defines a set of qualities of the particular budget. These qualities
are visible to both producer and consumer of the interface and can be used for
constraints.

5.2.3 Channel interface definition
Syntax:

<ChannelDefinition>:
 “channel” <ID> “{“ { <PropertyDefinition> } “}”

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 45 of 95

Example:

channel foo {
 property q1;
 property q2;
 property q3;
}

The channel definition is syntactically and semantically similar to budget definition,
except the keyword “channel” is used instead of “budget” (see Section 5.2.2).

5.2.4 Component definition
Syntax:

<ComponentDefinition>: “component” <ID>
 “{“ (<DefaultConfiguration> | <Configurations>) “}
<DefaultConfiguration>: <ConfigurationBody>
<Configurations>: { <Configuration> }
<Configuration>: “configuration” <ID>
 “{“ <ConfigurationBody> “}”

Example:

component DefaultConfiguration {
 // configuration body
}
component MultipleConfigurations {
 configuration foo {
 // configuration body
 }
 configuration bar {
 // configuration body
 }
}

A component is defined by its possible configurations. In case a component has only a
single (default) configuration, then the configuration keyword is omitted, and the
component is defined directly. Otherwise, there is a list of possible configurations
defined.

<ConfigurationBody>: { <ComponentRule> “;” }
<ComponentRule>: <SupportsPredicate>
 | <RequiresPredicate>
 | <InputsPredicate>
 | <OutputsPredicate>
 | <PropertyPredicate>
 | <SubcomponentPredicate>
 | <ConstraintPredicate>

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 46 of 95

The component configuration definition declares a set of predicates (constraints) that
must hold for the component to be valid (e.g., once the system is being defined).
Following sections describe all the possible predicates.

5.2.4.1 Interface usage predicates

Syntax:

<SupportsPredicate>: “supports” <InterfaceUsagePredicate>
<RequiresPredicate>: “requires” <InterfaceUsagePredicate>
<InputsPredicate>: “inputs” <InterfaceUsagePredicate>
<OutputsPredicate>: “outputs” <InterfaceUsagePredicate>

<InterfaceUsagePredicate>: <ID> <ID> [<ArrayIndex>]

[<InterfaceUsageConstraints>]
<ArrayIndex>: “[“ <Expression> “]”
<InterfaceUsageConstraints>:

“{“ { <ConstraintPredicate> “;” } “}”

Example (when used in component a semicolon would follow after each line):

supports budget_type foo
requires budget_type bar
inputs channel_type baz
outputs channel_type qux {
 property1 = “foo”;
 property2 = 5;
 property3 < baz.property3;
}

All the interfaces are used in the same way – the syntax only differs in the used keyword.

The component can use multiple interfaces of the same type (e.g., it can have two
different supports predicates for two different budget interfaces). In case one would want
to use multiple, or variable amount of the same interface, the array syntax can be used.
The expression inside the square brackets is a generic expression and can therefore be
based on surrounding qualities. Note that only one-dimensional arrays are supported.

Once the interface port is declared, an optional constraint block may follow
(<InterfaceUsageConstraints>). This block may contain any constraint defined in
5.2.7. All names of properties of the newly defined port are available in this block without
the <ID> “.” prefix, and will take precedence over any other names, including the
property names of the component. There is currently no way to use the hidden names.

5.2.5 Property predicates
Syntax:

<PropertyPredicate>:
(“property” | “quality” | “parameter”) <ID>
[(“=” <Expression>) | (“in” <ArrayExpression>)] “;”

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 47 of 95

Example:

property foo
quality power_consumption
parameter fps

The qualities and parameters of components are defined using the same syntax as
qualities of budget and channel interfaces. In addition to quality and parameters, we also
allow defining general properties (using “property” keyword), which expresses the
design uncertainty, whether the property is to be regarded as read-only quality or as a
configurable parameter.

Since the components can constraint the values of qualities, parameters, and properties,
and since the most common way of constraining a property is by equality, the language
allows for direct specification of a single equality constraint using the “=”
<Expression> syntax. For example:

property foo = 5;

is equivalent to

property foo;
foo = 5;

5.2.6 Subcomponent predicates
Syntax:

<SubcomponentPredicate>: “component” <ID> <ID> [<ArrayIndex>]
[<InterfaceUsageConstraints>]

Example:

component another_component foo
component bar baz[10]

Each component can have several subcomponents’ instances defined. The first
identifier denotes the type of the subcomponent, while the second identifier names the
instance. Optionally, multiple components of the same type can be created using the
array syntax.

The connecting of the interfaces (channels, budgets) is done using constraint
predicates, which are explained in Section 5.2.7.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 48 of 95

5.2.7 Constraint Predicates
Syntax:

<ConstraintPredicate>: <BooleanExpression>
| <AndPredicate>
| <OrPredicate>
| <ImplicationPredicate>
| <RunsOnPredicate>
| <OutputsToPredicate>

(Boolean expression are described later – together with other expressions – in
Section 5.2.9.)

5.2.7.1 And-predicate

Syntax:

<AndPredicate>: “all” “[“ <ConstraintPredicate> { “,”
<ConstraintPredicate> } [“,”] “]”

Example:

all [foo > 5, foo < 10]

The and-predicate contains a comma-delimited list of constraints that all need to hold
in order for the predicate to hold. The list of predicates has to contain at least one
predicate. The list can optionally end with a comma.

One does not need to use the and-predicate in the top-most level of component
definition, as those predicates by default all have to hold. The and-predicate can,
however, be used in more complex logical expressions using other composite predicate
types (e.g., or-predicate, implication predicate).

5.2.7.2 Or-predicate

Syntax:

<OrPredicate>: “any” “[“ <ConstraintPredicate> { “,”
<ConstraintPredicate>} [“,”] “]”

Example:

any [
 foo > 5,
 bar < 10,
 and [foo <3, bar > 5]
]

The or-predicate is syntactically the same as any-predicate. It holds if at least one of
the predicates in the list holds.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 49 of 95

5.2.7.3 Implication-predicate

Syntax:

<ImplicationPredicate>:
<BooleanExpression> “=>” <ConstraintPredicate>

Example:

foo = 32 => bar < 5

The implication predicate can only be written using this left-to-right syntax, meaning that
the left expression is always the antecedent, and the right implication is then the
consequent. The implication predicate holds when either the consequent or the negation
of the antecedent holds.

5.2.7.4 Runs on / Outputs to predicates

Syntax:

<RunsOnPredicate>:
<QualityExpression> “runs” “on” <QualityExpression>

<OutputsToPredicate>:
<QualityExpression> “outputs” “to” <QualityExpression>

Example:

component A a;
component B b;
a.budget_request runs on b.budget_provide;
a.out outputs to b.in;

The runs on and outputs to predicates are used to connect subcomponents in a
component or components within a system. The <QualityExpression> denotes path
to a quality and is described in Subsection 3.2.10.

The left side of the runs on predicate is the consumer of the interface (budget request),
the right side is the provider of the interface (e.g., cloud component providing virtual
machine budgets).

The left side of the outputs to predicate is the provider (data source), the right side is the
consumer (data sink).

5.2.8 Expressions
Syntax:

<Expression>: <AdditiveExpression>
| <InlineArrayExpression>
| <InlineObjectExpression>

Additive expressions denote the common expression syntax found in other languages
(unary operators, binary operators, precedence handling, brackets, literals) for

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 50 of 95

non-Boolean operations. The AdditiveExpression grammar can be found in
Appendix A.

5.2.8.1 Inline arrays

Syntax:

<InlineArrayExpression>:
 “[“ [<Expression> { “,” <Expression> } [“,”]] “]”

Example:

[1, 2 + 3, “foo”]

The inline array expression denotes a tuple of values. It is used mostly in
<InExpression>, which will be described in Section 5.2.9.2.

5.2.8.2 Inline objects (composite values)

Syntax:

<InlineObjectExpression>:
 “{“ [<InlineObjectMember> { “,” <InlineObjectMember }
 [“,”]] “}”
<InlineObjectMember>: <ID> “=” <Expression>

Example:

{ value1 = 5, value2 = [“foo”, “bar”] }

The inline object is used for composite values, and allows for tree-like structures to be
composed. All data fields of a single object must have unique names, so as to not run
into ambiguity issues.

5.2.9 Boolean expressions
Syntax:
<BooleanExpression>: <UnaryBooleanOperator> <BooleanExpression>

| <ComparisonExpression>
{ <BinaryBooleanOperator> <ComparisonExpression> }

| ‘(‘ <BooleanExpression> ‘)’
| <InExpression>

The only supported unary Boolean operator is negation, which is written using the ‘!’
character. The binary Boolean operators are logical AND (‘&&’) and logical OR (‘||’).
Other operators are not currently in the language, but can be added into the specification
if the need arises later.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 51 of 95

5.2.9.1 Comparison expressions

Syntax:

<ComparisonExpression>:

 <Expression> <ComparisonOperator> <Expression>

Example:

a + 2 < b - 3

Comparison is done using common syntax. Expressions are described later in
Section 5.2.10. The supported comparison operators are less than (‘<’), less than or
equal (‘<=’), greater than (‘>’), greater than or equal (‘>=’), equals (‘=’), not equal (‘!=’).

5.2.9.2 In-expression

Syntax:

<InExpression>: <Expression> in <Expression>

Example:
quality foo;
foo in [1, 3, “bar”]

The in expression consists of any expression on the left side, and array of values on the
right side (the second expression must evaluate to an array). The in expression holds
when the value on the left side exists in the array on the right side.

5.2.10 Quality expressions
Syntax:
<QualityExpression>: <ArrayAccessExpression>

| <SubQualityAccessExpression>
| <ID>

<ArrayAccessExpression>:
<QualityExpression> “[“ <Expression> “]”

<SubQualityAccessExpression>: <QualityExpression> “.” <ID>

Example:

foo
foo.bar
foo[10]
requires virtual_machine vm;
vm.quality1

The quality expression denotes a path to some quality. It is used to walk through
interfaces, arrays, and inline objects.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 52 of 95

5.2.11 System
Syntax:

<System>: “system” <ID>
“{“{(<SubComponentPredicate> | <ConstraintPredicate>)}“}”

Example:

system foo {
 component bar baz;
 component bar qux;

 baz.out outputs to qux.in
 baz.quality1 < 5;
}

The system is both semantically and syntactically similar to a composite component,
except the system itself does not need to use budget or channel interfaces. The system
is primarily composed of “component”, “runs on” and “outputs to” predicates. The system
can specify additional constraints for any of the subcomponents.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 53 of 95

6. Virtualization Mechanisms

6.1 Introduction
Platform virtualization is intended as the abstraction of a given physical platform to hide
all the unnecessary details and to keep only the aspects that are relevant for the purpose
of resource management. Virtualization allows to have a more practical and concise
view of the available resources and, in turn, to take decisions to efficiently exploit them
according to the required application to be executed. In FitOpTiVis, besides this general
and quite common view, virtualization, is also seen as a set of methodologies to achieve
predictable and composable application behaviour, and predictable resource
configuration options. Focusing on WP2, virtualization mainly involves budget
abstractions and exchange of information with application models.

By means of virtualization, in FitOpTiVis applications will not be mapped directly to
physical platforms, but to virtual, abstract ones. This opens to the possibility of executing
tasks without knowing the physical target device that is actually processing them, neither
knowing if there are other tasks running on the same shared device. Virtualization in
FitOpTiVis is intended also to abstract the concept of budgets. Budgets are abstract
models of available resources, encompassing all the relevant aspects they offer to the
user, and they constitute the interface between application components and physical
resources. Budgets offered by the virtual platform must be detailed enough to let
application models define a meaningful set of set points and qualities. Virtualization will
also be exploited to achieve run-time reconfiguration and tuning, to properly and quickly
adapt the system behaviour to modifications in requirements, applications, resources or
environment.

Such virtualization approach has to face several challenges to be implemented. Two of
the main issues are related to compositionality and budget realization. The former is the
possibility of splitting virtual platforms to smaller virtual resources, each responsible of
an independent budget. The latter deals with the fact that physical devices should be
realized such that budgets provided by the corresponding virtual resources are
independent, and that offered budgets can be effectively exploited by applications or
resource management.

6.2 State-of-the-Art
Virtualization is an extremely investigated research topic and several technologies and
standards are present in literature and are already commonly adopted in the practice. In
FitOpTiVis, virtualization techniques are widely exploited. Deliverable 4.1, Appendix A
gives an elaborate overview of the state-of-the-art in virtualization mechanisms and
resource management based on virtualization techniques. In Deliverable 4.1 the
emphasis is on their realizations and implementation frameworks. In this section we
consider only the modelling aspect of virtualization and its relation to quality and
resource management.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 54 of 95

6.2.1 Virtualization Models
One of the main challenges of virtualization methodologies is related to the need to
provide proper models that can exhaustively describe the underlying physical resources
keeping, at the same time, the model lightweight and easy to be analysed. Note that, it
is mandatory for the virtualization model to be representative of the resources
(computing, memory, communication, etc.) offered by the corresponding physical entity.
Abstract representations of parallel computing systems involving both hardware and
software features have been surveyed yet in the 1990s [MMT1995], while examples of
models envisioning a separation between hardware and software (or architecture and
application) aspects are dated back to 2000s. Such separation demonstrated to be
effective in mitigating the complexity of the system to reach higher
productivity [GS2003], and has been formalized in [KDW+2002] by the introduction of
the so-called Y-chart (see Figure 14).

Y-chart requires two different models for applications and architecture. These models
are joined when mapping applications into architecture. By acting exclusively on models,
it is possible to retrieve quantitative data from an analysis of each possible mapping and,
according to them, to take decisions on the same design process. Here comes the
importance of being representative for virtualization or architecture models: depending
on the degree of fidelity of the model properties with respect to the ones of the underlying
real entity, numbers coming from model analysis (after mapping) will be more accurate
and, in turn, the decisions made will be more effective for the considered goal.

Figure 14 Y-chart: separation of models of architecture from models of applications [25].

Dealing with models, level of abstraction is always one of the parameters that has to be
taken into consideration. It indicates how many details of the modelled entity are kept
on the model and how many other are omitted. For instance, considering a hardware
architecture, it is possible to adopt low-level models, such as transistor or logic gate level
ones, or higher ones neglecting transient states and physical details, such as register
transfer or transaction level ones. Abstraction level can be further increased: Electronic
System-Level (ESL) [GHP+2009] is a coarser grain modelling for complex modern

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 55 of 95

devices involving millions of transistors, making it possible to perform early design
analysis and explorations.

Besides hiding unnecessary details, the usage of incremental levels of abstraction
facilitate model analysis: the lower the abstraction level is, the harder will be its
manipulation. Given these considerations, a clear trade-off between accuracy and
complexity is there. The higher the level you choose for your model the less will be its
accuracy and fidelity, but on the other hand you will be able to simplify model analysis
since the models are more lightweight. Choosing the proper level of abstraction depends
on the purpose of the model and the way it is used and manipulated. Such a trade-off
between levels of abstraction, or model lightweightness, and model
representativeness/fidelity, virtualization mechanisms often provides subsequent
stacked Y-chart models, providing an incremental abstraction [KDW+2002]. To find an
optimal conjunction between architecture and application, designers go from the more
abstract (less accurate) model, where analysis is fast and easy, and it is possible to
perform lots of analysis and to explore lots of solutions, to the less abstract (more
accurate) one, where analysis is slow and hard thus allowing the evaluation of few
design points or configurations.

Figure 15 Y-chart defined for Models of Computation (MoCs) and Models of Architecture
(MoAs) [KDW+2002].

In [KDW+2002] a first definition of virtualization model, here referred to as Model of
Architecture (MoA) is provided, saying that it is “a formal representation of the
operational semantics of networks of functional blocks describing architectures”.

Starting from the assumption that virtualization models are faithful representations of the
underlying physical devices properties and to provide a more formal separation between
MoAs and the models of computation (MoCs) used to represent applications (see Figure
15), [PMD+2017] provided a new definition: a MoA is “an abstract efficiency model of a
system architecture that provides a unique, reproducible cost computation,
unequivocally assessing a hardware efficiency cost when processing an application
described with a specified MoC”. This definition not only puts emphasis on accuracy of
model properties, but also clearly defines boundaries and connection points between
models of architectures and models of applications. Moreover, it helps in understanding
the FitOpTiVis meaning of virtual platform and abstract application, where the former
provides amounts of budget, and the latter demands them. Nevertheless, there is a
difference between FitOpTiVis budgets and costs in [KDW+2002], in the latter costs are
always computable and reproducible, in FitOpTiVis case budgets may also be
qualitatively assigned, rather than always formally computed.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 56 of 95

Figure 16 UML MARTE Design Model Package [29].

In literature, lots of examples of virtual models and platforms are present. Some
languages, like the Architecture Analysis and Design Language (AADL) [FGH2006],
allow to describe hardware besides software. Here, hardware components descriptions
are intended to be simulated in time. UML MARTE [OMG2018] also involves software
and hardware aspects, but this modelling standard is specifically conceived for real time
embedded systems. UML MARTE offers the possibility to model non-functional
properties, as shown in Figure 16 where, for instance, appear Schedulability Analysis
Modeling (SAM) or Performance Analysis Modeling (PAM). Despite that, it does not take
care of how they are extracted from the underlying hardware resources. High-level
Virtual Platform (HVP) [CSC+2009] is an architecture virtual representation based on
SystemC capable of executing tasks. These latter are described with a different model,
called Communicating Processing, and are managed through dedicated task automata.

Figure 17 Example of the Linear System-Level Architecture Model (LSLA) [27].

Several works focused on the definition of models for the virtualization of non-functional
properties of the physical architectures. Castrillon et al. [CL2014] defined a model where
architectures are represented by a graph of processing elements. Edges connect
processing elements and have an associated API to make tasks exchange data. In this
context, both processing elements and edges API expose several non-functional
properties. Grandpierre et al. [GS2003] focused on memory size and bandwidth
properties in their virtualization model proposal. Here, the targeted physical platforms

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 57 of 95

are heterogeneous architectures where it is possible to simulate message passing and
shared memory data transfers. Timing properties are instead deepened in the System-
Level Architecture Model (S-LAM). Here distribute systems are targeted and
communication is mediated by enablers like Random Memory Access (RAM) and Direct
Memory Access (DMA). Kianzad et al. [KS2004] dealt with several parameters optimized
together and represented with Pareto fronts. Their model, associated with a whole
co-synthesis framework, involves processing elements and communication resources
with a set of associated parameters: the former have area, price, idle power
consumption, data and instruction memory size; the latter have idle power consumption,
power consumption per unit of data and worst case transfer rate. The Linear System-
Level Architecture Model [PMD+2017], depicted in Figure 17, is an additional
virtualization model adopting linear equations to compute non-functional parameters,
called costs, on a generic architecture. Here, differently from the previous cases, non-
functional parameters are not limited to a pre-fixed set, while it adopts the same linear
formula for computing them.

6.2.2 Virtualization for Quality and Resource Management
Even if the state of the art, but also the market, is full of solutions for virtualization, the
support for run-time reconfiguration is only partially addressed. Existent virtualization
mechanisms mainly focus on efficient management of resources and they only
sometimes offer transparent adaptation of allocated resources or qualities according to
the current workload. Moreover, they are usually oriented to servers and desktop
machines in general, being thus not careful about power/energy consumption or
available network bandwidth, parameters that became important dealing with embedded
and cyber physical contexts. In particular, for the run-time reconfiguration of virtual
platforms in literature, both the virtual reconfiguration and the corresponding physical
solutions are a weak point at the moment.

Some research works explored the possibility of reconfiguring at run-time the underlying
physical system according to its corresponding virtual entity. Cannella et
al. [CDM+2012] proposed a virtualization mechanism for reactively and predictable
migration of software tasks at run-time leveraging on dataflow models of application (see
Figure 18). Their work targets multi-processor systems on chip (MPSoCs) with
distributed memory and based on a network on chip (NoC) architecture. With the
adopted application abstraction models, execution is driven by First-In-First-Out (FIFO)
point-to-point communication links and to migrate a task from one source tile of the NoC
to a destination one, authors propose to simply stop execution in the source tile, update
predecessors and successors addresses with the ones of the destination tile, then this
latter starts execution according to the related FIFOs state. This work proposes a
solution for implementing reconfiguration according to an abstract application model, but
they do not provide any virtualization reconfiguration and limit their approach to NoC
based MPSoCs. [HBV+2016] introduces a piecewise linear performance model in which
scheduling methods for processor sharing are abstracted into linear progress models
where the rate of progression depends on the current set of active tasks on a processor.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 58 of 95

Figure 18: Example of abstract application (dataflow) mapping on the virtual platform in [CDM+2012]

Pelcat et al. [PDH+2014] also rely on dataflows, and in particular on Parameterized and
Interfaced Synchronous Dataflows [DPN+2013] (PiSDF), to have an abstract view of the
application to be executed. They virtualize the targeted MPSoC devices by means of a
S-LAM model of architecture. According to application abstraction and architecture
virtualization, the proposed tool, PREESM7, generates code that can be statically or
dynamically mapped onto the considered MPSoC. Run-time re-mapping is then possible
by means of an online analysis of application execution on the architecture, also
considering current timing and parameter data. SPIDER, a dataflow-based RTOS for
MPSoCs, is taking care about run-time behaviour [HPD+2014]. As shown in Figure 19,
the mapping is decided by a master core (global run-time, GRT) that sends job tokens
to different slave cores (local run-time, LRT) within the MPSoC. Here authors also
provide a way to take decisions according to the workload to minimize execution time,
however they still do not consider again power/energy aspects.

Figure 19: Spider environment for run-time re-mapping and monitoring of the executed
dataflow application on MPSoCs.

Goossens et al. [GAC+2013] proposed CompSOC, a solution again based on dataflows
and intended for NoC based MPSoCs. Basically, applications are deployed on virtual
execution platforms hosted by the corresponding physical execution platforms.
Applications are divided in tasks, while execution platforms, physical and virtual, are
composed by resources. The core of CompSOC is the broker, a software entity capable
of matching budgets available on physical resources (coming from a dedicated resource
manager) and the available set points possible for applications, given in terms of

7 https://preesm.github.io/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 59 of 95

required qualities by a system manager (see Figure 20). In order to properly control
virtual resources, a sequence of states is used for reserved, allocated, initialized and
running cases. CompSOC revealed to be an effective solution for achieving efficiency,
predictability and composability. However, again, no power/energy aspects have been
considered so far.

Figure 20: CompSOC approach overview: on the left operation related entities, on the right
management ones.

According to the state of the art, virtualization seems to be a powerful instrument not
only to achieve faster re-deploy of applications, easier backups, wider reproducibility,
clean-up of the environment, as commonly delivered by commercial virtualization
products, but also for improving efficiency of the underlying employed devices with a
more tailored resource allocation. Here efficiency mainly deals with execution time, but
also with power/energy and quality are important especially when dealing with
embedded and cyber physical systems. The improvement of efficiency becomes even
more effective if it is applied at run-time, thus reconfiguring on-the-fly virtual and, in turn,
physical environment. In this sense, all the solution proposed in literature, are lacking
some points in terms of metrics to be considered, e.g. power/energy, or in terms of limits
in targeted applications and devices.

6.3 Virtual Platform Models
The virtual reconfigurable platform is one of the FitOpTiVis reference architecture parts,
dealing with the abstraction of the, optionally reconfigurable, physical resources that are
available for the execution of a certain application (see Figure 1). To have a
representative and effective virtual platform, it is necessary to provide a model of the
underlying physical resource(s), in particular by extracting and exposing to the reference
architecture only the information useful to be aware of the context and to take decisions
accordingly.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 60 of 95

In FitOpTiVis, such information is represented by parameters, qualities and budgets.
From the virtual platform point of view, parameters are used, when possible, to configure
a virtual platform such that it provides certain qualities and budgets. Indeed, virtual
platform components can be configurable and then expose different sets of qualities and
budgets. These latter, from virtual platform components point of view, are intended as
aspects (e.g. availability of specific features, level of guarantee, amount of memory, etc.)
provided by the virtual platform component and they must meet the corresponding
required budgets from the abstract application components.

By means of the domain specific language described in Section 5, it will be possible to
describe different kinds of virtual platform models that could be adopted in different
FitOpTiVis use cases or application fields. In the following, some examples of these
virtual platform models will be proposed, trying to highlight the aspects that are compliant
with the virtual reconfigurable platform view of the FitOpTiVis reference architecture.

6.3.1 Example Instance: Virtual Platform Models in
CompSOC
In the CompSOC platform, Component Bundles (see Figure 21) are used to store
component models (both application and platform models). For each component
configuration, the Component Bundle contains its parameters, qualities, budget
descriptor, and initial state. Configurations are determined by setting the parameter
values. Qualities describe offered qualities of application components or costs of
platform components. The Budget Descriptor, which has a hierarchical structure,
describes the provided and/or required budget of a component. The initial state contains
the data that is used to initialize the components (e.g., application data). It is not part of
the component abstraction but needed in the platform to instantiate a platform and an
application. Similarly, the bundle also includes the application instructions.

Component Bundle

Configuration

1..*

Parameters

1

Qualities

1

Budget Descriptor

1

Initial State

1

Figure 21: Structure of Component Bundle.

Virtual Execution Platforms are composite components whose models can be stored in
the aforementioned structure. Given the fact that a Virtual Execution Platform is
composed of one or more virtual resources, the Budget Descriptor for such composite
components has a hierarchical structure containing the budgets of all their virtual
resources. In CompSOC, the deployment of applications in Virtual Execution Platforms
is done by Virtual Execution Platform Managers (VEPMs). They create virtual resources
(and eventually VEPs) according to the Budget Descriptors that describe VEPs that

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 61 of 95

applications require for deployment. These bundles are stored in certain sections in the
ELF (Executable Linkable Format) binary which contains the compiled application.

Example. For an application that runs on two processors in a parallel fashion, the
Budget Descriptor contains two Tile Budget Descriptors which describe the required
virtual resources on each platform tile such as processors, instruction/data memories,
DMAs, etc. Based on this bundle, a VEPM creates virtual resources (e.g., virtual
processors) on two platform tiles separately to create the required VEP that can execute
the parallelized application.

6.3.2 Example Instance: Virtual Platform Models in PREESM/
SPIDER
In PREESM8 rapid prototyping tool for heterogeneous multi/many-core systems, as well
as in its run-time version SPIDER [HPD+2014], the Linear System-Level Architecture
Model (LSLA) [PMD+2017] is adopted for virtualization. An example of LSLA has been
shown in Figure 17. Basically, it is composed by processing elements, communication
nodes and links. Each LSLA is a functional model of the underlying architecture in terms
of a specific metric, e.g. energy or latency, making it possible to estimate the value of
such metric for the whole architecture according to the current application being
executed and its mapping among available resources. The corresponding estimated
metric value, namely the cost, can be exploited for decision making purposes.

The LSLA is linear since the architecture cost is obtained through the linear combination
of the costs of its components: processing elements, communication nodes and links.
LSLA is represented with an undirected graph 𝐺𝐺 = (𝑃𝑃,𝐶𝐶, 𝐿𝐿, 𝑐𝑐𝑣𝑣𝑠𝑠𝑐𝑐), where 𝑃𝑃 is the set of
processing elements (PEs), 𝐶𝐶 is the set of communication nodes (CNs), 𝐿𝐿 is the set of
arcs between two CNs or between one CN and one PE, while 𝑐𝑐𝑣𝑣𝑠𝑠𝑐𝑐 is a function that
associates a cost to the different components of the model. To execute a certain
application, each processing token (atomic part of application processing) must be
mapped onto a PE, while each communication token (atomic part of application
communication) must be mapped onto a CN.

Example: According to the FitOpTiVis approach, to make LSLA models fit with the
proposed reference architecture and domain specific language, constraints related to
processing and communication tokens mapping can be expressed as budgets and, in
particular, “processing” budgets could be provided only by PEs and “communication”
budgets instead could be given by CNs. On the other hand, the cost modelled by the
LSLA can be expressed as a quality of the virtual resource, so that it can be exploited
to take reconfiguration decisions and to manage resources.

6.4 Quality and Resource Management Conceptual
Architecture
The quality and resource management architecture is shown in the reference
architecture in Figure 1. In the reference architecture, platform and application

8 https://preesm.github.io/

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 62 of 95

components have been optimized and characterized at design-time and may in general
support multiple configurations, while the platform resources that are actually available
will be known only at run-time. The quality and resource management in FitOpTiVis
reference architecture works with the component abstractions of the platform resources
and the applications. For the platform, these abstractions form the virtual reconfigurable
platform shown in the same Figure 1.

Also applications are characterized by their own components abstractions, and expose
their configurations with corresponding trade-offs between quality and resource budget
requirements. The compositions of platform components and application components
defines which combinations are feasible and which are not, and which combinations are
optimal by means of constraints on the configuration parameters.

The quality and resource manager is the entity in charge of identifying possible solutions
and selecting which solution(s) will be realized.

The envisioned FitOpTiVis multi-objective optimization aims at ordering possible
solutions in terms of better and worse. The FitOpTiVis reference architecture does not
prescribe how optimal choices are selected, whether this is done in a centralized or a
distributed manner, or whether users are involved in the decision making or not. So, the
generic optimization problem is likely to be complex and domain-specific methods and
heuristics should be used. The quality and resource manager only ensures that Virtual
Platforms are created or modified for the applications to run on and that the applications
are started or reconfigured. In the following, few examples of quality and resource
management strategies that could be adopted in FitOpTiVis will be described,
underlining how they fit with the FitOpTiVis reference architecture.

6.4.1 Example Instance: Quality and Resource Management
in CompSOC
The hardware layer in the CompSOC platform [GAC+2013] contains multiple tiles
(including processor tiles, memory tiles, peripheral tiles, etc.) interconnected by a NoC.
In CompSOC, virtualization is used to consolidate multiple applications in a composable
manner on the same platform. Accordingly, resources are partitioned into multiple virtual
resources which are further composed together to form Virtual Execution Platforms
(VEPs) on which applications are deployed.

To realize the composable virtualization, physical resources are either exclusively
dedicated to a unique VEP or composably shared among multiple VEPs. Resources
such as DMAs and local memories, which are relatively cheap in area, are exclusively
allocated to a VEP. Other resources such as processors and global memories are
temporally or spatially shared among VEPs. In CompSOC, resource-specific entities
called resource managers are used to virtualize resources. A virtual resource is the
result of programming a required budget into a resource, which leads to the reservation
of a part of the resource for a VEP. Abstracting physical qualities and other parameters
of resources away, budgets are used to model virtual resources. The virtual resources
are the abstractions of the resources that include all information that is relevant to quality
and resource management. And the budgets are abstract models that describe precisely
what is necessary to verify that the needs of an application are met.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 63 of 95

In CompSOC, processors and the NoC are partitioned in time by Time-Division
Multiplexing (TDM) arbitration, which realizes composable resource sharing. A
TDM-arbitrated resource provides a periodic budget. Its provided budget can be
expressed by a tuple (𝑆𝑆, 𝐼𝐼) where 𝑆𝑆 is the service that is provided in every 𝐼𝐼 units of time.
Section 7.1 illustrates how for a particular application model (static dataflow)
performance predictions can be derived from such budget descriptions.

Service describes the type and size of a budget. For processors and the NoC, services
are expressed in cycles and bytes respectively. Therefore, virtual processors (virtual
NoCs) are modeled by their budgets which are represented by the number of cycles
(Bytes) that are provided/required in certain intervals.

Example. Suppose we have a processor which is partitioned by TDM arbitration, and
its TDM wheel is of length 1𝑚𝑚𝑠𝑠 is partitioned into 4 TDM slots, each of which provides
100 kcycles. The budget of a virtual processor that has been allocated one TDM slot of
this processor can this be abstractly modelled as (100𝑘𝑘, 4𝑚𝑚𝑠𝑠). Such a budget description
is rich enough for an application component to perform response time analysis. Imagine
a task that takes 550𝑘𝑘 cycles to complete. It can be assigned a response time of 24𝑚𝑚𝑠𝑠
for performance or schedulability analysis purposes. For a virtual processor that has
been allocated two non-consecutive TDM slots, the budget can be captured as either
(200𝑘𝑘, 4𝑚𝑚𝑠𝑠) or (100𝑘𝑘, 2𝑚𝑚𝑠𝑠). Note that the latter provides a strictly stronger guarantee
than the former, i.e., response times computed from the former budget are never longer
than response times computed from the latter.

Memories in the CompSOC platform (it distinguishes instruction, data, and global shared
memories) are spatially partitioned by memory controllers such that the partitions do not
have overlaps in space. The required/provided memory capacity expressed in Bytes are
used to describe spatial memory budgets in CompSOC. Next to spatial budgets
applications also need budgets to access memories that characterize latency and
bandwidth of such accesses. The memory controllers in the platform are specifically
designed to be composable to eliminate interference between applications and to be
able to provide budget guarantees to its virtual resources.

6.4.2 Example Instance: Quality and Resource Management
in SPIDER
The Synchronous and Interfaced Dataflow Embedded Runtime (SPIDER) [HPD+2014]
is a Real-Time Operating System (RTOS) for the efficient scheduling of applications on
multi-core architectures. It adopts Parameterized and Interfaced Synchronous
DataFlows (PiSDFs) [DPN+2013] to describe applications. PiSDF is a good trade-off
between flexibility, offering parameterization and hierarchy possibilities, and
predictability of the behaviour. In SPIDER, this model is translated at run-time in order
to have a global view of dependencies between tasks. In terms of parameters and
hierarchy, it is needed to compute parameters before scheduling and this can be done
only sequentially among different hierarchy levels, one level at a time. The scheduling
consists of two phases, namely task ordering and mapping: the former sorts the non-
executed tasks, while the latter assigns them to each processing element in the
architecture. SPIDER can schedule tasks in order to optimize different metrics, like
latency, throughput, memory utilization or energy.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 64 of 95

Once defined the optimization goal, the scheduling may still vary according to the
evolution of the parameters of the PiSDF application and to the execution constraints. A
SPIDER RTOS is based on a master/slave execution scheme, as depicted in Figure 19.
Local RunTimes (LRTs) are slave lighweight operating systems capable of processing
PiSDF tasks, while the Global Run Time (GRT) is the master, being aware of the whole
PiSDF application topology and taking decision upon scheduling strategies. These latter
are communicated through Jobs, that embed data needed to execute PiSDF tasks and
are sent to LRTs by means of job queues. Different kinds of data can be sent back from
LRTs to GRT: they can be output parameters, timing, or any other quality provided
directly by the LRT underlying physical resource. These data are the core of the SPIDER
quality and resource management approach, since they may change the way tasks are
scheduled and executed on the underlying physical architecture.

Example. In FitOpTiVis the quality and resource management is the core of the
reference architecture, connecting applications abstraction, quality requirements and
virtualized platform resources In the same way, SPIDER is the conjunction between
PiSDF applications, embedding qualities in parameters or providing them through
dedicated queues (e.g. timing ones in Figure 19), and the virtualized platform, for
instance modelled by means of the LSLA model of architecture (see Section 6.3.2).

A possible example of SPIDER quality and resource management could be a video
encoder (described as a PiSDF application) where quality of the encoding can be tuned
by means of a PiSDF parameter. The video encoder is implemented on an embedded
multi-core system, so that an energy constraint is present, given by the remaining battery
level. By default, the application is executed at the maximum quality and the scheduling
effort is put on throughput. When the remaining battery level goes above a certain
threshold, SPIDER can decide to optimize energy, to lower the quality of the encoding
or to lower the throughput, if there are not higher priority constraints on these metrics.
Here, it is possible to define different set points, each providing a different tuple of
encoding quality/consumed energy or throughput/consumed energy, to increment the
number of possible solutions and take more effective decisions.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 65 of 95

7. Instances of the Reference Architecture

7.1 Component Abstractions for Multi-Source Streaming
This section shows an example of an instantiation of the reference architecture in the
specific domain of dataflow-based modelling for mapping of dataflow applications onto
a predictable multi-processor architecture such as CompSOC [GAC+2013,
Deliverable 4.1]. It introduces the component abstraction for an example similar in spirit
to the multi-source streaming use-case.

Let 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 be three streams, which come from three different sources and encoded
as M-JPEG. We assume that sources can be configured to send streams either with
720p or with 360p resolution, which we refer to as full scale and half scale, respectively.
There is a full HD display, on which a user may desire to visualize one or a combination
of the streams either at half scale or full scale. Figure 22 depicts this scenario. We
assume that the required frame rate for both half and full scale streams is 30 fps.
Network and screen can be modelled as platform resources in the component
abstraction, but we focus here on modelling of the processing part.

Figure 22: multi-source streaming example

To provide streaming applications with guaranteed performance properties, such as
minimum throughput and maximum latency, we model streaming applications with the
Synchronous Data Flow (SDF) model of computation [LM87,SB09, SGTB2011]. SDF
enables us to conservatively capture the timing behaviour of the system. We would like
to embed the SDF model into the reference architecture as a component abstraction.

A dataflow graph describes repetitive tasks and their dependencies in an application.
Figure 23 depicts an example SDF graph, where the nodes are the set of actors 𝐴𝐴 =
 {𝑎𝑎0,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3} representing individual tasks of an application. Edges represent the set
of channels 𝐶𝐶 ⊆ 𝐴𝐴 × 𝐴𝐴 modelling dependencies, which can be data dependencies or
control dependencies. An actor can be executed once its input channels have at least
the number of tokens that are denoted by rates on input channels. Once the actor firing
is completed, it consumes the tokens on its input channels and produces tokens on its
output channels. For the sake of simplicity, rates of 1 for production and consumption
are not shown. Different configurations of an application can be represented as separate
SDF graphs and the integrated application including reconfiguration can be modelled in
a model called Scenario-Aware Dataflow (SADF). The details of this model and
performance properties analysis are explained in more detail in [SGTB2011].

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 66 of 95

A dataflow application can be captured as a component abstraction in the reference
architecture. Half scale vs. full scale is a parameter that determines the configurations
of the streaming application. We see later how resource budgets are also included in
the configurations. The inputs and outputs of the component abstraction correspond to
unconnected ports of the SDF graph model. Half scale or full scale is also considered
as one of the qualities of the component. Note that it may happen that a certain aspect
occurs in multiple roles in the component abstraction. The scale is, on the one hand, a
configuration that impacts the type of input and output data and the required computation
budget, but on the other hand, it can also assume the role of a quality aspect, full scale
being better to look at than half scale.

Figure 23: A Synchronous Data Flow graph

Figure 24 depicts the SADF model of applications 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3, described in the
introduction part of this subsection. In this graph, VLD is the variable length decoder
function, whose input is a compressed stream and output are macro-blocks constructed
of six blocks. IDCT and IQZZ stand for inverse discrete cosine transform and inverse
quantizer and zig-zag ordering, respectively, both operate at the level of blocks. RC is
the reconstruction block producing a bitmap digital image of a macro block. SRC and
DP are the source and display blocks. Their functionalities operate at the video frame
level.

Figure 24: SADF model of 𝑆𝑆1

There are mathematical performance analysis techniques that can compute tight
conservative bounds on throughput and latency of dataflow graphs, if we have
worst-case execution times or response times of the functional components of the
application [SGTB2011]. Network and memory resources can also be modelled and
accounted for [BDLT2019], but we do not include them in this example.

In the FitOpTiVis architecture, we cannot assume that we know a priori on which
processor(s) the application is mapped and what budget it gets from the processing
resource. Instead, we intend to calculate conservative bounds on throughput and
latency, only using the required budget information. The computed throughput and
latency metrics then serve as additional qualities of the streaming application
component.

The analysis and design-space exploration can be performed at design-time and leads
to a number of alternative processor budgets with different, Pareto optimal combinations
of the scale, and latency metrics under the throughput constraint derived from the video

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 67 of 95

frame rate of 30fps. To determine latency and throughput, a mapping and scheduling of
the dataflow graph need to be decided and they are recorded as part of the component
configuration.

In the FitOpTiVis reference architecture, we introduce budget abstractions of the virtual
resources that the dataflow applications execute on. We consider, as an example, the
following budget model for a virtual processing resource. We assume that processing
budgets are abstractly characterized for a single processor by a pair of two numbers as
follows.

𝐵𝐵 = (𝐶𝐶, 𝐼𝐼)
𝐼𝐼 is a positive real-valued number and 𝐶𝐶 is an integer that denotes a lower bound on the
number of processor cycles that the processing resource provides in any time interval
of length 𝐼𝐼. This abstraction is suitable for budget schedulers, such as round robin or
TDMA based pre-emptive schedulers [MO2014]. More refined models such a (some
finite representation of) service curves of Real-Time Calculus [TCN2000] may provide
tighter bounds but are also more complex to handle by design-time or resource
optimization and management techniques. From the budget abstraction we can
determine a lower bound on the number of cycles for any given interval, as well as a
minimal interval for any required number of cycles. These relations are visualized in the
graph in Figure 25 with the time interval Δ on the horizontal axis and the corresponding
bound on the number of cycles on the vertical axis.

Figure 25: An abstract budget relating time intervals and cycles

One of the research questions addressed in the FitOpTiVis project is whether existing
execution or response-time based performance analysis techniques for dataflow can be
generalized to provide performance bounds based on allocated budgets from virtual
resources for a dataflow graph with a given binding and scheduling to virtual processors.
Another question is how to find good mappings and schedules on virtual processors.

A known scheduling order can be incorporated in the dataflow model in the form of
additional dependencies [DSG+2012]. The configurations of the application can be
represented with models such as shown in Figure 26. The four actors of the model of
Figure 23 are mapped onto two virtual processors 𝑃𝑃1 and 𝑃𝑃2. The number of kcycles
required per actor firing on the specific processor is annotated inside the actor. A
schedule 𝑎𝑎0𝑎𝑎1𝑎𝑎1is enforced on the first processor by adding extra dependencies and
initial tokens. Similarly, schedules are enforced on the second processor and between
the processors.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 68 of 95

P2

42 2

P1

4
4

2 2 4 4

a0,
5

a2,
11

a3,
3

a1,
1

y

Figure 26: A dataflow graph with virtual processor binding and scheduling

The response time of a sequence of actor executions mapped onto a processor budget
can be calculated. For instance, assume that the provided budget by virtual processor
𝑃𝑃1 is (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠). To calculate the worst-case response time of the sequence of
actor firings 𝑎𝑎0𝑎𝑎1𝑎𝑎1, first, the (worst-case) required number of cycles for the execution
of this sequence (5 + 2 × 1 = 7 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠) is computed. This number, divided by a lower
bound on the number of cycles provided per each interval is computed, which provides
the worst-case number of time intervals required. In the example, this is
7 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠 / 3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, rounded to a whole number of intervals, which equals 3 intervals.
Hence, we can conclude that it takes at most three times the interval length, which
means it takes at most 3 times 2 𝑚𝑚𝑠𝑠. Therefore, it is shown that the execution time of
this sequence cannot be more than 6 𝑚𝑚𝑠𝑠 when executed with the given budget.

The component is finally captured with a finite number of configurations that give it a
trade-off between the allocated budget and the quality that is provided. The resulting
component abstraction of the dataflow application component is something like Table 2,
where each row represents a different configuration with a particular processing budget,
throughput, latency and scale qualities. Configurations also include the actor mapping
and scheduling, which are not shown in the table. For the half scale case, the channel
(𝑎𝑎2,𝑎𝑎3) has rate 2 on the side of 𝑎𝑎3, and this is the only difference between this and the
full scale configuration.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 69 of 95

Table 2: Component abstraction of a decoder application.

of Proc.

Pbudget
(kcycles, ms)

Throughput
(θ)

Latency
(ms)

Scale

1 (3,2) 20 50 full

2 (3,2) 27.7 38 full

4 (3,2) 27.7 38 full

1 (4,2) 26.6 38 full

2 (2,2) 18.5 56 full

4 (1,2) 9.25 108 full

1 (3,2) 38.5 26 half

2 (3,2) 46.8 24 half

4 (3,2) 46.8 24 half

1 (4,2) 50 20 half

2 (2,2) 31.25 34 half

4 (1,2) 15.6 64 half

Assume that we have a number of identical virtual processors with the same provided
budget of (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠). The corresponding latency and throughput of the application
mapped onto one processor is shown in the first row of the table. The second and third
rows of the table represent the quality of the scheduled SDF graph mapped onto 2 and
4 identical processors with the budget of (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠), respectively. The third row
shows that although the resource allocated for application is doubled compared to the
second row, the throughput and latency are not improved. Thus, this is not a Pareto
optimal configuration and is best removed from the component model.

The next three rows of the table compare the quality of different numbers of processors
with the overall provided budget. This reveals that distributing a constant budget
deployed for running application tasks in parallel would decrease the quality of this
application. The remaining rows similarly represent the half scale configurations.

This table enables the system to select an optimal configuration, as long as it realizes
the constraints on either quality properties and the required budget at run-time. For
instance, to run a half scale with a throughput at least 30 and the latency not bigger than
30ms, the system considers one CPU with (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠) as a feasible option.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 70 of 95

7.2 Component Abstractions for an Industrial Inspection
System
UC4, the Industrial Inspection system use case, defines multiple components in the
model/architecture (for the details please see D1.1, D4.1 and D5.1). This section
describes the main components that take part in such use case. The ZG3D Industrial
Inspection system captures objects in free fall using 16 cameras. To analyse an object
the system performs multiple complex and computationally costly operations. The main
objective is to decrease the required bandwidth and increase the throughput using a
distributed system of IoT low-power devices (edge capturers) to pre-segment and
transfer images to the following components of the ZG3D system.

The system we are proposing is composed of network resources, edge capturers and
camera devices, etc. All of them require different configurations and settings, and quality
features like resolution, latency, workload, availability of edge devices and workers,
among others.

An abstract application of the system has been derived and divided in multiple
components as shown in Figure 27.

Figure 27: An Industrial Inspection System

The main component that is added in FitOpTiVis is the Edge component with the
following internal architecture described in Figure 28.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 71 of 95

Figure 28: Component Abstraction of an Industrial Inspection System

This Edge component has the following component, budgets and channel definitions
that describe it at its first stages:

budget BoardExecution {
 property bandwidth;
 property throughput;
 property consumption;
 property resolution;
}

budget VirtualEdgeExecution {
 property bandwidth;
 property throughput;
 property consumption;
 property resolution;
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 72 of 95

channel ImageStream {
 property resolution;
 property encoding;
}

component Camera {
 configuration capturer {
 outputs ImageStream out {
 resolution = { width: 2280, height: 2048 };
 encoding = "raw";
 }
 }
}

component EdgeBoard {
 quality memory;
 quality bandwidth;
 quality throughput;
 parameter resolution;
 supports BoardExecution board {
 bandwidth = this.bandwidth;
 throughput = this.throughput;
 };
 requires ImageStream cam {
 resolution = this.resolution
 };
}

component VirtualEdge {
 quality memory;
 quality bandwidth;
 quality throughput;
 requires BoardExecution board;
 supports VirtualEdgeExecution vep {
 bandwidth = this.bandwidth;
 throughput = this.throughput;
 };
}

component ImageSegmentation {
 inputs ImageStream in;
 outputs ImageStream out;
 equires VirtualEdgeExecution vep;
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 73 of 95

component TransferEncoding {
 inputs ImageStream raw;
 outputs ImageStream raw;
 requires VirtualEdgeExecution vep;
}

7.3 Model-based component abstraction
The project intends to develop also a methodology that provides UML-MARTE based
component abstractions that comply with the reference architecture developed in WP2.

The work in WP2, includes the definition of abstract components that can be easily
integrated in a UML-MARTE design flow. The methodology is based on work in other
projects (e.g. MegaMaRt2) in which the basic component modelling methodology and
tool framework have been developed [MV2017]. The FitOpTiVis innovations in this part
are focused in five areas: efficient specification of dataflow models, non-functional
parameter specification and verification, single-source based virtual platforms for real-
time video systems, modelling of multiple component configurations (set points) and
efficient run-time reconfiguration.

The FitOpTiVis abstractions and component templates have been integrated in a
UML-MARTE based design flow. Additionally, a C++ implementation methodology that
supports multiple implementations (or set points) and run-time re-configuration has been
developed and it is being integrated in the UML-MARTE based framework that is
presented in Deliverable 3.1. The main steps of the methodology are presented in
Figure 29.

The FitOpTiVis abstractions and DSL descriptions will be captured with a wizard that
transforms the FitOpTiVis concepts into UML-MARTE elements. The models will be
captured with the UML-MARTE tool ecosystem that has been described in deliverable
D3.1 and they could use the available platform/application component libraries. The
UML-MARTE ecosystem provides several types of tools such as code generators and
virtual platforms. The software synthesis tool generates base component
implementations from the UML-MARTE models. In FitOpTiVis, a new C++
implementation methodology has been defined. The new approach defines the way to
codify UML/MARTE components in C++. These components support several
implementations (e.g. sequential/concurrent implementation, GPU implementation,
FPGA implementation, …) that can be selected on run-time. This allows adapting the
system to particular system situations (system resilience). From a UML-MARTE model,
the methodology defines a base component implementation. Typically, this base
component is a C++ class that defines the component interfaces. These classes derive
from a parent class that provides run-time reconfiguration capabilities. From the base
component, different target specific implementation classes are derived.

Additionally, the UML-MARTE framework generates all the infrastructure that is required
to simulate the application in a virtual platform and analyses its performances. The host-
compiled virtual platform takes into account the platform model (that include the
hardware and operating system models) and the application source code. The virtual
platform verifies the system functionality and estimates basic performance (execution

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 74 of 95

time and power consumptions). Other system qualities are estimated with simulation
traces and simulation monitors.

Figure 29: UML-MARTE based design methodology

Run-time reconfiguration
infrastructure

System Model
Application, platform and

allocation models

Non-functional parameter

FitOpTiVis

Abstractions and
FitOpTiVis

DSL

Wizard

UML-MARTE
Framework

Platform
components

Application

Component Libraries

Platform
components Platform

components

Platform
components

Application

Code
generation

Verification

Component 1 – Implementation n

Component 1 – Implementation 1
C/C++ code

Platform
simulation model

Host-compiled
virtual platform

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 75 of 95

7.3.1 Component modelling in UML-MARTE
This section presents an extension of an existing methodology that has been developed
in the MegaMaRt2 project. The extension supports the FitOpTiVis concepts and
abstractions. A classical UML-MARTE methodology defines 3 system views:

• PIM (Platform Independent Model). This view captures information related with
the application and it describes the platform-independent functionality of the
system. PIM exhibits an enough degree of independence so as to enable its
mapping to different platforms. To develop this view in the proposed
methodology, two types of diagrams are included: application view and
verification view.

• PDM (Platform Dependent Model) that describes the computing resources in
which the application will be implemented. This view models the hardware (e.g.
CPU cores, GPUs, memories, buses, …) and software resources (e.g. RTOS,
memory spaces) of the execution platform. In the proposed methodology, the
PDM includes 3 views: SwPlatformView, HwResourceView and
MemorySpaceView.

• PSM (Platform Specific Model) that defines the relation between the PIM and
PDM views. This model specifies the mapping of the application threads/tasks to
the platform computing resources. So, it is captured all the implementation
decisions taken during the design process. In this case only the architectural
view is included in the proposed methodology.

Figure 30: Proposed methodology views

These views are captured with and Eclipse-based framework (Papyrus) that has been
improved with several specific plugins that provide requirement capture, performance
analysis as well as automatic generation of software and verification code. Figure 30
presents the list of the PIM, PSM and PDM views of the proposed methodology in the
UML-MARTE framework (Papyrus).

In FitOpTiVis, application and platform components are used in the same view.
UML-MARTE provides different views for these components in order to facilitate PIM
and PDM independent specification. This approach improves physical platform reuse
and application porting to different physical platforms.

In the proposed approach, the application is described as a network of components. The
basic abstraction that models these components is the “UML-MARTE Generic

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 76 of 95

Component Model (GCM)”. A generic component only requires a description of the
external component interfaces or ports. The original methodology only supports service
interfaces (Client-Server Ports in UML-MARTE). A service is a functionality that the
component requires or provides. These services can be modelled as functions with
input, output and input-output parameters that are equivalent to the “input and output
and parameter ports” of the FitOpTiVis abstract model. The methodology has been
extended in FitOpTiVis to support dataflow ports (FlowPorts in UML-MARTE) that
provide access to objects that are not included in the component. The components are
included on packages that facilitates their reuse.

The generic component can provide services and/or dataflow ports to other components.
Additionally, they can require services or data from other components. Next figure
presents the structure of a system with 3 components whose ports provide/require
services to other components.

Figure 31. Model-based application example

Currently, different component implementations are specified with UML attributes.
These attributes specify the variant identification, the required computation resources
and several performance-related parameters (e.g. execution time, required memory,
latency …). In the original methodology [MV2017], only 2 types of components are
supported: passive and active components. An active component is a concurrent
computing unit with real-time features (a real time unit, RTUnit, in UML-MARTE). For
example, a sensor that provides periodic samples (periodic task) is typically modelled
with an active component. The passive components (Protected Passive Unit, PPUnit, in
UML-MARTE) do not own schedulable resources. A function that transform an image is
a typical implementation of a passive component. In FitOpTiVis, the original
methodology has been extended to support OpenMP based implementations. The new
approach defines active components that include OpenMP-based code with passive
components.

In the proposed approach, the PIM is captured with the application view. The PIM also
includes the test plan that is modelled in the verification view. The application view
models the relations between components as well as the component hierarchy or
system structure. Figure 32 presents an example of an application view in the Eclipse
framework. The components are interconnected through ports that use
required/provided interfaces.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 77 of 95

Figure 32: Application view example

In order to model the platform component, the methodology defines 3 views: memory
space, software platform and hardware resource views. The memory view identifies the
application processes that normally require a specific memory space (MemoryPartition
in UML-MARTE). The software view models the RTOS (real-time operating system) and
peripheral/system drivers. The hardware resource view defines all the hardware
elements of the platforms: sensor, processors, buses, memories, … Figure 33 presents
an example of a hardware resource view.

Figure 33. Hardware Resource View

The mapping between the application and platform components is modelled in the
architectural view. For every component different mapping or set points can be specified.
At run-time, the previously commented reconfiguration infrastructure allows selecting
the specific component implementation that has to be used.

From these views, the UML-MARTE framework generates the implementation code as
well as all the information required to estimate system behaviour and
performance [HMV2017].

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 78 of 95

7.4 Component Abstractions for Time Sensitive Networks
This section introduces an abstraction of the Time Sensitive Network (TSN= station
component). A TSN station can be classified as TSN bridge if it is able to forward TSN
streams with required real-time Quality-of-Service (RT-QoS) (bounded latency,
guaranteed bandwidth). Otherwise, it is designed as TSN end-station. Consequently,
TSN end-stations can be assimilated as TSN bridges with no forwarding capability.

The user should specify RT-QoS traffic objects through the configuration API. Traffics
are recognized by a combination of protocol fields and encapsulated into multicast VLAN
frames, conforming TSN streams.

A TSN station should support the following capabilities:

1) Identification and prioritization of entering user traffics

2) Forwarding policy to entering TSN streams. TSN streams can be forwarded to
other ports or VLAN-stripped to be handed to the user application layer.

3) Execution of the generalized Precision Time Protocol (gPTP, [IEEE802.1AS-
2011]). This includes the capability of

a) collaborating in the election of the network time reference (grandMaster),

b) self-synchronization to the grandMaster

c) Time synchronization event message forwarding, with corresponding
correction to the timestamp generated at the grandMaster.

These functionalities are implemented through three major functional subsystems, which
require specific configuration.

First, the VLAN sub-module should identify entering traffics, i.e. untagged user traffics
or forwarded TSN streams. On the one hand, untagged user traffics should match any
of the user-provided combination of protocol fields to apply specific RT-QoS or routing
policy. On the other hand, forwarded TSN streams should also be identified to apply the
corresponding forwarding rule. The configuration of this submodule is specified on the
vlan_entry budget.

Second, the TAS sub-module should perform strict time-and-priority-driven cyclic
scheduling of the output bandwidth. Egressing TSN streams are queued according to
their priority and released following a strict time-driven cyclic schedule. Therefore, a
scheduling table consist of a time interval and a list with the opened and closed gates,
as exposed on the sched_config budget.

Third, the timing sub-module should execute gPTP and eventually forward time
synchronization information to attached stations. Furthermore, it is responsible to spread
network timing to local entities. It requires configuration to send protocol messages at a
certain frequency besides information to be elected as grandMaster (priorities).

Hence, a VLAN budget can be captured as follows.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 79 of 95

budget vlan_config {
 property vlan_tag;
 property traffic_protocol_fields;
 property forwarding_policy;
}

budget sched_config {
 property gatelist_cfg;
 property interval_time;
}

budget traffic_cfg {
 property vlan_config[N];
 property sched_config[M];
}

budget gPTP_cfg {
 property protocol_message_periodicity;
 property priorities;
}

channel TSN_stream {
 property RT-QoS;
 property vlan_tag;
}

channel user_traffic {
 property traffic_protocol_fields;
}

channel gPTP_sync_info {
 property origin_timestamp;
 property correction_field;
}

component TSN_station {
 requires traffic_cfg cfg_config;
 requires gPTP_configuration gptp_config;

 inputs TSN_streams TSN_in “or” user_traffics ustrf_in;
 inputs gPTP_sync_info sync_in;

 outputs TSN_streams TSN_out “or” user_traffics ustrf_out;
 outputs gPTP_sync_info sync_out;

 property synchronization_accuracy;
 property traffic_differentiation_and_prioritization;
 property output_bandwidth_time_driven_scheduling;
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 80 of 95

Figure 34. Model of a TSN station

7.5 Component Abstractions for High-availability Seamless
Redundancy in Remote Terminal Units
The Surveillance of Smart grid critical infrastructure use case (UC9) defines a High-
availability Seamless Redundancy (HSR) network component to ensure the exchange
of information between different Remote Terminal Units (RTU) that allow the
communications with the other components of the use case.

An abstract definition of this component is shown below:

Figure 35 HSR Abstract definition

The main objective of this component is to avoid the interruption in the communications,
even for minimal times, because in critical infrastructure that is unacceptable. To deal
with this need, redundant communication must be included. In an abstract way the
requirement to implement redundancy is to have additional links for communication and
a redundancy control protocol to administrate the links.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 81 of 95

Figure 36 Components for HSR implementation in RTU

budget interface {
 property transmission delay
 property availability
 property jitter
 property packet loss
 property bit rate
 property latency
}

Figure 37: Budget for HSR implementation in RTU

component communication link {
 requires interface
 inputs communication packet
 outputs communication packet
}

Figure 38: Communication link component for HSR implementation in RTU

component redundancy control protocol {
 requires microprocessor
 inputs communication packet
 outputs communication packet
 provides 0 time recovery in a single fail
}

Figure 39: Redundancy control protocol component for HSR implementation in RTU

7.6 Component Abstractions for People Tracking System
This section includes a basic overview of the components of the people tracking system.
The detection and tracking of people have always been an important area of study in
the field of computer vision. However, computer limitations derived from algorithms with
high computational requirements have been a limit to real-time performance. Today, the
new approaches proposed have led to significant improvements in this field and allow
us to develop more reliable and efficient systems.

The main objective of this system is both to detect the different human subjects that may
appear on the scene during video recording given by 𝑚𝑚 cameras in situations likely to

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 82 of 95

include people and to monitor and track their situation within the area of interest of the
recording. Thus, this system includes two fundamental tasks that have been called
"Human detection" and "People tracking" according to their purpose within the system.
Thus, these tasks, in turn, determine the two fundamental abstract components of the
system, as shown in Figure 40.

Figure 40: Components for Person Tracking System

The human detector component (Figure 42) is responsible for carrying out a detection
of the different people within each of the frames of the video stream that receives as
input. Thus, the output of this component will be the detections made on each of the
analysed frames.

The people tracker component (Figure 40) is responsible for monitoring the people
detected by the human detector. Depending on the amount of camera perspectives
available for a particular scene, this component can track people in the video (a single
camera perspective) and can track people in the 2D plane of the ground (more than one
camera perspective for the same scene). We call this last feature World Tracking.
Moreover, the existence of more than one camera perspective allows the execution of
the occlusion handler, since different camera views allow to better detect targets that
may be partially overlaid.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 83 of 95

Figure 41: Components for Person Tracking System

Figure 42: Human detector component for people tracking system

7.7 Component Abstractions for Action Recognition
This section shows the main components that take part in the use case of Habit
Tracking (UC3). The habit tracking will be performed using techniques of action
recognition. The issue of solving the problem of identifying different human actions
through video analysis has gained importance in recent years. So, one of these
techniques will be part of our main component in this regard.

The problem of recognizing the different actions that a person can perform at their own
homes could be very interesting because if we focus mainly on using this for elderly
people, the system would be able to record the activities they carry out and, for example,
detect those actions that may have harmful consequences for them.

Despite the different technologies available that can be helpful for monitoring people,
using just video analysis for detecting actions can provide a successful approximation
considering works published in the state of the art within other fields of application.

budget controller {
 property memory;
 property core_count;
 property gpu_core_count;
}

channel video_stream {
 property resolution;
 property fps;
}

channel detection_frame {}

channel person_position {
 property video_position;
 property world_position;
}

component human_detector {
 requires controller cnt {}

 inputs video_stream raw;
 outputs detection_frame df, video_stream raw;
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 84 of 95

In relation to the main components that take part in this system, we consider one main
component related to the task of action recognition, which the main objective will be to
describe and detect the action performed in a video stream provided by the camera
component. Thus, Figure 43 shows a graphical representation of the components
mentioned before. We should consider that inside the action recognizer controller,
depending on the resources that we have and the performance that we want to get,
there are several set points that offer different accuracy, precision, and recall
considering more or less resource consumption. The qualities are better or worse
depending on the number assigned in set point from 1 to 5, number 5 being the best
that can be reachable, and 1 the worst.

Figure 43: Action recognizer component

budget controller {
 property memory;
 property core_count;
 property gpu_core_count;
}

channel video_stream {
 property resolution;
 property fps;
}

channel classification_output {}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 85 of 95

component action_recognizer {
 requires controller cnt { }
 quality performance;
 quality accuracy;
 quality precision;
 quality recall;

 inputs video_stream raw;
 outputs classification_output out, video_stream raw;

 any [// Definition of set points
 all [performance=5, accuracy=3, precision=2, recall=4],
 all [performance=3, accuracy=4, precision=3, recall=4],
 all [performance=1, accuracy=5, precision=5, recall=5]
]
}

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 86 of 95

8. Conclusions

In this deliverable we have laid down the initial reference architecture for FitOpTiVis. It
acts as a common reference model for the diverse activities in the project to allow for
general solutions to emerge from those activities.

The ingredients of the architecture and the structure of the architecture have been
introduced, namely, the component abstraction, a DSL to describe systems and
components, a semantics to the model in terms of compositions, parameters, constraints
and multi-objective optimization criteria. The architecture and the various aspects of the
models are illustrated with examples related to the use cases. The architecture defines
a structured outline for resource and quality management and the virtualization
techniques required to realize it.

Next steps are to consolidate the DSL with tool support and to describe use cases,
design-time methods, run-time methods and components with it in collaboration with
other work packages. These activities lead to a second iteration of the reference
architecture that will be presented in Deliverable D2.2.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 87 of 95

9. References

[AGB+2016] H. A. Ara, M. Geilen, T. Basten, A. Behrouzian, M. Hendriks, and D.
Goswami: Tight temporal bounds for dataflow applications mapped onto shared
resources. In Proceedings of SIES 2016, Krakow, Poland, 2016

[BBB+2018] R. Ballouli, S. Bensalem, M. Bozga, J. Sifakis: Programming Dynamic
Reconfigurable Systems. In Proceedings of FACS 2018, Pohang, South Korea, 2018

[BBS2006] A. Basu, M. Bozga, J. Sifakis: Modeling heterogeneous real-time systems in
BIP. In Proceedings of SEFM 2006, Pune, India, 2006

[BCL+2006] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The
Fractal component model and its support in Java. Software: Practice & Experience. 36,
1257–1284, 2006

[BDLT2019] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, J. Takala: Handbook of
Signal Processing Systems, Springer, Cham, 2019

[BGH+2013] T. Bureš, I. Gerostathopoulos, P. Hnětynka, J. Keznikl, M. Kit, F. Plášil:
DEECo – an Ensemble-Based Component System, in Proceedings of CBSE'13, 2013

[BHP2006] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model. In Proceedings of SERA 2006, Seattle,
USA, 2006

[BJMS2012] M. Bozga, M. Jaber, N. Maris, J. Sifakis: Modeling dynamic architectures
using Dy-BIP. In Proceedings of SC 2012, Prague, Czech Republic, 2012

[BS2008] S. Bliudze, J. Sifakis: The algebra of connectors structuring interaction in BIP.
IEEE Transactions on Computers 57(10):1315–1330, 2008

[CDM+2012] E. Cannella, O. Derin, P. Meloni, G. Tuveri and T. Stefanov, “Adaptivity
Support for MPSoCs Based on Process Migration in Polyhedral Process Networks,”
Hindawi VLSI Design, 2012.

[CGK+2018] E. M. Clarke, O. Grumberg, D. Kroening, D. Peled and H. Veith: Model
Checking, 2nd edition, The MIT Press, 2018

[CL2014] J. Castrillon and R. Leupers: “Programming Heterogeneous MPSoCs,”
Springer, Cham, 2014

[CSC+2009] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid and
H. Meyr: “A high-level virtual platform for early MPSoC software development,” in
Proceedings of CODES+ISSS '09, Grenoble, France, 2009

[DPN+2013] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya and S. Aridhi:
“PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs runtime
reconfiguration,” in Proceedings of SAMOS 2013, Agios Kostantinos, Greece, 2013

[DS2016] A. Diaz and P. Sanchez, “Simulation of attacks for security in wireless sensor
network”. Sensors, 16(11):1932, 2016

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 88 of 95

[DSG+2012] M. Damavandpeyma, S. Stuijk, M. Geilen, T. Basten, H. Corporaal, H.,
Parametric throughput analysis of scenario-aware dataflow graphs, Computer Design
(ICCD), 2012 IEEE 30th International Conference on, 2012, pp.219-226

[FGH2006] Feiler, P.H., Gluch, D.P. and Hudak, J.J.: The Architecture Analysis &
Design Language (AADL): An Introduction. Technical Report, CMU/SEI-2006-TN-011,
2006

[FJE+2017] F Herrera, J Medina, E Villar, Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach. Handbook of
Hardware/Software Codesign, 141-185. 2017.

[FSL+2002] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. Think: A Software
Framework for Component-based Operating System Kernels. In Proceedings of the
2002 USENIX Annual Technical Conference, Monterey, California, USA, June 2002.

[GAC+2013] K. Goossens, A. Aevedo, K. Chandrasekar, M. Dev Gomony, S.
Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. Beyranvand Nejad, A. Nelson
and S. Sinha: “Virtual execution platforms for mixed-time-criticality systems: the
CompSOC architecture and design flow,” ACM SIGBED Review 10(3):23-34, 2013

[GBTO2007] M. Geilen, T. Basten, B. Theelen, and R. Otten: An algebra of Pareto
points. Fundamenta Informaticae 78(1):35-74, 2007

[GHP+2009] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski and
J. Teich: “Electronic system-level synthesis methodologies,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28(10), 2009

[GS2003] T. Grandpierre and Y. Sorel, “From Algorithm and Architecture Specifications
to Automatic Generation of Distributed Real-Time Executives: a Seamless Flow of
Graphs Transformations,” in Proceedings of MEMOCODE 2003, Mont Saint Michel,
France, 2003

[JSS+15] P. Jääskeläinen, C. Sánchez de La Lama, E. Schnetter, K. Raiskila, J. Takala,
H. Berg: pocl: A Performance-Portable OpenCL Implementation, International Journal
of Parallel Programming 43(5): 752–785, 2015

[HAG+2019] M. Hendriks, H. A. Ara, M. Geilen, et al. Monotonic optimization of dataflow
buffer sizes. Journal of Signal Processing Systems 91(1):21-32, 2019

[HBP+2009] P. Hnětynka, T. Bureš, M. Prochazka, R. Ward, Z. Hanzálek: SOFA High
Integrity: Our Approach to SAVOIR, in Proceedings of DASIA 2009 - DAta Systems in
Aerospace, 2009

 [HBV+2016] M. Hendriks, T. Basten, J. Verriet, M. Brassé, L. Somers. A Blueprint for
System-Level Performance Modeling of Software-Intensive Embedded
Systems. International Journal on Software Tools for Technology Transfer,
STTT. 18(1):21-40, February 2016

 [HMV2017] F. Herrera, J. Medina, E. Villar: Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach. In Handbook of
Hardware/Software Codesign, Springer, 2017

javascript:void(0)
javascript:void(0)

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 89 of 95

[HPD+2014] J. Heulot, M. Pelcat, K. Desnos, J.-F. Nezan and S. Aridhi: “SPIDER: A
Synchronous Parameterized and Interfaced Dataflow-Based RTOS for Multicore DSPs,”
in Proceedings of EDERC 2014, Milan, Italy, 2014

[IEEE802.1AS-2011] IEEE Standard for Local and Metropolitan Area Networks - Timing
and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks,"
in IEEE Std 802.1AS-2011 , pp.1-292, 30 March 2011

[KDW+2002] B. Kienhuis, E. F. Deprettere, P. van der Wolf and K. Vissers: “A
methodology to design programmable embedded systems,” in Embedded processor
design challenges, SAMOS 2001, LNCS 2268, 2002

[KRS+2009] Ji Eun Kim, O. Rogalla, S. Kramer, and A. Hamann. Extracting, specifying
and predicting software system properties in component based real-time embedded
software development. In Proceedings of ICSE 2009, Vancouver, Canada, 2009

[KS2004] V. Kianzad and S. S. Bhattacharyya, “CHARMED: A multi-objective
cosynthesis framework for multi-mode embedded systems,” in Proceedings of
ASAP2004, Galveston, TX, USA, 2004

[LM87] E. Lee, D. Messerschmitt: Synchronous Data Flow, IEEE Proceedings 75(9):
1235-1245, 1987

[MK1996] J. Magee and J. Kramer. Dynamic structure in software architectures. In
Proceedings of SIGSOFT FSE’96, San Francisco, CA, USA, pages 3–14. ACM, 1996.

[MMT1995] B. M. Maggs, L. R. Matheson, and R. E. Tarjan: “Models of parallel
computation: A survey and synthesis,” in Proceedings of HICSS 1995, Wailea, HI, USA,
1995

[MO2014] O. Moreira, H. Corporaal: Scheduling Real-Time Streaming Applications onto
an Embedded Multiprocessor, Springer, Cham, 2014

[MV2017] J. L. Medina and E. Villar, Towards MARTE++: an enhanced UML-based
language to Model and Analyse Real-Time and Embedded Systems for the IoT age,
FDL 2017

[NLFS2018] P. Nuzzo, M. Lora, Y. A. Feldman, and A. Sangiovanni-Vincentelli:
“CHASE: Contract-based requirement engineering for cyber-physical system design,” in
Proceedings of DATE, Dresden, Germany, 2018

[NSSP2012] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, A. Puggelli: Methodology for
the design of analog integrated interfaces using contracts. IEEE Sensors Journal
12(12):3329–3345, 2012

[NS2018] P. Nuzzo, A. Sangiovanni-Vincentelli: Hierarchical System Design with
Vertical Contracts. In Principles of Modeling, LNCS 10760, Springer, Cham, 2018

[OLK+2002] R. Ommering, F. Linden, J. Kramer, and J. Magee. The Koala Component
Model for Consumer Electronics Software. Computer, 33(3):78–85, 2000

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 90 of 95

[OMG2017a] OMG: SysML – System Modeling Language, OMG document formal/17-
05-01, 2017

[OMG2017b] OMG: UML – Unified Modeling Language, v 2.5.1, OMG document
formal/17-12-05, 2017

[OMG2018] OMG: UML Profile for MARTE: Modelling and Analysis of Real-Time
Embedded Systems, v. 1.2 beta, OMG document ptc/18-07-03, 2018

[P1971] V. Pareto. Manuale di Economia Politica. Piccola Biblioteca Scientifica, Milan,
1906. Translated into English by Ann S. Schwier, Manual of Political Economy,
MacMillan, London, UK, 1971

[PDH+2014] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan and S. Aridhi:
“PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore
DSP Programming,” in Proceedings of EDERC, Milan, Italy, 2014

[PMD+2017] M. Pelcat, A. Mercat, K. Desnos, L. Maggiani, Y. Liu, J. Heulot, J.-F. Nezan,
W. Hamidouche, D. Menard, S. Bhattacharyya: “Reproducible Evaluation of System
Efficiency with a Model of Architecture: From Theory to Practice,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37(10), 2018

[SB200] S. Sriram, Shuvra S. Bhattacharyya, Embedded Multiprocessors: Scheduling
and Synchronization, Second Edition, Marcel Dekker, Inc., 2009

[SGTB2011] S. Stuijk, M.C.W. Geilen, B.D. Theelen, and T. Basten, Scenario-Aware
Dataflow: Modeling, Analysis and Implementation of Dynamic Applications, In: Proc. of
the International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (IC-SAMOS), pp. 404-411, 2011

[SVB+2008] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, I. Crnković: A Component
Model for Control-Intensive Distributed Embedded Systems, in Proceedings of CBSE
2008, Karlsruhe, Germany, Springer, 2008

[TCN2000] L. Thiele, S. Chakraborty and M. Naedele, "Real-time calculus for scheduling
hard real-time systems," 2000 IEEE International Symposium on Circuits and Systems.
Emerging Technologies for the 21st Century. Proceedings, Geneva, Switzerland, 2000,
pp. 101-104 vol.4.

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 91 of 95

10. Appendix A Grammar of the DSL

Here follows the grammar of the proposed DSL in Extended Backus-Naur Form (EBNF).
The version written here is optimized for reader clarity and can be used as reference
point when using the language.

<Model>: { <Element> }

<Element>: <Import>

| <BudgetDefinition>

| <ChannelDefinition>

| <ComponentDefinition>

| <SystemDefinition>

<Import>: “import” “(“ <StringLiteral> “)” “;”

<BudgetDefinition>: “budget” <ID>

“{“ { <QualityDefinition> } “}”

<ChannelDefinition>: “channel” <ID>

“{“ { <QualityDefinition> } “}”

<QualityDefinition>: “quality” <ID> “;”

<ComponentDefinition>: “component” <ID>

“{“ (<DefaultConfiguration> | <Configurations>) “}”

<DefaultConfigruation>: <ConfigurationBody>

<Configurations>: { <Configuration> }

<Configuration>: “configuration” <ID>

“{“ <ConfigurationBody> “}”

<ConfigurationBody>: { <ComponentRule> “;” }

<ComponentRule>: <SupportsPredicate>

| <RequiresPredicate>

| <InputsPredicate>

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 92 of 95

| <OutputsPredicate>

| <PropertyPredicate>

| <SubcomponentPredicate>

| <ConstraintPredicate>

<System>: “system” <ID> “{“

{(<SubcomponentPredicate> | <ConstraintPredicate>)} “}”

<SupportsPredicate>: “supports” <InterfaceUsagePredicate>

<RequiresPredicate>: “requires” <InterfaceUsagePredicate>

<InputsPredicate>: “inputs” <InterfaceUsagePredicate>

<OutputsPredicate>: “outputs” <InterfaceUsagePredicate>

<SubcomponentPredicate>: “component” <ID> <ID>

[<ArrayIndex>]

<ArrayIndex>: “[“ <Expression> “]”

<InterfaceUsagePredicate>: <ID> [<ID>] [<ArrayIndex>]

[<InterfaceUsageConstraints>]

<InterfaceUsageConstraints>:

“{“ { <ConstraintPredicate> “;” } “}”

<PropertyPredicate> :

(“quality” | “property” | “parameter”) <ID>

[“=” <Expression>]

<ConstraintPredicate>: <AndPredicate>

| <OrPredicate>

| <ImplicationPredicate>

| <RunsOnPredicate>

| <OutputsToPredicate>

| <BooleanExpression>

<AndPredicate>: “all” “[“ { <ConstraintPredicate> “,” }

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 93 of 95

[“,”] “]”

<OrPredicate>: “any” “[“ { <ConstraintPredicate> “,” }

[“,”] “]”

<ImplicationPredicate>: <BooleanExpression> “=>"

<ConstraintPredicate>

<RunsOnPredicate>: <QualityExpression> “runs” “on”

<QualityExpression>

<OutputsToPredicate>: <QualityExpression> “outputs” “to”

<QualityExpression>

<BooleanExpression>: <InExpression>

| <UnaryBooleanOperator> <BooleanExpression>

| <ComparisonExpression>

 { <BinaryBooleanOperator> <ComparisonExpression> }

<InExpression>: <Expression> “in” <InlineArrayExpression>

<ComparisonExpression>:

<Expression> <ComparisonOperator> <Expression>

<Expression>: <AdditiveExpression>

| <InlineArrayExpression>

| <InlineObjectExpression>

<InlineArrayExpression>: “[“ <Expression>

{ “,” <Expression> } “]”

<InlineObjectExpression>: “{“ <InlineObjectMemberExpression>

{ “,” <InlineObjectMemberExpression> } “}”

<InlineObjectMemberExpression>: <ID> “=” <Expression>

<AdditiveExpression>: <MultiplicativeExpression>

{ <AdditiveOperator> <MultiplicativeExpression> }

<MultiplicativeExpression>: <Term>

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 94 of 95

{ <MultiplicativeOperator> <Term> }

<Term>: <BracketedExpression>

| <UnaryExpression>

| <QualityExpression>

| <CallExpression>

| <Literal>

<BracketedExpression>: “(“ <AdditiveExpression> “)”

<UnaryExpression>: <UnaryOperator> <Term>

<QualityExpression>: <ArrayAccessExpression>

| <SubQualityAccessExpression>

| <ID>

<ArrayAccessExpression>: <QualityExpression>

“[“ <Expression> “]”

<SubQualityAccessExpression>: <QualityExpression> “.” <ID>

<CallExpression>: <ID>

“(“ [<Expression> { “,” <Expression> }] “)”

<Literal>: <IntLiteral>

| <StringLiteral>

<UnaryBooleanOperator>: <LogicalNot>

<LogicalNot>: “!”

<BinaryBooleanOperator>: “&&” | “||”

<ComparisonOperator>: “==” | “<” | “>” | “<=” | “>=” | “!=”

<AdditiveOperator>: “+” | “-”
<MultiplicativeOperator>: “*” | “/”

<UnaryOperator>: “+” | “-”

<StringLiteral>: ‘”’ { <Character> } ‘”’

<ID>: (<Letter> | “_”) { <Letter> | “_” | <Digit> }

© FitOpTiVis Consortium public

WP2 D2.1, version 1.0
FitOpTiVis

ECSEL2014-2-737451
Page 95 of 95

<IntLiteral>: <Digit> { <Digit> }

<Digit>: “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8”

| “9”

<Letter> is any letter of the Latin alphabet (in regular expression notation [a-zA-Z]),
<Character> is any valid printable character except for quotation mark and backslash,
which must be escaped with backslash.

	E-mail
	Company
	Author
	Change
	Date
	Document version #
	Editor Address data
	E-mailer
	Issue
	Date
	1. Executive summary
	2. Introduction
	1
	2
	2.1 Overview of requirements
	2.2 Motivation
	2.3 Objectives
	2.4 Relation to Other Work Packages
	2.5 Overview of the Document

	3. Reference Architecture
	3
	3.1 Proposed Solution
	3.2 Template Solutions

	4. Component Abstractions
	4
	4.1 State-of-the-Art and Related Work
	4.1.1 SysML
	4.1.2 IEC 61131
	4.1.3 IEC 61499
	4.1.4 AADL
	4.1.5 Koala
	4.1.6 ProCOM
	4.1.7 Fractal (THINK and MIND)
	4.1.8 SOFA 2 and SOFA-HI
	4.1.9 BlueArX
	4.1.10 AUTOSAR
	4.1.11 UML-MARTE
	4.1.12 Mathematical Component models
	4.1.12.1 Behaviour Interaction Priority BIP
	4.1.12.2 Contract-based frameworks
	4.1.12.3 Multi-objective optimization techniques

	4.2 Basic terminology and definitions
	4.3 Detailed description of the reference architecture model
	4.3.1 Black-box view
	4.3.2 White-box view
	4.3.3 Component configurations
	4.3.4 Example: Component Abstraction in VR Use Case

	4.4 Mathematical Component Framework for Quality and Resource Management
	4.4.1 Component Framework Deﬁnition

	5. Domain Specific Language for the Component Abstraction
	5
	5.1 Example
	5.2 Specification
	5.2.1 Import
	5.2.2 Budget interface definition
	5.2.3 Channel interface definition
	5.2.4 Component definition
	5.2.4.1 Interface usage predicates

	5.2.5 Property predicates
	5.2.6 Subcomponent predicates
	5.2.7 Constraint Predicates
	5.2.7.1 And-predicate
	5.2.7.2 Or-predicate
	5.2.7.3 Implication-predicate
	5.2.7.4 Runs on / Outputs to predicates

	5.2.8 Expressions
	5.2.8.1 Inline arrays
	5.2.8.2 Inline objects (composite values)

	5.2.9 Boolean expressions
	5.2.9.1 Comparison expressions
	5.2.9.2 In-expression

	5.2.10 Quality expressions
	5.2.11 System

	6. Virtualization Mechanisms
	6
	6.1 Introduction
	6.2 State-of-the-Art
	6.2.1 Virtualization Models
	6.2.2 Virtualization for Quality and Resource Management

	6.3 Virtual Platform Models
	6.3.1 Example Instance: Virtual Platform Models in CompSOC
	6.3.2 Example Instance: Virtual Platform Models in PREESM/ SPIDER

	6.4 Quality and Resource Management Conceptual Architecture
	6.4.1 Example Instance: Quality and Resource Management in CompSOC
	6.4.2 Example Instance: Quality and Resource Management in SPIDER

	7. Instances of the Reference Architecture
	7
	7.1 Component Abstractions for Multi-Source Streaming
	7.2 Component Abstractions for an Industrial Inspection System
	7.3 Model-based component abstraction
	7.3.1 Component modelling in UML-MARTE

	7.4 Component Abstractions for Time Sensitive Networks
	7.5 Component Abstractions for High-availability Seamless Redundancy in Remote Terminal Units
	7.6 Component Abstractions for People Tracking System
	7.7 Component Abstractions for Action Recognition

	8. Conclusions
	9. References
	10. Appendix A Grammar of the DSL

