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1. Executive summary 

This report represents Deliverable D2.1 and documents the outcomes of the activities in 
WP2, Tasks 2.1 (Component Abstractions) and 2.2 (Virtualization Mechanisms) of the 
FitOpTiVis project during the first year of the project, starting from M4. The main 
objective of this deliverable is to establish the first version of the reference architecture 
to be used in the activities and use cases of the project. A conceptual architecture is 
introduced that describes the common elements in the work developed in the project. It 
provides template solutions that require further detailing and specialization for the 
individual use cases and application domains. 

A component abstraction is defined with which platform and application components 
developed in the project can be uniformly modelled in terms of a defined set of 
interfaces. The intention of this abstraction is to define the common aspects only, and 
to position them in a common architecture but to leave room for domain-specific 
refinements to be made to specialize models, architectures and methods for the 
individual developments in the project. 

Virtualization mechanisms are introduced pertaining to the architectural concepts and 
the modelling of virtual resources and their abstract budgets to achieve predictable and 
composable application behaviour and resource reconfiguration options. The methods 
of implementing virtualization in hardware and/or software are subjects of WP4. 

The content of this deliverable contributes to achieve MS3 (Preliminary components and 
methods release with standalone assessment). 
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2. Introduction 

2.1 Overview of requirements 
In this section we describe the driving requirements of FitOpTiVis on the component 
abstractions.  

The main purpose of the FitOpTiVis component model is to define video processing 
pipelines out of hardware and software components and to facilitate quality and resource 
management for such pipelines. The goal of the component model is to allow design 
space exploration and run-time adaptation. As such, the component model should 
allow associating configuration parameters with components (such as supported 
resolution, fps, etc.) and allow reasoning about dependencies of these 
configuration parameters across components (both hardware and software) in the 
pipeline. 

The component model is going to be applied on new components, but also on existing 
components where the intellectual property protection does not allow detailed modeling 
of the internals of the component. As such the component model should provide 
hierarchical abstractions that allow a large scale from very fine-grained components 
(on the level of data processing tasks) to coarse-grained components (on the level of 
devices with embedded software). 

The component model should be used by partners in the project and other scientific and 
industrial users that have no extensive background in component modeling or 
component-based architectures, as such the component model should be easy to 
use. This in particular means that it should provide only constructs that are needed 
in the project and that the semantics of the constructs should be tailored to the 
needs and the domain of the project. Additionally, the component model should 
have textual notation, which simplifies sharing the models and working with the 
models. This is facilitated with the introduction of a DSL. 

2.2 Motivation 
WP2 addresses Objective 1 of the FitOpTiVis project. 

Objective 1: Template solutions for: component abstractions (covering video 
and imaging tasks and heterogeneous processing, storage and network 
devices and components); virtualization supporting scalability, portability and 
composability principles; multi-objective quality and resource management 
(support for run-time decision making, adaptation, (re-) distribution and 
upgrades). 

Image and video pipelines will be detailed into a reference architecture and a virtual 
platform consisting of abstract components. The architecture and models will emphasize 
multi-objective optimisation including performance and energy. The use cases will be 
built on top of a concrete version of the reference architecture. 

The use cases, component applications and platforms in the project span a wide range 
of technologies, methods and tools. It is not possible to build a single integrated 
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hardware, software and tooling framework in which all activities are integrated, nor would 
this be desirable, since different domains have and need their specialized models, 
methods, tools, and hardware, software and middleware platforms. 

The range of use cases and technologies in the project share common solutions and 
principles that are being explored and developed in the project. Those solutions and 
principles can be applied across many of the separate domains. These common 
solutions can only be effectively identified and developed when the individual 
developments are positioned within a shared framework, architecture and established 
common models and abstractions. 

In this deliverable, we establish the first iteration of such solutions and principles in the 
form of a reference architecture and template solutions that capture the essential 
concepts and the common approach. A component abstraction is introduced that 
characterizes the aspects of components that are deemed most important to explicitly 
expose in FitOpTiVis. Those aspects are their input and output streams, their provided 
and/or required resource budgets, the configurations they support and the aspects of 
quality or cost that can be optimized. 

2.3 Objectives 
The main goal for this deliverable may be stated as follows. 

Goal: establish a common reference for component abstraction and the concept of a 
virtual platform. The reference architecture will be provided in the form of template 
solutions for a flexible virtual platform built from the component abstractions and offering 
multi-objective run-time optimisation support for quality and resource management. 

To realize this goal, the deliverable pursues the following objectives. 

• [Section 3] Provide a reference architecture for the FitOpTiVis innovations. 
Introduce the common conceptual elements in the image and video pipeline 
systems of FitOpTiVis and their inter-relations. 

• [Section 4] Provide a common component abstraction that describes the main 
aspects of the elements from which FitOpTiVis systems are built and provide a 
compositional model in which components can be composed into applications, 
platforms and systems. 

• [Section 4.5] Provide means to model multi-objective quality and resource 
optimization and management (support for run-time decision making, adaptation, 
(re-) distribution and upgrades). 

• [Section 5] Provide template solutions to define abstract components (covering 
video and imaging tasks and devices and components) using a domain-specific 
language (DSL). 

• [Section 6] Provide virtualization mechanisms supporting scalability, portability 
and composability principles. 

• [Section 7] Evaluate the reference architecture and template solutions for 
selected domain specific approaches and systems. 
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2.4 Relation to Other Work Packages 
This section summarizes the relations between the work in WP2 and the work reported 
in this deliverable and other work packages and their deliverables. 

• WP1, Requirements and validation and result analysis  
WP1 defines the use cases that are used to validate all project results. WP2 will 
explicitly consider the requirements derived from the use cases, in particular, the 
various types of components used in the cases and the quality metrics used to 
evaluate them.   
Deliverables D1.1 and D1.2 provide the detailed specifications of the use cases 
and requirements. This includes the components, the optimization metrics and 
relation to project Objective 1, the use of the reference architecture. 

• WP3, Design-time support  
WP3 will develop model-based design-time methods with concrete models that 
are instances of the generic component abstraction in the template solution of 
WP2. The concrete design methods provide, besides the devices and 
components that are efficient, functional, etcetera, also the necessary 
information as required by the WP2 component abstractions and interfaces. 
Deliverable D3.1 provides first versions of the design-time optimization, 
deployment and programming strategies that will be aligned with the reference 
architecture in follow up steps. 

• WP4, Run-time support  
WP4 will implement middleware and platform components that conform to the 
virtualization and quality and resource management approach (developed in 
WP2) of the FitOpTiVis reference architecture as instances of the template 
solution for run-time management.  
Deliverable D4.1 provides preliminary run-time models and support for energy, 
performance and other qualities. In subsequent steps, monitoring techniques will 
be used to provide an online view of the system status from the perspective of 
the reference architecture and its component model, e.g., the set points in which 
components are operating, their quality metrics, virtual platforms and budget 
allocations. 

• WP5, Devices and components  
WP5 will develop high-performance, energy-efficient processing and 
communication devices and components that conform to the reference 
architecture. Their development specifically considers the key aspects that 
characterize components in the component model, reconfiguration, qualities, 
inputs, outputs and budgets. Human and machine-readable descriptions of the 
components are made using the DSL (Domain Specification Language) 
introduced in this deliverable that enables automated processing of the 
components at design-time or run-time.  
Deliverable 5.1 Components Analysis and Specification presents an analysis of 
the state-of-the-art of existing components for computation and networking. The 
inventory will be used to validate the proposed component abstractions to see if 
the properties and configurations of such components can be (accurately) 
modelled and the construction of systems from such components can be 
compositionally determined from the component models. 
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• WP6, Use Cases and demonstrators  
The template solutions of the FitOpTiVis reference architecture developed in 
WP2 will be used in the demonstrators planned in WP6 for the project use cases. 
Domain-specific and or use-case specific solutions will be shown, but they will 
be shown to be instances of a common architecture and to exhibit common 
principles and solutions. 

2.5 Overview of the Document 
The remainder of the deliverable is structured as follows. Section 3 introduces the 
reference architecture and the proposed solutions for the FitOpTiVis project, including 
the way it is envisioned to present template solutions. Section 4 presents the component 
abstractions that are used in the project to characterise the various platform and 
application components with which the project activities will be dealing. It includes a 
discussion of the literature, a conceptual model and a mathematical model that allows a 
precise abstraction and a framework to express multi-objective optimization goals. 
Section 5 defines the domain specific language for component models. (A full definition 
is given in Appendix A.) Section 6 discusses the conceptual modelling virtualization 
mechanisms, virtual platforms and quality and resource management architecture. 
Section 7 shows initial modelling efforts to validate the reference architecture and 
component abstractions currently defined. 
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3. Reference Architecture 

3.1 Proposed Solution 
The FitOpTiVis project considers a wide diversity of platforms, resources, applications, 
methods, tools and objectives. One could not aim for one solution to fit all needs and 
concerns simultaneously. It is important that commonalities between the approaches 
and use cases are found and exploited such that reusable results can be achieved and 
can be applied across different domains and use cases. 

The FitOpTiVis project addresses the concern of diversity by the definition of a reference 
architecture that captures what is common to the use case of the project and to the 
domain of image or video pipelines for CPS on a heterogeneous network spanning the 
cloud to the edge. Individual use cases and individual developments in the project will 
consider their specialized version and additional detail, but they will be positioned with 
respect to the framework of the reference architecture to identify common problems and 
solutions and to ensure consistency and they can leverage the framework. 

The proposed solution includes the following ingredients. 

• A reference architecture is defined that captures the common assumptions and 
approaches in the project. The use cases will be positioned in terms of the 
elements of the reference architecture. 

• A common component abstraction is defined that represents a shared abstract 
view of platform and applications components establishing their properties. It 
includes an abstract component model and compositions that build system 
models . The model focuses on aspects of data streams (re)configuration, 
virtualization, heterogeneity, resource sharing and (multi-objective) quality. 
It is anticipated that specialized application domains in the project have their own 
domain-specific refinements in the form of more detailed or additional models, 
but that these are consistent with the architecture. 

• As the detailed models are domain-specific, likewise, the various solutions 
developed in the project will be diverse and domain-specific, whether they are 
run-time methods, design-time method, virtualization techniques, etcetera. The 
project intends to identify common solutions and general patterns of solution 
strategies in the form of template solutions, which are reusable elements 
amenable to be applied in different contexts.  

The project defines a reference architecture as a common reference for component 
abstraction and the concept of a virtual platform. The overview of the reference 
architecture is visualized in Figure 1. More precise definitions are given in Section 4.3—
4.5.  
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Figure 1: FitOpTiVis Reference Architecture 

The top side shows concrete applications and the bottom side the concrete platform of 
a system under consideration. The reference architecture is concentrated in the yellow 
box between them. It deals with abstractions of applications and platform. Applications 
are considered as a collection of tasks. Applications can be potentially configurable at 
design-time reconfigurable at run-time. They are considered to have alternative 
configurations or set points that are explicit in the architecture model. We do not insist 
that all applications are (re)configurable. Some applications may have a trivial set of 
configurations, or just a single possible configuration. In general, configurations are 
characterized by different workloads on the execution platform and different quality 
provisions to the user of the application (for example, power consumption or latency). 
Different configurations are associated with a set of application parameters. In the 
framework, application tasks are modelled as application components, and the collection 
of applications components of an application are referred to as an abstract application. 

The platform (bottom) side is abstracted as a virtual platform. It is assumed to be 
(re)configurable and resources can, in general, be shared by different applications. This 
does not mean that in all possible instances resources shall be shared by multiple 
applications. Resource virtualization is a particular emphasis of the FitOpTiVis project 
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and the architecture likewise assumes that resources provide virtual resources to 
applications in the form of a virtual execution platform.  

The abstract applications and the abstract virtual platforms are brought together by a 
resource and quality management framework. This framework is responsible for finding 
feasible and optimal combinations of applications and platforms, and for finding the 
optimal set points of the components. The combinations need to match, which requires 
both application models and platform models have appropriate models of their resource 
requirements and resource provisions, respectively. As illustrated in the figure, part of 
this optimization work is done at design-time when components are designed and 
developed, and part of this work may be done at run-time when more information may 
be available, but less time to take and enforce any decisions. 

We anticipate that large differences may exist in how the resource and quality 
management is implemented and executed in different domains, but the expected 
common approaches are captured in the architecture. 

3.2 Template Solutions 
The project intends to identify common solutions and general patterns of solution 
strategies in the form of template solutions, which are reusable elements amenable to 
be applied in different contexts. We identify what solutions are investigated and 
formulate initial concepts in this deliverable. They will be further detailed and evaluated 
in the project. 

The project will specifically pursue the following classes of template solutions. 

• The common conceptual model of the component abstraction itself. It is 
introduced in detail in Section 4. It defines what elements are commonly 
expected to be defined and how they are related. It also defines how components 
are composed into systems and how requirements on compositions are 
expressed, for instance the satisfaction of requirements, compatibility of inputs 
and outputs, and matching provision and requirements of resource budgets. 

• A domain-specific language (DSL) that provides a human and machine-readable 
version of the abstract component models, their compositions and quality- and 
resource management requirements and objectives. The language supports the 
evaluation of completeness, uniformity and consistency of the many specific 
models that are made in the project. It also allows automation and tool support 
for common analysis and synthesis techniques (such as visualization or code 
generation) or model transformations. Detailed components in the project should 
be supplemented with a manifest description in this DSL. An initial version of this 
DSL is introduced in Section 5.  
It is anticipated that some of the specific application domains and use cases in 
the project will develop their own, specific refinements of the DSL in a ‘domain-
specific DSL’ or ‘DSDSL’. 

• A precise, semantics of the component abstraction is given in terms of a 
mathematical description of components and their composition operators. The 
composed system is provided with a semantics in terms of the constraints on the 
combined collection of configuration parameters and matching inputs and 
outputs, and well-defined multi-objective optimization objectives based on 
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ordering of budgets and qualities. The precise details of composition operators 
are expected to be domain specific. The overall problem of configuration, 
mapping and selection of set points can be captured in terms of a multi-objective 
constrained optimization problem. Conceptually and possibly in prototype 
experiments, generic constraint solving algorithms may be applied to find optimal 
solutions. It is expected however, that such solutions are insufficient in practice 
and domain-specific solutions and heuristics should be employed to determine 
good solutions in practice. The semantics is elaborated in Section 4. 

• A virtual platform model that defines how resources and their sharing are 
modelled through virtual resources that are provided by virtualization 
mechanisms in their implementation. This allows, ideally, resources to be shared 
by multiple applications while providing well-defined resource budgets, to the 
individual applications and providing support for (re)configuration of virtual 
resources and their resource budgets. The virtual platform model is elaborated 
in Section 6.3. 

• A quality and resource management (QRM) architecture describes how the 
required information, activities and responsibilities, such as optimization, 
monitoring, configuration, calibration, resource management, may be divided 
between different elements of the architecture and between design-time and run-
time activities. The QRM architecture is introduced in Section 6.4. 
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Figure 2: FitOpTiVis Template Solutions 

Figure 2 illustrates how the reference architecture and template solutions are 
instantiated in different, more refined incarnations for different application domains. The 
definition of the reference architecture facilitates the relation to the work in other work 
packages as follows. 
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• WP3 develops model-based design-time methods with concrete models (grey) 
that are consistent with the generic component abstraction of the template 
solution (blue) of WP2. Ideally tool chains produce descriptions of the abstract 
component models automatically. 

• WP4 creates run-time management solutions (grey) that are in line with the 
template quality and resource management (blue) laid down in WP2. 

• WP5 creates (re)configurable devices and components (grey) and their 
component abstractions that are instances of the template solution (blue) of WP2 

• WP6 demonstrates that detailed solutions in the 10 use cases. 

The reference architecture and its template solutions are not expected to be directly 
used on any specific design problems or in any specific domain, use case or 
demonstrator. Instead, we expect the architecture and templates to be instantiated and 
specialized for a particular domain. 

Specialized component models may be used that best characterize the application and 
or platform components that are common in a particular domain, such as timed dataflow 
models for real-time streaming data processing, or UML state diagrams for component-
based, control-oriented software components. 

Similarly, it is expected that different domains employ their own, specialized budget 
descriptions, specialized composition operators, specialized specification languages, 
mapping strategies, optimization strategies, and so forth. 

Also, every domain typically has its own favoured analysis, and design-space 
exploration tools and methods and synthesis strategies. 

We expect that the different use cases in the FitOpTiVis project will each use such a 
specialization of the architecture and solutions, but that they will all respect the overall 
architecture, which means in particular that they will follow the component model 
outlined in Section 4 and use the common DSL of Section 5, or a specialization thereof 
to model the system components. The applicability of the architecture to the various use 
cases should serve as a validation of the core concepts in the architecture. 
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4. Component Abstractions 

In this section, we overview the basic component abstractions used in FitOpTiVis. We 
present the conceptual model and we introduce a mathematical model.  

Though in the software engineering community and literature the "component" may refer 
to many different things, it is typically used in the sense of "a constituent part" of a 
system. For example, the UML 2 defines "component" as an entity with the following 
properties [OMG2017b]: 

• A Component represents a modular part of a system that encapsulates its 
contents and whose manifestation is replaceable within its environment. 

• A Component is a self-contained unit that encapsulates the state and behaviour. 
• A Component specifies a formal contract of the services that it provides to its 

clients and those that it requires from other Components or services in the 
system in terms of its provided and required Interfaces. As such, a component 
serves as a type, whose conformance is defined by these provided and required 
interfaces (encompassing both their static as well as dynamic semantics). 

• A Component is a substitutable unit that can be replaced at design-time or run-
time by a Component that offers equivalent functionality based on compatibility 
of its Interfaces. As long as the environment is fully compatible with the provided 
and required Interfaces of a Component, it will be able to interact with this 
environment.  

• A Component has an external view (or “black-box” view) by means of its publicly 
visible Properties and Operations. 

• A Component also has an internal view (or “white-box” view) by means of its 
private Properties and realizing Classifiers – i.e. internal architecture typically 
consisting of internal composition of components. 

In FitOpTiVis, we follow this generally accepted view of a component and see a 
component as an abstraction of a hardware/software subsystem. We also identify 
important quality properties that are relevant to the FitOpTiVis subject matter of quality 
and resource management and make it possible to attach them to components or their 
constituents (interfaces in particular). This makes it possible to: 

• reason, at design-time, about a system as of a composition of components and 
their configurations. This makes it possible to predict the overall properties of the 
system before the system is actually built.  

• to relate, at run-time, monitored properties of a system to its constituents and 
thus to reason, still at run-time, about the system and to be able to adapt some 
of its parameters. 

Compared to the traditional software engineering view of a component, the important 
distinction in FitOpTiVis is that the project takes a systems view, where a component 
can be realized by hardware, software or both. This makes it possible to describe a large 
span of options ranging from DSPs, FPGAs, to processing performed by GPU-
accelerated cloud VMs (Virtual Machines) and containers.  

Another important distinction of FitOpTiVis is its focus on quality and resource 
management. Related to this and to the fact that the hardware and software components 
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can be combined is that it provides both (1) a data processing workflow view (i.e., the 
steps in the video processing pipeline) and (2) the deployment architecture (i.e., that a 
software component runs on a particular hardware component). 

In order to perform the design-time exploration and run-time adaptation, the component 
abstractions in FitOpTiVis need to allow for specification of configuration options and 
quality properties (along with budgets and costs). 

The component abstractions are traditionally represented by a component model, which 
defines the component structure and meta-data and the component composition 
mechanism. In this section, we provide such a component model – called the FitOpTiVis 
component model. In Section 5, we then describe the textual representation (i.e., a 
domain specific language – DSL) that we developed for defining the components.  

4.1 State-of-the-Art and Related Work 
In this section we analyze several existing related components models on how they 
approach the FitOpTiVis requirements on the component abstractions. Based on this 
analysis, we build the component abstractions and bring them together as the FitOpTiVis 
component model and the DSL to describe them (as described further in this section 
and Section 5). 

4.1.1 SysML 
The Systems Modeling Language (SysML)1 [OMG2017a] is a dialect of the Unified 
Modeling Language (UML) [OMG2017b]. Since its origins it has evolved into a standard 
for the Model-Based Systems Engineering (MBSE) applications. As such, it aims to unify 
all the various documents that are created during different stages of the software 
engineering process into a single document used by architects, developers, domain 
experts and maintainers alike. Therefore, it contains structures to allow all these various 
groups to express their view on the system. 

Compared to UML, SysML removes Activity diagrams, Block definition diagrams and 
Internal block diagrams. On the other hand, it adds the Requirement diagrams, which 
provide modeling constructs for text-based requirements, and the parametric diagrams, 
which describe constraints among the properties associated with blocks. The parametric 
diagrams could be used to express various constraints, relations of qualities and the 
configuration parameters of described components. Importantly, the SysML allows 
description of both the software and hardware components and allocation of the former 
ones to the latter ones. 

In relation to requirements of FitOpTiVis, SysML provides means for describing most of 
the required parts (components, their composition, etc.). However, having a significantly 
broader scope, it is cluttered with many concepts that are not necessary for the 
FitOpTiVis objectives, which makes it very difficult to use by partners. Similarly, the 
lack of precise semantics makes it difficult to directly use SysML for automatic design 

                                                
1 https://sysml.org/ 
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space exploration and for run-time adaptation. Also, SysML primarily uses graphical 
notations only and the textual representation, which is based on XMI (XML Metadata 
Interchange), is intended for serialization only. This further decreases flexibility and 
leanness in design as opposed to the DSL descriptions we intend to use. 

4.1.2 IEC 61131 
The IEC 611312 is a microcontroller architecture standard made by the International 
Electrotechnical Commission. It has support for CPU instructions, functions (made from 
CPU instructions), sensor and actuator interfaces, human-machine interfaces, power-
supply interfaces, and communication interfaces. 

For our use case, it provides inspiration for components, and for specifying inputs and 
outputs. It has no support for specification of configurable component quality 
properties that could be used in design exploration and run-time adaptation of quality 
and resource aspects. Also, it does not explicitly support hierarchical composition. 

4.1.3 IEC 61499 
The IEC 614993 standard is an extension of the IEC61131 (Section 4.2.2) standard for 
distributed industrial automation systems. It adds support for event-based processing 
and composition of function blocks.  

Like the IEC 61131 it lacks support for component configurations and quality 
properties needed for design exploration and run-time adaptation. Unlike IEC 61131, it 
does allow for the composition of function blocks. 

4.1.4 AADL 
The Architecture Analysis & Design Language (AADL)4 [FGH2006] has been introduced 
in 2004 by Society of Automotive Engineers as a modeling language for model-based 
description and analysis of complex systems in terms of interactions of components. 
The AADL language does not limit design description to software components, but it 
covers also description of computational platform elements (e.g., processor or memory) 
and mapping of software components to hardware. 

In AADL, components are divided into three main categories: (i) Application 
components, which are software components such as processes, threads, 
subprograms, (ii) Execution platform components, which are hardware components 
(e.g., processor, memory), and finally (iii) Composite components (also called systems) 
composing other components together (both hardware and software). Component 
interfaces (also called features) can be of several types – for data and event passing, 
method calls, and direct data access. Application components also have properties that 

                                                
2 https://webstore.iec.ch/publication/62427 

3 https://webstore.iec.ch/publication/5506 

4 http://www.aadl.info/ 
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specify them, e.g., timing properties or constrains for binding executable threads to 
processors. AADL offers support for modes and switching among them. A mode in AADL 
is a distinct configuration of a component. Mode transitions are controlled by a state 
machine and enabled by events defined in behavior of components. Modes can specify 
different configurations of component composition, different call sequences, and multiple 
properties of components. 

AADL supports many of the features required in our project – either directly or they can 
be modeled in terms of existing features. However, for our needs, AADL is too complex 
and requires rather in-depth knowledge of component concepts and would be hard 
to use by non-expert users. 

4.1.5 Koala 
Koala [OLK+2002] is a component framework developed by Philips and targets 
consumer electronics. The primary goal of Koala is to easily manage the complexity of 
embedded software used in consumer electronics and to handle the large diversity of 
such devices. The component model of Koala is heavily inspired by Microsoft’s COM 
and Darwin [MK1996] component models. Koala offers hierarchically composed 
components and in addition to the primitive and composite components Koala also 
defines modules. A module is a basic compositional unit and from an implementation 
view, it corresponds to a single source code file. To handle diversity of devices, Koala 
offers diversity interfaces and switches. The diversity interface is a required interface 
intended for configuration, i.e., setting parameters. A switch is a module connecting 
several components together and its functionality is controlled through the diversity 
interface. Based on the values of the diversity interface parameters, the switch chooses 
which components are effectively connected. 

For our needs, Koala does not support description of hardware components. The 
quality properties along with budgets and costs would be very hard to model. 

4.1.6 ProCOM 
The ProCOM [SVB+2008] component model distinguishes two levels of granularity – 
ProSys and ProSave. ProSave, the lower layer, operates with low-level passive (i.e., 
cannot initialize a new thread) and hierarchically structured components. Computation 
on this level is based on the pipes-and-filters paradigm; the functionality of the ProSave 
component is described as a set of services. The communication between components 
is realized by data ports (for passing data) and triggering ports (for passing signals). 
Each service contains one input port group and several output port groups. ProSys, the 
upper layer, describes a set of concurrent components, which are called subsystems in 
order to distinguish them from the lower-level ProSave components. These subsystems 
can run potentially on several computation hardware nodes. A ProSys subsystem is 
composed of a set of concurrent functionalities that can be either event driven or 
periodic. The only way for ProSys subsystems to communicate with each other is by 
sending asynchronous messages via channels. Channels are strongly typed and 
support multiple senders and receivers. A ProSys subsystem may be modeled as an 
assembly of ProSave components but can be also implemented directly or as a 
composition of other ProSys components. Behavior of components is formally specified 
by a formalism based on finite state machines. 
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As the Koala above, the ProCOM does not model the hardware components and also 
the quality and budget properties would be very hard to model. 

4.1.7 Fractal (THINK and MIND) 
The Fractal [BCL+2006] component model is a classical component model with 
hierarchically composed components. By itself, the Fractal is only an abstract 
specification and there exist multiple implementations targeting different domains. For 
our needs, the most related implementations are THINK [FSL+2002] and MIND5, which 
both of them target development of embedded systems. As they are implementations of 
Fractal, the components are defined by their provided and required interfaces and they 
can be hierarchically nested. In addition to business interfaces, the components provide 
control interfaces via which it is possible to manage component lifecycle, configure 
components, etc. 

The main difference to the THINK is that MIND supports for different hardware platforms 
explicitly expressed using descriptors. As in case of the component models above, 
Fractal also lacks good support for component configurations and modelling 
quality and budget properties. 

4.1.8 SOFA 2 and SOFA-HI 
SOFA HI [HBP+2009] is a profile of the SOFA 2 component framework [BHP2006] for 
development of high-integrity real-time embedded systems. SOFA 2 has a very similar 
set of features as Fractal, i.e., there are hierarchical components with provided and 
required interfaces. In SOFA 2, the components have explicitly defined their interface 
and implementation. Also, the connections among components are modeled via 
connectors, which are considered as first-class entities. SOFA 2 allows for modelling 
dynamic architectures (via reconfiguration patterns); SOFA HI restricts dynamism to 
mode switching. 

For our needs, SOFA 2 does not model explicitly the hardware components and as 
above, quality and budget properties cannot be easily modelled. 

4.1.9 BlueArX 
BlueArX [KRS+2009] is a component framework developed and used by Bosch. It is 
intended for use in automotive domain, especially in embedded devices. BlueArX 
focuses on the design-time component model to support constrained domains 
considering various non-functional requirements while providing multiple views of a 
developed system. BlueArX uses a common hierarchical component model. The static 
view defines two types of components, an atomic component, which has an 
implementation, and a structural component, which are composed of other atomic and/or 
structural components. Components have interfaces dividable into two types – import 
and export interfaces. Connections between interfaces are implicit based on the 
interface names. These connections are implemented using a special type of variables 

                                                
5 http://mind.ow2.org/ 
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called messages; a component specifies its message access properties in its interface 
description. The dynamic view consists of component scheduling specification, which 
contains mapping of services to periodic or event-triggered tasks and the order of 
services inside these tasks. 

For our needs, the BlueArX does not model hardware components and also its 
implementation is not available. 

4.1.10 AUTOSAR 
AUTOSAR6 is a software architecture for development of automotive electronic control 
units (ECUs). It defines composable components with explicitly defined interfaces, 
properties, configuration and adaptation management, etc.  

For our needs, it supports (directly or indirectly) many of the required features. However, 
it is so closely tied to the automotive domain that it is not easily applicable to another 
domain. 

4.1.11 UML-MARTE 
As it has been commented in the SysML section, UML lacks the specific semantics 
required to fully support specification, modelling and design of current electronic 
embedded systems. The embedded system models need to reflect systems integrating 
multiple applications and diverse software platform components, e.g., embedded RTOS, 
middleware, drivers, etc. Similarly, current hardware architectures rely on multi-core 
processors, surrounded by many hardware devices for communication, storage, 
sensing, and actuation. In addition, several types of analysis are applied (e.g., 
schedulability, timed-simulations, etc.) which require to add additional information to the 
model, e.g., annotations of extra-functional properties related to timing, memory sizes, 
energy, etc. In this context, the standard MARTE profile was developed [OMG2018] to 
model and analyse real-time embedded systems, providing the concepts needed to 
describe real-time features that specify the semantics of this kind of systems at different 
abstraction levels. 

For the needs of high-level specification MARTE is, however, too complex. It also lacks 
simple textual notation that would allow easy sharing of models. As such, we do not 
use MARTE as the first-line language, but rather, in one of the specific application 
domains, as a more detailed model to which specifications of some FitOpTiVis 
component model are translated to (see Section 7.3). 

4.1.12 Mathematical Component models 

4.1.12.1 Behaviour Interaction Priority BIP 

To modelling heterogeneous real-time components, the BIP (Behaviour, Interaction, 
Priority) framework has been introduced in [BBS2006]. The lower level describes the 
behaviour of a component. The middle layer addresses the interaction between 

                                                
6 https://www.autosar.org/ 
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components. The top-level describes the scheduling information. In BIP, systems are 
constructed from atomic components, which are finite-state automata extended with 
data and ports. Data transfer is the means of interaction between components. The 
algebra for this interaction is presented in [BS2008]. 

The first version of BIP systems is static, which means that components and interactions 
between them are fixed at design-time. To address dynamism of a real-time system, 
Dy-BIP, representing a dynamic extension of the BIP framework, is introduced in 
[BJM+2012]. Dy-BIP offers primitives to model dynamic architectures. Transition 
systems are used as the atomic primitives. Transitions are labelled with ports, action 
names, and constraints for interaction with other components. Each atomic component 
provides its own interaction constraints at each computation step. 

The next generation of BIP is the Dynamic Reconfigurable BIP (DR-BIP) component 
framework capturing three types of dynamic changes, namely, different configurations 
of a component, creation, and deletion of components, migrations of components 
between predefined architectures. The formal definition of this model can be found in 
[BBB+2018]. 

The BIP model only considers applications as components. Therefore, it is not able 
to address dynamism on the hardware side. BIP focuses primarily on functional 
behaviour and interaction rather than resource usage and aspects of quality. 

4.1.12.2  Contract-based frameworks 

For simplicity, modularity and scalability, the design and verification should be performed 
at the component level. The correctness of component behaviour may depend on the 
behaviour of components with which it interacts. This method is referred to as contract-
based design, because for decomposing systems into components it makes 
assumptions on the environment and in turn provides guarantees to the 
environment [CGP2008]. 

In their terminology, horizontal contracts are those for components at the same level of 
abstraction, representing different components of the system, while vertical contracts 
span different levels of abstraction of the same components [NSS+2012]. In contrast, 
the vertical relations in our terminology (see Section 4.4) refer to resource budgets 
between application and platform components, while horizontal composition to the 
exchange of data between components. 

In the contract-based framework, each component has some implementations defining 
the behaviour of that component. These are usually deterministic and do not limit the 
environment. These are the main differences between contract (their component 
abstraction) and the implementation of a component. The guarantees of the model must 
be realized by an implementation. Components with contracts have an elegant 
compositional semantics in terms of sets of behaviours [NS2018]. When a contract 
guarantees more with fewer assumptions than another contract, the former is called a 
refinement of the latter. It may substitute for the former in any situation without violating 
any constraints. Similarly, we may consider the introduction of abstraction and 
refinement relations between component abstractions, for example if a component 
provides better qualities for less resource usage. 
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The contract-based frameworks provide a very generic framework but lack the 
concrete syntax and support for specific constraints and compositions. There is 
a lack of tools supporting contract-based design, except for the domain of formal 
verification. The contract-based frameworks do not address dynamism typical of 
reconfigurable and adaptive systems. 

4.1.12.3 Multi-objective optimization techniques 

In many fields of study such as business, economics and engineering, one often 
considers two or more objectives for optimization (for example, latency and cost 
minimization) along with constraints on such metrics. Constraints are non-negotiable 
limits on some properties, while objectives are the negotiable properties. For instance, 
we might have a constraint on the minimum frame rate of a streaming application and 
would like to trade off power consumption for latency. 

To find optimal solutions to multi-objective problems, one often considers Pareto 
optimality, named after economist Vilfredo Pareto. He identified solutions that helped 
some people (some objective metrics) without hurting anyone else (other objective 
metrics) [P1971]. In FitOpTiVis, we intend to use the concept of Pareto optimality and 
additionally explore the use of the algebraic framework introduced in [GBTO2007] for 
compositional reasoning about optimality of systems of components. This approach 
allows us to describe the design decisions for composing components either by 
connecting inputs and output or by matching provided and required resource budgets. 
The mathematical component framework for quality and resource management, 
introduced in Section 4.5, shows how this algebra provides functionality for component 
abstractions, in more detail. 

4.2 Basic terminology and definitions 
Building on the analysis of the related work and on the experience with developing and 
extending various component models (ProCOM [SVB+2008], SOFA 2 [BHP2006], 
SOFA-HI [HBP+2009], Fractal [BCL+2006], DEECo [BGH+2013]), we define the basic 
abstractions of the FitOpTiVis component model as follows. 

A component in the FitOpTiVis component model is the primary constituent of a system. 
A component can be a hardware component (e.g., a camera or a processing unit), a 
software component (e.g., a functional unit or a driver) or both (e.g., a smart camera). 
Components can have associated configuration parameters and can be composed 
together to form an architecture. 

On the finest level of granularity, components can be divided to platform components 
and application components. 

Platform components represent parts that are generic with respect to a particular 
application use. They provide computation means to execute actual data processing 
tasks. Examples of platform components include: Raspberry Pi board with Raspbian, 
Openstack node, a particular VM, FPGA. 

Application components on the other hand represent the computation task specific to an 
application. Examples include: OpenCV-based routine, Docker image, routine on FPGA. 
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The relation between platform and application components is that an application 
component is hosted (runs on) on a platform component. In some cases, the same 
component can be both application and platform – e.g., a virtual machine component is 
hosted (as an application component) on an OpenStack node platform component but 
itself acts as a platform component for applications hosted on the virtual machine. 

Application components can be connected to create data processing pipelines. Similarly, 
an application component may be connected to a platform component to signify the 
application component is hosted on the platform components. 

The connection between components is realized through bindings between 
component ports. 

Components can be composed to form larger components, e.g., applications or 
(virtual) execution platforms. In this respect, an abstract application is a composition 
of application component abstractions that provides functionality to a user. A virtual 
execution platform is a composition of virtual platform components that can run an 
application. An abstract application executes on a virtual execution platform, or virtual 
platform; a virtual platform exposes a collection of resource budgets to the abstract 
application. Abstract applications and virtual platforms collect all information needed for 
quality and resource management. 

Components may have multiple configurations. A component configuration consists 
of configuration parameters (set points) that control characteristic properties of the 
components called qualities. Examples of configuration parameters include: fps, video 
frame resolution. Examples of qualities include: memory consumption, code size, 
processing speed. There are trade-offs between configurations and qualities – e.g., 
bigger video frame resolution requires more memory and leads to lower frame rate, an 
Openstack node can host VMs with 8GB of memory or up to twice as much VMs with 
4GB of memory. 

The configuration of a components (or some of its parameters) may be set at design-time 
(in case the configuration leads to recompilation of the component or reinstall of a 
component) or at run-time. The parameters that are (re)configurable at run-time are 
set via a dedicated run-time interface as developed in WP4. 

An example of these component concepts is given below. We assume a smart camera 
component. As a black-box, this component combines both hardware and software in 
one package. Table 1 lists different configurations (rows). Each configuration is 
described by a combination of particular choice of configuration parameters (columns). 

Table 1: Smart camera component configurations. 

Mode Frame rate (fps) Biometric 
parameters Faces Raw frames 

1 1 + - - 

2 1 + + - 

3 1 + + + 
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4 10 - + + 

5 10 - - + 

6 30 - - + 

These example configuration options describe that the camera has selectable frame rate 
(1, 10, and 30 fps) and can detect biometric parameters and faces. It can also provide 
the entire video frame. However, only certain combinations of these parameters are 
possible. If for instance biometric parameters are to be provided by the camera, the 
frame rate is fixed to 1 reading per second. 

When face detection is requested, the camera can process the video with up to 10 fps. 
The maximum frame rate of 30 fps is achievable only when both the detection of 
biometric parameters and faces is disabled. 

In addition to these configuration parameters, the camera may consume different 
amounts of energy. Such energy consumption can be viewed as a quality parameter of 
the component. We assume that considering the provided features, frame rates and 
energy consumption, all its configurations are Pareto optimal. 

For the smart camera example, frame rate, biometric parameters, faces and raw frames 
output are the configurable parameters that determine its set points. Frame rate and 
power consumption are considered its qualities. 

This example modeled using our component abstractions is shown in Figure 3. The 
architecture of the example contains two application components – sensor task and 
control host task – and two platform components – smart camera and cloud compute 
platform. The components are composed together via two principal types of bindings – 
“provides data to” and “runs on”. In this example, the sensor task sends data from face 
recognition to access control task, which grants/denies physical access to identified 
persons. As the two tasks are application components, they need to be executed 
somewhere. The execution happens via a platform component. The composition of an 
application component with a platform component happens through the “runs on” 
binding. In the example below, the sensor task component runs on the smart camera, 
the access control host task runs on cloud compute platform. 

Given the typical way of laying out the application components above the corresponding 
platform components, we also term the “provides data to” composition as horizontal 
composition and the “runs on” composition as vertical composition. 
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Figure 3: Example component model architecture of a biometric access application. 

Application and platform components can be made at various granularities and / or 
hierarchically. For instance, the sensor task and the access control task can be 
abstracted together as the Biometric access control application. This application is in 
this case the top-level application component. In the same way, the smart camera and 
the cloud compute platform components can be abstracted as the Virtual execution 
platform, which is the top-level platform component. 

Similarly, if needed a component may be further decomposed to an architecture of fine-
level components. For instance, the sensor task can be decomposed to a pipeline of 4 
tasks as shown in Figure 4. Note that as the sensor task itself has two ports (one for 
providing data to access control task and another for being hosted on the smart camera). 
The sub-components inside the Sensor task delegate to these ports on the outer 
boundary. 
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Figure 4: Example of the biometric access application with decomposed sensor tasks. 

Components may also include any number of vertical layers as shown in Figure 5. The 
example depicts a pipeline that does part of the video processing in the cloud. Here the 
presence of the cloud creates two layers of platform components as the container/VM 
instance is virtualized on top of the cloud. 

 
Figure 5: Example of a model with multiple platform layers. 

4.3 Detailed description of the reference architecture model 
The main constituent of the FitOpTiVis component model is the component. The 
component has a black-box and white-box view. 

4.3.1 Black-box view 
In the black-box view, the component exhibits multiple ports as shown in Figure 6. Every 
component provides the following six types of ports: supports, requires, inputs, outputs, 
parameters and qualities. 
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To graphically distinguish the nature of the ports, we exploit the graphical notation of 
UML 2 Component Diagrams. 

We denote the supports port as vertically facing port terminated by a lollipop (circle). 
The supports port is the platform-component part of the composition between a platform 
and application component. It abstracts the provided resource budget. 

The requires port is denoted by vertically facing port terminated by a socket (half-circle). 
The requires port is the application-component part of the composition between a 
platform and application component. The requires ports abstracts the required budget. 
It serves as an abstraction for settings of configuration parameters and reflecting 
qualities and costs in the application component. 

The inputs port is denoted by horizontally facing port terminated by a socket. It 
represents the intake of data (typically a video stream).  

The outputs port is denoted by a horizontally facing port terminated by a lollipop. This is 
a counterpart of the inputs port. It represents the egress of data (typically a video 
stream). 

The parameters port exhibits the configuration parameters of the platform component. 
They are the parameters that can be set to determine the configuration in which the 
component operates. 

The qualities port exposes the relevant qualities/costs of the platform component. It 
determines what aspects of quality and aspects of cost, which may vary across the 
different configurations, are exposed to be used to express constraints and requirements 
for quality and resource optimization purposes. 

 
Figure 6 Ports of the components 

Components can be connected together to form architectures. In this composition, only 
requires-supports and inputs-outputs connections can be formed, as shown in the 
figures below. 
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Figure 7: Horizontal composition by connecting inputs and outputs 

 
Figure 8: Vertical composition by connecting requires and supports ports 

The ports further need to be compatible, e.g., video streams have to be of the same 
encoding, need to be related in terms of frame rate or resolution. 

Similarly, when application components and platform components are composed, the 
budget supported by the platform component should match with the budget required by 
the application component. This does not necessarily mean that they need to be equal. 

Budgets are not necessarily quantitative (scalar numbers) but may include diverse 
aspects and can be defined at different levels of abstraction. 

• A budget may reflect the availability of a feature (e.g., security). 
• A budget may include a level of guarantee (e.g., hard real-time vs soft real-time). 
• Platform components may enforce budget restrictions on an application 

component, or monitor if an application stays within its budget. 

To reflect this formally in the component model, each port is associated with an interface 
type. The interface type may define a number of properties that further characterize the 
contract between two interconnected components. The properties reflect the budgets, 
quality metrics, resource costs and configurations. The properties may be of different 
data types – numeric, Boolean, discrete. 

When components are connected, a relation is established between properties of 
components. The connection can be made only between compatible ports. From this 
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perspective, two ports are compatible if they have compatible interface types and values 
properties (on the two respective ports) are also compatible. Trivially, if the ports have 
the same interface type and have the same property values, they are compatible. 

4.3.2 White-box view 
The white-box view allows modeling the internal structure of a composite component. 
This makes it possible to hierarchically elaborate a component as a composition of other 
components. The internals of a component are specified as an architecture of 
interconnected sub-components. This internal architecture follows the same rules as 
described in the previous section. 

To align the internal architecture with the black-box view, the unconnected ports of the 
sub-components are delegated to ports on the outer boundary of the composite 
component. This is depicted in Figure 9, which shows 4 levels of nesting. 

 
Figure 9: Component composition 
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On the first level, there is one component that is realized by both hardware and software. 
Internally, the component is split to an application component and platform component. 
The application component is internally modeled as two tasks. The platform component 
internally consists of two layers – the execution platform and the virtual execution 
platform on top of it. Both the execution platform component and the virtual execution 
platform component are internally modeled as collections of resources. 

The component model thus allows decomposition to an arbitrary level of detail. 
Generally, the rule of the thumb is to go to such a level of detail that is necessary to 
model all quality properties, budgets and costs that need to be brought in in the design 
optimization phase (WP3) and the run-time adaptation (WP4). 

4.3.3 Component configurations 
An essential feature of the FitOpTiVis component model is that it explicitly captures the 
potential design space of component configurations. The component design space in 
FitOpTiVis is captured by component configurations, internal component properties (to 
reflect qualities, budgets, costs), and by constraints over the properties. 

In particular, a component configuration reflects a discrete variant of the component. 
The configuration determines the ports (including their cardinality) and mapping of 
internal component properties to properties of ports. Furthermore, it determines the 
constraints over the properties. As such, the configuration determines both the black-box 
and the white-box view of a component. 

Recalling the example with smart camera – the camera has 6 configurations as given in 
the table in Section 4.3. In configurations 1-3 it has an outputs port for providing 
biometric data; in configurations 2-4, it has an outputs port for providing face data; and 
in configurations 3-6, it has an outputs port for providing video data. In all configurations, 
the component has an internal property FPS (frames per second). The configuration 
defines constraints over the FPS property: it is 1 for configurations 1-3, 10 for 
configurations 4-5, and 30 for configuration 6. The constraints further bind the internal 
FPS property with the FPS property on the respective output ports. 

 
Figure 10: Smart camera configurations 
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Additionally, the configuration determines also the required budget / cost consumed. 
This comprises the energy consumption and GPU allocation, for example. 

While in this example, the FPS was fully determined by the configuration, it is also 
generally possible to see the FPS property as a scale. The configuration then only 
specifies the permitted range and the dependency between the FPS and cost (e.g., the 
energy consumption). 

This way, the component configurations, properties and constraints together with the 
component architecture form a design space. Searching the design space for the most 
fitting configuration and assignment of properties with respect to a cost (e.g., the energy 
consumption) can be seen as a constrained optimization problem. 

4.3.4 Example: Component Abstraction in VR Use Case 
In the context of use case UC-2, Virtual Reality, advanced virtual reality (VR) techniques 
require high performance computation under stringent latency requirements. Future low 
latency network services enable the use of remote acceleration of the computation on 
devices in the edge or the cloud to improve quality of a VR application. We assume in 
this example that the application and acceleration use OpenCL to define kernels that 
can be accelerated. Moreover, we assume through portable OpenCL solutions such as 
POCL [JSS+15] and POCL remote (investigated in FitOpTiVis, WP4) that the application 
may choose to use a remote OpenCL device for high quality results, or a local device 
when such a device is not available, or when accessing it would incur too much latency 
for the application. 

hand-held device
with POCL remote

5G network cloud accelerator
with POCL remote

connection
OpenCL acceleration 

(number, device type)

stereoscopic VR 
application

OpenCL acceleration+
GP computation

configurations:local rendering / 
remote acceleration 

constraint: latency < 200ms

processing latency = compute latency + 
network latency + accelerator latency

low power proc+ 
OpenCL accelerator

latency latencylatency, power

latency, power

latency, rendering quality

rendered video graphics

VR processing

VR processing

 
Figure 11: Model of the remote configuration of a stereoscopic VR application 
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The local device is assumed not to be able to deliver the same quality as the remote 
device. A (simplistic) model of this system in the component abstraction is given by three 
platform components, the hand-held device, the network and the cloud accelerator. The 
network offers communication service between the hand-held device and the 
accelerator. For the sake of this simple example, the budget provided by the network 
platform component is a connection, which is characterized by its latency only. The cloud 
service platform component has OpenCL devices of particular type(s) as its resources 
and the virtual resource it offers is defined by the number and type of the device. 

The application supports two configurations, one corresponding to the local acceleration. 
It requires no budget from network or cloud service, but only an OpenCL device on the 
local platform. The application quality includes two aspects, the latency of the 
application, and the quality of the rendering. We assume that there is a constraint on the 
latency as stereoscopic VR applications may cause nausea when the latency is too 
large. The second configuration employs remote acceleration. It requires a network 
budget to realize a connection to the cloud service. The application latency depends on 
the network latency. It also requires a budget from the cloud accelerator. In this 
configuration the application delivers higher quality, but (possibly) at a larger latency. 

The OpenCL standard includes device types and application models (kernels) but does 
not include an explicit resource management architecture. (Figure 12 illustrates the 
concepts and terminology of the OpenCL architecture.) Some of the properties of 
component may be determined through online monitoring or calibration, such as the 
latency of the network connection. 

 
Figure 12: Concepts and terminology in the OpenCL architecture 

 

Platform component abstraction: A platform is: "The host plus a collection of devices 
managed by the OpenCL framework that allow an application to share resources and 
execute kernels on devices in the platform." 
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The easiest way to characterize budgets from an OpenCL component is as a set of 
available devices by their types (CPU/GPU/accelerator), possible even including specific 
make and/or generation. Since OpenCL does not aim to provide performance portability 
of applications across various heterogeneous devices, applications are often tuned to a 
set of targeted GPU models or product families. This means that the “budgets” required 
by an application may need to be very specific to guarantee that a previously measured 
performance is reachable with the application. A more refined and challenging model 
would be to characterize the accelerator through generic performance metrics. 

4.4 Mathematical Component Framework for Quality and 
Resource Management 
In this section we give a precise, composition mathematical component model that can 
be used as an underlying model or semantics for the conceptual component abstractions 
that have been introduced. It introduces components with their configurations and 
properties in a multi-objective optimization setting and it defines compositions of 
components into larger components and systems that form the platforms, virtual 
platforms and applications of the reference architecture. 

Components are the building blocks of our framework. Their configurations model the 
(re)configurable set points of each of them. The set points are characterized by their 
inputs and outputs and provided and required budgets and qualities. The qualities of the 
component refer to the properties that we want to optimize, for instance, latency, 
throughput, energy consumption, cost. We use concepts from the Pareto algebra 
framework defined in [GBTO2007] to capture quality and resource management in a 
compositional way. 

4.4.1 Component Framework Definition 
Within the mathematical component model, we assume the existence of the following 
sets: 

• 𝐶𝐶𝑆𝑆 is a set of component configurations, 
• 𝐵𝐵 is a set of budgets with a partial order ≼𝐵𝐵, 
• 𝐹𝐹 is a set of inputs and outputs with a partial order ≼𝐹𝐹, 
• 𝑄𝑄 is a set of qualities with a partial order ≼𝑄𝑄. 

Budgets, inputs and outputs, and qualities are all equipped with an ordering relation that 
distinguishes better values from worse values. For example, a smaller required budget 
is better than a larger required budget, and vice versa for provided budgets of 
components. The relation is assumed to be a partial order, which allows also certain 
values to be declared incomparable. For uniformity of the model we assume that also 
inputs and outputs have such an ordering. A ‘better input’, for instance, could be one 
that accepts a wider input data type. A better output could provide a wider set of output 
ports. Qualities of components are naturally also ordered to provide a basis for (multi-
objective) optimization. 

The configuration of a component is determined by the values of configuration 
parameters that can be set from outside of the component. We abstract from the 
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connection between parameters and the configurations in this section on the 
mathematical model. The sets 𝐵𝐵, 𝐹𝐹 and 𝑄𝑄 are quantities in the sense of the Pareto 
algebra framework [GBTO2007]. Note that elements of these sets can have an arbitrarily 
complex (or arbitrarily simple) structure. Of particular interest for the FitOpTiVis 
components model is that they can be composed, hierarchically. A single budget can 
include, for example, both a processor and a memory budget. 

When components are composed together into a new component, their inputs, outputs, 
budgets and qualities are combined. To formalize this, we require the existence of an 
addition (+) operation on 𝐵𝐵, 𝐹𝐹 and 𝑄𝑄 that is monotone in the following sense: 

𝑎𝑎 ≼ 𝑏𝑏 ∧ 𝑐𝑐 ≼ 𝑑𝑑 ⇒ 𝑎𝑎 + 𝑐𝑐 ≼ 𝑏𝑏 + 𝑑𝑑 

which means that the composition of components agrees with the defined notion of 
better and worse, i.e., if one component is better than another, and we compose the 
better component with the same third component, the resulting composition should be 
better than the composition obtained from the worse component with the third 
component. This is a natural property to expect, but it needs to be formulated in the 
mathematical framework. 

Note that we shall not define the details of the addition operator, as it is considered to 
be domain-specific. I.e., it depends on the types of components being used what the 
appropriate operator is. Some examples are given below. 

We also require the existence of a − operation on 𝐵𝐵 and 𝐹𝐹 that models what happens 
when budgets, inputs or outputs are (partially) satisfied/ consumed. We also need 
monotonicity for this relation: 

𝑏𝑏 ≼ 𝑎𝑎 ∧ 𝑐𝑐 ≼ 𝑑𝑑 ⇒ 𝑏𝑏 − 𝑑𝑑 ≼ 𝑎𝑎 − 𝑐𝑐 

Example 1 (Budgets). A storage budget can be modelled by a natural number: the 
number of bytes available for storage. Clearly, (ℕ,≤) is a partially-ordered set, and the 
usual + and − operations on ℕ satisfy the monotonicity requirements. 

Example 2 (Inputs and outputs). Let 𝑉𝑉 = {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}, to consider combinations of 
audio and/or video inputs or outputs. For this we define 𝐹𝐹 as the powerset of  , i.e., 𝐹𝐹 =
℘(𝑉𝑉) = �∅, {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}, {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}, {𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}�. The partial order is given by set inclusion: 
𝑓𝑓1 ≼ 𝑓𝑓2 if and only if 𝑓𝑓1 ⊆ 𝑓𝑓2. Furthermore, 𝑓𝑓1 + 𝑓𝑓2 is defined as 𝑓𝑓1 ∪ 𝑓𝑓2, and 𝑓𝑓1 − 𝑓𝑓2 is 
defined as 𝑓𝑓1\𝑓𝑓2. Basic set theory gives us that these operations satisfy the monotonicity 
requirements. 

We can now define a component as follows. 

Definition 1 (Component). A component is a tuple (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞), where 

• 𝐶𝐶 ⊆ 𝐶𝐶𝑆𝑆 are the configurations of this component, 
• 𝑣𝑣:𝐶𝐶 → 𝐹𝐹 gives the inputs for each configuration, 
• 𝑣𝑣:𝐶𝐶 → 𝐹𝐹 gives the outputs for each configuration, 
• 𝑟𝑟:𝐶𝐶 → 𝐵𝐵 gives the required budget for each configuration, 
• 𝑝𝑝:𝐶𝐶 → 𝐵𝐵 gives the provided budget for each configuration, 
• 𝑞𝑞:𝐶𝐶 → 𝑄𝑄 gives the quality for each configuration. 
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A component instance is a component in combination with a specific configuration. A 
component instance thus gives concrete values for the input, output, required budget, 
provided budget and qualities. 

The following defines relate our components to the corresponding concepts of Pareto 
algebra. 

Definition 2 (Component configuration space). The component configuration space is 
the set 𝒮𝒮 = 𝐹𝐹 × 𝐹𝐹 × 𝐵𝐵 × 𝐵𝐵 × 𝑄𝑄. 

Definition 3 (Component instance). Let 𝑀𝑀 = (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞), and let 𝑐𝑐 ∈ 𝐶𝐶. The 𝑐𝑐-instance 
of 𝑀𝑀, denoted by 𝑀𝑀(𝑐𝑐), is the tuple �𝑣𝑣(𝑐𝑐), 𝑣𝑣(𝑐𝑐), 𝑟𝑟(𝑐𝑐),𝑝𝑝(𝑐𝑐), 𝑞𝑞(𝑐𝑐)� ∈ 𝒮𝒮. We let 𝐶𝐶(𝑀𝑀) denote 
the set {𝑀𝑀(𝑐𝑐)|𝑐𝑐 ∈ 𝐶𝐶} ⊆ 𝒮𝒮. 

To define a partial order on the component instances in the component configuration 
space 𝑆𝑆, we use the partial orders on 𝐹𝐹, 𝐵𝐵 and 𝑄𝑄. 

Definition 4 (Dominance). Let 𝑠𝑠1 = (𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1, 𝑞𝑞1) ∈ 𝒮𝒮, and let 𝑠𝑠2 = (𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2, 𝑞𝑞2) ∈
𝒮𝒮. We say that 𝑠𝑠2 dominates 𝑠𝑠1, denoted by 𝑠𝑠1 ≼ 𝑠𝑠2, if and only if 𝑣𝑣2 ≼𝐹𝐹 𝑣𝑣1 ∧ 𝑣𝑣1 ≼𝐹𝐹 𝑣𝑣2 ∧
𝑟𝑟2 ≼𝐵𝐵 𝑟𝑟1 ∧ 𝑝𝑝1 ≼𝐵𝐵 𝑝𝑝2 ∧ 𝑞𝑞1 ≼𝑄𝑄 𝑞𝑞2. 

A component instance is thus dominated by another component instance if it has at least 
the same input and required budget, and at most the same output, provided budget and 
qualities. In such a case one would argue that the configuration that leads to instance 𝑠𝑠1 
should never be preferred over the configuration of 𝑠𝑠2 and should be considered 
redundant. The definition shows a fundamental distinction between how inputs and 
outputs and required and provided budgets are treated in the component scope. Loosely 
spoken, a component instance dominates another component instance if it requires less 
and provides more. Configurations that lead to dominated instances are ideally 
eliminated at design-time. Sometimes configurations turn out to be dominated in a 
particular run-time situation. In that case they may be eliminated at run-time in a quality 
and resource manager. 

We lift the dominance relation to sets of configurations as follows. Let 𝑆𝑆1,𝑆𝑆2 ⊆ 𝒮𝒮. Then 
𝑆𝑆2 dominates 𝑆𝑆1, 𝑆𝑆1 ≼ 𝑆𝑆2 if and only if for every 𝑠𝑠1 ∈ 𝑆𝑆1 there is some 𝑠𝑠2 ∈ 𝑆𝑆2 such that 
𝑠𝑠1 ≼ 𝑠𝑠2. We say that 𝑆𝑆 ⊆ 𝒮𝒮 is Pareto minimal, denoted by 𝑚𝑚𝑣𝑣𝑚𝑚(𝑆𝑆), if and only if not 𝑠𝑠1 ≼
𝑠𝑠2 for any 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆. Two configuration sets 𝑆𝑆1,𝑆𝑆2 ∈ 𝒮𝒮 are Pareto equivalent, denoted by 
𝑆𝑆1 ≡ 𝑆𝑆2 if and only if they dominate each other, i.e., 𝑆𝑆1 ≼ 𝑆𝑆2 ∧ 𝑆𝑆2 ≼ 𝑆𝑆1. With these 
definitions on the configuration space and component instances we define the notion of 
a Pareto-minimal component. 

Definition 5 (Pareto-minimal component). Let 𝑀𝑀 = (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞) be a component. Its 
Pareto-minimal version, denoted by 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀), is the smallest component (with the least 
number of configurations) that is Pareto equivalent to 𝑀𝑀. 

Below we specify two composition operators for components. We show that they satisfy 
two properties that are needed for efficient compositional reasoning [GBTO2007]. The 
first property states that the Pareto-minimal component is a proper abstraction for the 
composition operators given in [GBTO2007] (denoted by ∗): 

𝐶𝐶(𝑀𝑀1 ∗ 𝑀𝑀2) ≡ 𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1) ∗ 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀2)� 
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If a composition operator satisfies the equation above, then components can safely be 
minimized to its Pareto-optimal configurations during the composition process. This may 
result in an exponential reduction of the number of possible combinations for 
composition. The second property states that a composition operator preserves 
minimality: 

𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1 ∗ 𝑀𝑀2)� = 𝐶𝐶�𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀1) ∗ 𝑚𝑚𝑣𝑣𝑚𝑚(𝑀𝑀2)� 

When such an operator is applied to compose minimal components, then minimization 
after the composition is not needed. 

Below we define the two composition operators and show that they satisfy the former 
property, but not the latter. 

Definition 6 (Horizontal Composition). Let 𝑀𝑀1 = (𝐶𝐶1, 𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1,𝑞𝑞1) and 𝑀𝑀2 =
(𝐶𝐶2, 𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2,𝑞𝑞2) be components. Their horizontal composition, denoted by 𝑀𝑀1 ⇒ 𝑀𝑀2, 
is a new component (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟,𝑝𝑝, 𝑞𝑞) where 

• 𝐶𝐶 = 𝐶𝐶1 × 𝐶𝐶2 
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + �𝑣𝑣2(𝑐𝑐2)− 𝑣𝑣1(𝑐𝑐1)�, 
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = �𝑣𝑣1(𝑐𝑐1)− 𝑣𝑣2(𝑐𝑐2)�+ 𝑣𝑣2(𝑐𝑐2), 
• 𝑟𝑟(𝑐𝑐1, 𝑐𝑐2) = 𝑟𝑟1(𝑐𝑐1) + 𝑟𝑟2(𝑐𝑐2), 
• 𝑝𝑝(𝑐𝑐1, 𝑐𝑐2) = 𝑝𝑝1(𝑐𝑐1) + 𝑝𝑝2(𝑐𝑐2), and 
• 𝑞𝑞(𝑐𝑐1, 𝑐𝑐2) = 𝑞𝑞1(𝑐𝑐1) + 𝑞𝑞2(𝑐𝑐2). 

Note that the configurations of the new component include all combinations of the 
configurations of its constituent components. A practical implementation may need to 
address this combinatorial explosion of possibilities. The reduction to optimal 
configurations may help, but not generally solve this issue. Effective search strategies 
and (domain-specific) heuristics need to be applied. 

The operator preserves Pareto equivalence, so it is fine to reduce component models to 
their Pareto minimal configurations. 

Example 3 (Horizontal Composition). Using the input/output from Example 2 and the + 
and − operators defined in the example, we may compose a component with no inputs 
and the output {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣} in configuration 𝑐𝑐1 with another component with input 
{𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣} and no outputs in configuration 𝑐𝑐2. According to the definition of the composition 
we obtain a new component with input 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + �𝑣𝑣2(𝑐𝑐2) − 𝑣𝑣1(𝑐𝑐1)� = ∅ +
({𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}\{𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}) = ∅  and output 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = �𝑣𝑣1(𝑐𝑐1) − 𝑣𝑣2(𝑐𝑐2)� + 𝑣𝑣2(𝑐𝑐2) =
({𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}\{𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣}) + ∅ = {𝑎𝑎𝑎𝑎𝑑𝑑𝑣𝑣𝑣𝑣}. I.e., all inputs are satisfied and the audio output 
remains available for further composition. 

Definition 7 (Vertical Composition). Let 𝑀𝑀1 = (𝐶𝐶1, 𝑣𝑣1,𝑣𝑣1, 𝑟𝑟1,𝑝𝑝1,𝑞𝑞1) and 𝑀𝑀2 =
(𝐶𝐶2, 𝑣𝑣2,𝑣𝑣2, 𝑟𝑟2,𝑝𝑝2,𝑞𝑞2) be components. Their vertical composition, denoted by 𝑀𝑀1 ⇑ 𝑀𝑀2, is 
a new component (𝐶𝐶, 𝑣𝑣, 𝑣𝑣, 𝑟𝑟, 𝑝𝑝, 𝑞𝑞) where 

• 𝐶𝐶 = 𝐶𝐶1 × 𝐶𝐶2 
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + 𝑣𝑣2(𝑐𝑐2), 
• 𝑣𝑣(𝑐𝑐1, 𝑐𝑐2) = 𝑣𝑣1(𝑐𝑐1) + 𝑣𝑣2(𝑐𝑐2), 
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• 𝑟𝑟(𝑐𝑐1, 𝑐𝑐2) = 𝑟𝑟1(𝑐𝑐1) + �𝑟𝑟2(𝑐𝑐2) − 𝑝𝑝1(𝑐𝑐1)�, 
• 𝑝𝑝(𝑐𝑐1, 𝑐𝑐2) = �𝑝𝑝1(𝑐𝑐1) − 𝑟𝑟2(𝑐𝑐2)�+ 𝑝𝑝2(𝑐𝑐2), and 
• 𝑞𝑞(𝑐𝑐1, 𝑐𝑐2) = 𝑞𝑞1(𝑐𝑐1) + 𝑞𝑞2(𝑐𝑐2). 

The vertical composition operator preserves Pareto equivalence. 

Example 4 (Vertical Composition). Vertical composition can be illustrated using the 
budget of Example 1, where memory requirements are modelled with a natural number 
indicating the number of bytes required. It is easy to see that the + en – operators keep 
track of the available memory and remaining memory requirements. Note that this rather 
simple model ignores relevant issues such as paging and fragmentation. 
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5. Domain Specific Language for the Component 
Abstraction 

In this section we describe the proposed Domain Specific Language (DSL) for modelling 
FitOpTiVis applications and platforms. First, we describe it informally on a simple 
example (Section 5.1). Then, the complete grammar of DSL is explained in full detail 
(Section 5.2). The formal definition of the grammar in EBNF is available in Appendix A. 

5.1 Example 
As an example application, we use a simplified version of the video processing 
application introduced in Section 4.3 and depicted in Figure 13. 

 
Figure 13: Example model of a video processing application. 

The source of the video data is the Camera. It represents a component that is both 
software and hardware. The raw data stream from the camera is consumed by the 
Encoder component, which processes the raw data and passes the processed data to 
the Web Service component, which has a user interface for viewing videos by 
consumers. Both the Encoder and Web Service are software components and thus they 
need a platform component for execution. It is represented by the OpenStack 
component that provides virtual machines (note the asterisk at its supports interface, 
which means that there can be multiple interfaces of the same type, i.e., in our case, the 
single OpenStack component can provide several virtual machines). 

The types of the horizontal interfaces, i.e., the types for inputs and outputs of 
components, are defined via the channel keyword. The types of vertical interfaces, i.e., 
the supports and requires of components, are defined via the budget keyword. Both 
kinds of the interfaces can define a number of properties. The listing below defines the 
types of interfaces (one vertical and two horizontal) for the example application. 

budget VirtualMachine {  
  property memory;  
  property core_count;  
} 
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channel VideoStream {  
  property resolution;  
  property fps;  
  property encoding;  
  property audioBitrate;  
} 

channel AudioStream {  
  property audioBitrate;  
} 

The budget interface VirtualMachine represents a virtual machine supported by the 
OpenStack component and required by the software components. It defines its aspects 
of memory and core_count describing the virtual machine properties that are required 
or provided, respectively. The input/output interface channel VideoStream used 
between the software components and the camera has the properties resolution, 
fps and encoding describing the video stream passing through the ports of the 
component and audioBitrate describing the audio stream bitrate. The input/output 
interface AudioStream has only one quality, audioBitrate. 

Component types are defined via the component keyword. Each component type can 
define its inputs/outputs and supported/required interfaces. The listing below shows the 
definition of the Camera component, which can operate in two modes, i.e., 
configurations. Either, it can operate as an audio-video source, or as only an audio 
source (only the microphone is used). 

Either of the two configurations has a single output, which is parametrized with actual 
values for the interface’s properties. In each configuration, the component defines also 
its own qualities and parameters that serve to further parameterize a corresponding 
configuration.  

The specification assigns options for parameters or values for qualities. It further 
establishes a relation between properties of ports and the component’s parameters and 
qualities. In this respect, it is important to note that the equals (=) sign in the examples 
does not denote an assignment, but an equality constraint. 

component Camera {  
  configuration AudioVideo {  
    outputs VideoStream out {  
      resolution = {width: 1920, height: 1080};  
      fps = this.fps;   
      encoding = “raw”;   
    }; 
    parameter fps in [25, 30]; 
    quality power_consumption = 5; /* Watts */  
  }  
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  configuration AudioOnly {  
    outputs AudioStream out {  
      bitrate = 256;   
    } 
    quality energy_consumption = 2; /* Watts */ 
  }  
} 

Similarly, the definition below describes the Encoder component with one input, one 
output, and one required interface.  

component Encoder { 
  inputs VideoStream raw;   
  outputs VideoStream encoded; 
  raw.fps = encoded.fps;   
  raw.resolution = encoded.resolution;   
  encoded.encoding = “mp4”;   
  requires VirtualMachine vm {   
    memory >= 1024;   
    core_count >= 1;   
  }   
} 

The OpenStack component below has also defined properties. The component qualities 
are, like interface qualities, unspecified by default. The values will be specified or filled 
in later stages (e.g. when the entire system is being specified). Component qualities are 
also subject to constraints. Alternatively, the qualities can have an initial constraint. This 
constraint is by design equality-only. 

Importantly, the vm supported interface can exist in several instances, i.e., it is defined 
as an array (with its size in the square brackets). 

component OpenStack {   
  parameter instance_count;  
  parameter memory_per_instance_MB in [1024, 2048, 8192]; 
  parameter cores_per_instance in [1, 2, 4]; 
 
  quality memory_consumption = instance_count *  
    memory_per_instance_MB; 
      
  supports VirtualMachine vm[instance_count] {      
    memory = memory_per_instance_MB;      
    core_count = cores_per_instance;      
  };    
}  

Finally, the WebService component consuming the processed video stream is quite 
straightforward. 
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component WebService {  
  inputs VideoStream in;   
  requires VirtualMachine vm {   
    memory >= 1024;  
    core_count >= 1;   
  }  
} 

Lastly, there is a single composite component representing the whole application. It 
instantiates and connects all the component types described above. As the Encoder 
requires the input of the VideoStream type, the Camera component can be used only 
in its AudioVideo configuration. 

system Application {   
  component OpenStack os {   
    node_count = 1;   
  } 
  component Camera camera {  
    configuration = AudioVideo;   
  }   
  component Encoder enc;   
  component WebService sink;   
  camera.out outputs to encoder.raw;   
  enc.encoded outputs to sink.in;   
  enc.vm runs on os.vm;   
  sink.vm runs on os.vm;   
} 

5.2 Specification 
This section describes the created DSL formally. To show its syntax we use the EBNF 
(Extended Backus-Naur Form) notation. The complete set of syntax rules is presented 
in Appendix A. 

The DSL is white-space insignificant and case-sensitive. Comments are written the 
same way as in C, C++, Java and other languages with roots in C. Thus, // starts a 
comment till the end of a line, while /* and */ surround multiline comments. Nested 
comments are not supported. 

Identifiers (further denoted as <ID>) are sequences of characters, where the first 
character can be any letter or underscore (‘_’), followed by an unlimited number of 
letters, digits or underscores. Each identifier has to consist of at least one character. 

Strings (further denoted as <StringLiteral>) are sequences of characters surrounded 
using either quotation marks (“”) or apostrophes (‘’). The backslash character (\) is used 
for escaping (like in C, Java and other languages).  

A file written using our DSL comprises of 5 possible elements, which can repeat 
indefinitely. These 5 elements are import statement, budget definition, data channel 
definition, component definition and system definition. 
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<Model>: { <Element> } 
 
<Element>: <Import>  
| <BudgetDefinition> 
| <ChannelDefinition>  
| <ComponentDefinition>  
| <SystemDefinition> 

5.2.1 Import 
Syntax: 

<Import>: “import” “(“ <StringLiteral> “)” “;”  

Example: 

import(“interfaces.fit”); 

The import element declares usage of definitions from another resource (e.g., from a 
file). The import will not transitively import other elements as specified by the target 
resource. In case of name collision, the element(s) in the current file take precedence. 

5.2.2 Budget interface definition 
Syntax: 

<BudgetDefinition>:  
  “budget” <ID> “{“ { <PropertyDefinition> } “}” 
<PropertyDefinition>:  
  “property” <ID> ‘;’ 

Example: 

budget foo { 
  property q1; 
  property q2; 
  property q3; 
} 

The budget definition defines a set of qualities of the particular budget. These qualities 
are visible to both producer and consumer of the interface and can be used for 
constraints. 

5.2.3 Channel interface definition 
Syntax: 

<ChannelDefinition>: 
  “channel” <ID> “{“ { <PropertyDefinition> } “}” 
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Example: 

channel foo { 
  property q1; 
  property q2; 
  property q3; 
} 

The channel definition is syntactically and semantically similar to budget definition, 
except the keyword “channel” is used instead of “budget” (see Section 5.2.2). 

5.2.4 Component definition 
Syntax:  

<ComponentDefinition>: “component” <ID>  
  “{“ ( <DefaultConfiguration> | <Configurations> ) “} 
<DefaultConfiguration>: <ConfigurationBody> 
<Configurations>: { <Configuration> } 
<Configuration>: “configuration” <ID>  
  “{“ <ConfigurationBody> “}” 

Example: 

component DefaultConfiguration { 
  // configuration body 
} 
component MultipleConfigurations { 
  configuration foo { 
    // configuration body 
  } 
  configuration bar { 
    // configuration body 
  } 
} 

A component is defined by its possible configurations. In case a component has only a 
single (default) configuration, then the configuration keyword is omitted, and the 
component is defined directly. Otherwise, there is a list of possible configurations 
defined. 

<ConfigurationBody>: { <ComponentRule> “;” } 
<ComponentRule>: <SupportsPredicate>  
 | <RequiresPredicate>  
 | <InputsPredicate>  
 | <OutputsPredicate>  
 | <PropertyPredicate>  
 | <SubcomponentPredicate>  
 | <ConstraintPredicate> 
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The component configuration definition declares a set of predicates (constraints) that 
must hold for the component to be valid (e.g., once the system is being defined). 
Following sections describe all the possible predicates. 

5.2.4.1 Interface usage predicates 

Syntax: 

<SupportsPredicate>: “supports” <InterfaceUsagePredicate> 
<RequiresPredicate>: “requires” <InterfaceUsagePredicate> 
<InputsPredicate>: “inputs” <InterfaceUsagePredicate> 
<OutputsPredicate>: “outputs” <InterfaceUsagePredicate> 
 
<InterfaceUsagePredicate>: <ID> <ID>  [ <ArrayIndex> ]  

[ <InterfaceUsageConstraints> ] 
<ArrayIndex>: “[“ <Expression> “]” 
<InterfaceUsageConstraints>:  

“{“ { <ConstraintPredicate> “;” } “}” 

Example (when used in component a semicolon would follow after each line): 

supports budget_type foo 
requires budget_type bar 
inputs channel_type baz 
outputs channel_type qux { 
  property1 = “foo”; 
  property2 = 5; 
  property3 < baz.property3; 
} 

All the interfaces are used in the same way – the syntax only differs in the used keyword. 

The component can use multiple interfaces of the same type (e.g., it can have two 
different supports predicates for two different budget interfaces). In case one would want 
to use multiple, or variable amount of the same interface, the array syntax can be used. 
The expression inside the square brackets is a generic expression and can therefore be 
based on surrounding qualities. Note that only one-dimensional arrays are supported. 

Once the interface port is declared, an optional constraint block may follow 
(<InterfaceUsageConstraints>). This block may contain any constraint defined in 
5.2.7. All names of properties of the newly defined port are available in this block without 
the <ID> “.” prefix, and will take precedence over any other names, including the 
property names of the component. There is currently no way to use the hidden names. 

5.2.5 Property predicates 
Syntax:  

<PropertyPredicate>:  
( “property” | “quality” | “parameter” ) <ID>  
[ (“=” <Expression>) | (“in” <ArrayExpression> ) ] “;” 
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Example: 

property foo 
quality power_consumption 
parameter fps 
 

The qualities and parameters of components are defined using the same syntax as 
qualities of budget and channel interfaces. In addition to quality and parameters, we also 
allow defining general properties (using “property” keyword), which expresses the 
design uncertainty, whether the property is to be regarded as read-only quality or as a 
configurable parameter. 

Since the components can constraint the values of qualities, parameters, and properties, 
and since the most common way of constraining a property is by equality, the language 
allows for direct specification of a single equality constraint using the “=” 
<Expression> syntax. For example: 

property foo = 5; 

is equivalent to 

property foo; 
foo = 5; 

5.2.6 Subcomponent predicates 
Syntax: 

<SubcomponentPredicate>: “component” <ID> <ID> [ <ArrayIndex> ] 
[ <InterfaceUsageConstraints> ] 

Example: 

component another_component foo 
component bar baz[10] 

Each component can have several subcomponents’ instances defined. The first 
identifier denotes the type of the subcomponent, while the second identifier names the 
instance. Optionally, multiple components of the same type can be created using the 
array syntax. 

The connecting of the interfaces (channels, budgets) is done using constraint 
predicates, which are explained in Section 5.2.7. 
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5.2.7 Constraint Predicates 
Syntax: 

<ConstraintPredicate>:  <BooleanExpression>  
| <AndPredicate>  
| <OrPredicate>  
| <ImplicationPredicate>  
| <RunsOnPredicate>  
| <OutputsToPredicate> 

(Boolean expression are described later – together with other expressions – in 
Section 5.2.9.) 

5.2.7.1 And-predicate 

Syntax:  

<AndPredicate>: “all” “[“ <ConstraintPredicate>  { “,” 
<ConstraintPredicate> } [ “,” ] “]” 

Example: 

all [ foo > 5, foo < 10 ] 

The and-predicate contains a comma-delimited list of constraints that all need to hold 
in order for the predicate to hold. The list of predicates has to contain at least one 
predicate. The list can optionally end with a comma.  

One does not need to use the and-predicate in the top-most level of component 
definition, as those predicates by default all have to hold. The and-predicate can, 
however, be used in more complex logical expressions using other composite predicate 
types (e.g., or-predicate, implication predicate). 

5.2.7.2 Or-predicate 

Syntax: 

<OrPredicate>: “any” “[“ <ConstraintPredicate> { “,” 
<ConstraintPredicate>}  [ “,” ] “]” 

Example: 

any [ 
  foo > 5, 
  bar < 10,  
  and [foo <3, bar > 5] 
] 

The or-predicate is syntactically the same as any-predicate. It holds if at least one of 
the predicates in the list holds. 
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5.2.7.3 Implication-predicate 

Syntax: 

<ImplicationPredicate>:  
<BooleanExpression> “=>” <ConstraintPredicate> 

Example: 

foo = 32   => bar < 5 

The implication predicate can only be written using this left-to-right syntax, meaning that 
the left expression is always the antecedent, and the right implication is then the 
consequent. The implication predicate holds when either the consequent or the negation 
of the antecedent holds. 

5.2.7.4 Runs on / Outputs to predicates 

Syntax: 

<RunsOnPredicate>:  
<QualityExpression> “runs” “on” <QualityExpression> 

<OutputsToPredicate>:  
<QualityExpression> “outputs” “to” <QualityExpression> 

Example: 

component A a; 
component B b; 
a.budget_request runs on b.budget_provide; 
a.out outputs to b.in; 

The runs on and outputs to predicates are used to connect subcomponents in a 
component or components within a system. The <QualityExpression> denotes path 
to a quality and is described in Subsection 3.2.10. 

The left side of the runs on predicate is the consumer of the interface (budget request), 
the right side is the provider of the interface (e.g., cloud component providing virtual 
machine budgets). 

The left side of the outputs to predicate is the provider (data source), the right side is the 
consumer (data sink). 

5.2.8 Expressions 
Syntax: 

<Expression>: <AdditiveExpression>  
| <InlineArrayExpression>  
| <InlineObjectExpression> 

Additive expressions denote the common expression syntax found in other languages 
(unary operators, binary operators, precedence handling, brackets, literals) for 
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non-Boolean operations. The AdditiveExpression grammar can be found in 
Appendix A. 

5.2.8.1 Inline arrays 

Syntax: 

<InlineArrayExpression>:   
  “[“ [ <Expression> { “,” <Expression> }  [ “,” ]  ] “]” 

Example: 

[1, 2 + 3, “foo”] 

The inline array expression denotes a tuple of values. It is used mostly in 
<InExpression>, which will be described in Section 5.2.9.2. 

5.2.8.2 Inline objects (composite values) 

Syntax: 

<InlineObjectExpression>:  
  “{“ [ <InlineObjectMember> { “,” <InlineObjectMember } 
  [“,”] ] “}” 
<InlineObjectMember>:  <ID> “=” <Expression> 

Example: 

{ value1 = 5, value2 = [ “foo”, “bar” ] } 

The inline object is used for composite values, and allows for tree-like structures to be 
composed. All data fields of a single object must have unique names, so as to not run 
into ambiguity issues. 

5.2.9 Boolean expressions 
Syntax: 
<BooleanExpression>: <UnaryBooleanOperator> <BooleanExpression> 

| <ComparisonExpression>  
{ <BinaryBooleanOperator> <ComparisonExpression> }  

| ‘(‘ <BooleanExpression> ‘)’  
| <InExpression> 

The only supported unary Boolean operator is negation, which is written using the ‘!’ 
character. The binary Boolean operators are logical AND (‘&&’) and logical OR (‘||’). 
Other operators are not currently in the language, but can be added into the specification 
if the need arises later. 
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5.2.9.1 Comparison expressions 

Syntax: 

<ComparisonExpression>:  

 <Expression> <ComparisonOperator> <Expression> 

Example: 

a + 2 < b - 3 

Comparison is done using common syntax. Expressions are described later in 
Section 5.2.10. The supported comparison operators are less than (‘<’), less than or 
equal (‘<=’), greater than (‘>’), greater than or equal (‘>=’), equals (‘=’), not equal (‘!=’). 

5.2.9.2 In-expression 

Syntax: 

<InExpression>: <Expression> in <Expression> 

Example: 
quality foo; 
foo in [1, 3, “bar”] 

The in expression consists of any expression on the left side, and array of values on the 
right side (the second expression must evaluate to an array). The in expression holds 
when the value on the left side exists in the array on the right side. 

5.2.10 Quality expressions 
Syntax: 
<QualityExpression>: <ArrayAccessExpression>  

| <SubQualityAccessExpression>  
| <ID> 

<ArrayAccessExpression>:  
<QualityExpression> “[“ <Expression> “]” 

<SubQualityAccessExpression>: <QualityExpression> “.” <ID> 

Example: 

foo 
foo.bar 
foo[10] 
requires virtual_machine vm;  
vm.quality1 

The quality expression denotes a path to some quality. It is used to walk through 
interfaces, arrays, and inline objects. 
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5.2.11 System 
Syntax: 

<System>: “system” <ID>  
“{“{(<SubComponentPredicate> | <ConstraintPredicate>)}“}” 

Example: 

system foo { 
  component bar baz; 
  component bar qux; 
 
  baz.out outputs to qux.in 
  baz.quality1 < 5; 
} 

The system is both semantically and syntactically similar to a composite component, 
except the system itself does not need to use budget or channel interfaces. The system 
is primarily composed of “component”, “runs on” and “outputs to” predicates. The system 
can specify additional constraints for any of the subcomponents. 
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6. Virtualization Mechanisms 

6.1 Introduction 
Platform virtualization is intended as the abstraction of a given physical platform to hide 
all the unnecessary details and to keep only the aspects that are relevant for the purpose 
of resource management. Virtualization allows to have a more practical and concise 
view of the available resources and, in turn, to take decisions to efficiently exploit them 
according to the required application to be executed. In FitOpTiVis, besides this general 
and quite common view, virtualization, is also seen as a set of methodologies to achieve 
predictable and composable application behaviour, and predictable resource 
configuration options. Focusing on WP2, virtualization mainly involves budget 
abstractions and exchange of information with application models. 

By means of virtualization, in FitOpTiVis applications will not be mapped directly to 
physical platforms, but to virtual, abstract ones. This opens to the possibility of executing 
tasks without knowing the physical target device that is actually processing them, neither 
knowing if there are other tasks running on the same shared device. Virtualization in 
FitOpTiVis is intended also to abstract the concept of budgets. Budgets are abstract 
models of available resources, encompassing all the relevant aspects they offer to the 
user, and they constitute the interface between application components and physical 
resources. Budgets offered by the virtual platform must be detailed enough to let 
application models define a meaningful set of set points and qualities. Virtualization will 
also be exploited to achieve run-time reconfiguration and tuning, to properly and quickly 
adapt the system behaviour to modifications in requirements, applications, resources or 
environment. 

Such virtualization approach has to face several challenges to be implemented. Two of 
the main issues are related to compositionality and budget realization. The former is the 
possibility of splitting virtual platforms to smaller virtual resources, each responsible of 
an independent budget. The latter deals with the fact that physical devices should be 
realized such that budgets provided by the corresponding virtual resources are 
independent, and that offered budgets can be effectively exploited by applications or 
resource management. 

6.2 State-of-the-Art 
Virtualization is an extremely investigated research topic and several technologies and 
standards are present in literature and are already commonly adopted in the practice. In 
FitOpTiVis, virtualization techniques are widely exploited. Deliverable 4.1, Appendix A 
gives an elaborate overview of the state-of-the-art in virtualization mechanisms and 
resource management based on virtualization techniques. In Deliverable 4.1 the 
emphasis is on their realizations and implementation frameworks. In this section we 
consider only the modelling aspect of virtualization and its relation to quality and 
resource management. 
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6.2.1 Virtualization Models 
One of the main challenges of virtualization methodologies is related to the need to 
provide proper models that can exhaustively describe the underlying physical resources 
keeping, at the same time, the model lightweight and easy to be analysed. Note that, it 
is mandatory for the virtualization model to be representative of the resources 
(computing, memory, communication, etc.) offered by the corresponding physical entity. 
Abstract representations of parallel computing systems involving both hardware and 
software features have been surveyed yet in the 1990s [MMT1995], while examples of 
models envisioning a separation between hardware and software (or architecture and 
application) aspects are dated back to 2000s. Such separation demonstrated to be 
effective in mitigating the complexity of the system to reach higher 
productivity [GS2003], and has been formalized in [KDW+2002] by the introduction of 
the so-called Y-chart (see Figure 14). 

Y-chart requires two different models for applications and architecture. These models 
are joined when mapping applications into architecture. By acting exclusively on models, 
it is possible to retrieve quantitative data from an analysis of each possible mapping and, 
according to them, to take decisions on the same design process. Here comes the 
importance of being representative for virtualization or architecture models: depending 
on the degree of fidelity of the model properties with respect to the ones of the underlying 
real entity, numbers coming from model analysis (after mapping) will be more accurate 
and, in turn, the decisions made will be more effective for the considered goal. 

 
Figure 14 Y-chart: separation of models of architecture from models of applications [25]. 

Dealing with models, level of abstraction is always one of the parameters that has to be 
taken into consideration. It indicates how many details of the modelled entity are kept 
on the model and how many other are omitted. For instance, considering a hardware 
architecture, it is possible to adopt low-level models, such as transistor or logic gate level 
ones, or higher ones neglecting transient states and physical details, such as register 
transfer or transaction level ones. Abstraction level can be further increased: Electronic 
System-Level (ESL) [GHP+2009] is a coarser grain modelling for complex modern 
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devices involving millions of transistors, making it possible to perform early design 
analysis and explorations. 

Besides hiding unnecessary details, the usage of incremental levels of abstraction 
facilitate model analysis: the lower the abstraction level is, the harder will be its 
manipulation. Given these considerations, a clear trade-off between accuracy and 
complexity is there. The higher the level you choose for your model the less will be its 
accuracy and fidelity, but on the other hand you will be able to simplify model analysis 
since the models are more lightweight. Choosing the proper level of abstraction depends 
on the purpose of the model and the way it is used and manipulated. Such a trade-off 
between levels of abstraction, or model lightweightness, and model 
representativeness/fidelity, virtualization mechanisms often provides subsequent 
stacked Y-chart models, providing an incremental abstraction [KDW+2002]. To find an 
optimal conjunction between architecture and application, designers go from the more 
abstract (less accurate) model, where analysis is fast and easy, and it is possible to 
perform lots of analysis and to explore lots of solutions, to the less abstract (more 
accurate) one, where analysis is slow and hard thus allowing the evaluation of few 
design points or configurations. 

 
Figure 15 Y-chart defined for Models of Computation (MoCs) and Models of Architecture 
(MoAs) [KDW+2002]. 

In [KDW+2002] a first definition of virtualization model, here referred to as Model of 
Architecture (MoA) is provided, saying that it is “a formal representation of the 
operational semantics of networks of functional blocks describing architectures”.  

Starting from the assumption that virtualization models are faithful representations of the 
underlying physical devices properties and to provide a more formal separation between 
MoAs and the models of computation (MoCs) used to represent applications (see Figure 
15), [PMD+2017] provided a new definition: a MoA is “an abstract efficiency model of a 
system architecture that provides a unique, reproducible cost computation, 
unequivocally assessing a hardware efficiency cost when processing an application 
described with a specified MoC”. This definition not only puts emphasis on accuracy of 
model properties, but also clearly defines boundaries and connection points between 
models of architectures and models of applications. Moreover, it helps in understanding 
the FitOpTiVis meaning of virtual platform and abstract application, where the former 
provides amounts of budget, and the latter demands them. Nevertheless, there is a 
difference between FitOpTiVis budgets and costs in [KDW+2002], in the latter costs are 
always computable and reproducible, in FitOpTiVis case budgets may also be 
qualitatively assigned, rather than always formally computed. 
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Figure 16 UML MARTE Design Model Package [29]. 

In literature, lots of examples of virtual models and platforms are present. Some 
languages, like the Architecture Analysis and Design Language (AADL) [FGH2006], 
allow to describe hardware besides software. Here, hardware components descriptions 
are intended to be simulated in time. UML MARTE [OMG2018] also involves software 
and hardware aspects, but this modelling standard is specifically conceived for real time 
embedded systems. UML MARTE offers the possibility to model non-functional 
properties, as shown in Figure 16 where, for instance, appear Schedulability Analysis 
Modeling (SAM) or Performance Analysis Modeling (PAM). Despite that, it does not take 
care of how they are extracted from the underlying hardware resources. High-level 
Virtual Platform (HVP) [CSC+2009] is an architecture virtual representation based on 
SystemC capable of executing tasks. These latter are described with a different model, 
called Communicating Processing, and are managed through dedicated task automata.  

 
Figure 17 Example of the Linear System-Level Architecture Model (LSLA) [27]. 

Several works focused on the definition of models for the virtualization of non-functional 
properties of the physical architectures. Castrillon et al. [CL2014] defined a model where 
architectures are represented by a graph of processing elements. Edges connect 
processing elements and have an associated API to make tasks exchange data. In this 
context, both processing elements and edges API expose several non-functional 
properties. Grandpierre et al. [GS2003] focused on memory size and bandwidth 
properties in their virtualization model proposal. Here, the targeted physical platforms 
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are heterogeneous architectures where it is possible to simulate message passing and 
shared memory data transfers. Timing properties are instead deepened in the System-
Level Architecture Model (S-LAM). Here distribute systems are targeted and 
communication is mediated by enablers like Random Memory Access (RAM) and Direct 
Memory Access (DMA). Kianzad et al. [KS2004] dealt with several parameters optimized 
together and represented with Pareto fronts. Their model, associated with a whole 
co-synthesis framework, involves processing elements and communication resources 
with a set of associated parameters: the former have area, price, idle power 
consumption, data and instruction memory size; the latter have idle power consumption, 
power consumption per unit of data and worst case transfer rate. The Linear System-
Level Architecture Model [PMD+2017], depicted in Figure 17, is an additional 
virtualization model adopting linear equations to compute non-functional parameters, 
called costs, on a generic architecture. Here, differently from the previous cases, non-
functional parameters are not limited to a pre-fixed set, while it adopts the same linear 
formula for computing them. 

6.2.2 Virtualization for Quality and Resource Management 
Even if the state of the art, but also the market, is full of solutions for virtualization, the 
support for run-time reconfiguration is only partially addressed. Existent virtualization 
mechanisms mainly focus on efficient management of resources and they only 
sometimes offer transparent adaptation of allocated resources or qualities according to 
the current workload. Moreover, they are usually oriented to servers and desktop 
machines in general, being thus not careful about power/energy consumption or 
available network bandwidth, parameters that became important dealing with embedded 
and cyber physical contexts. In particular, for the run-time reconfiguration of virtual 
platforms in literature, both the virtual reconfiguration and the corresponding physical 
solutions are a weak point at the moment. 

Some research works explored the possibility of reconfiguring at run-time the underlying 
physical system according to its corresponding virtual entity. Cannella et 
al. [CDM+2012] proposed a virtualization mechanism for reactively and predictable 
migration of software tasks at run-time leveraging on dataflow models of application (see 
Figure 18). Their work targets multi-processor systems on chip (MPSoCs) with 
distributed memory and based on a network on chip (NoC) architecture. With the 
adopted application abstraction models, execution is driven by First-In-First-Out (FIFO) 
point-to-point communication links and to migrate a task from one source tile of the NoC 
to a destination one, authors propose to simply stop execution in the source tile, update 
predecessors and successors addresses with the ones of the destination tile, then this 
latter starts execution according to the related FIFOs state. This work proposes a 
solution for implementing reconfiguration according to an abstract application model, but 
they do not provide any virtualization reconfiguration and limit their approach to NoC 
based MPSoCs. [HBV+2016] introduces a piecewise linear performance model in which 
scheduling methods for processor sharing are abstracted into linear progress models 
where the rate of progression depends on the current set of active tasks on a processor. 
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Figure 18: Example of abstract application (dataflow) mapping on the virtual platform in [CDM+2012] 

Pelcat et al. [PDH+2014] also rely on dataflows, and in particular on Parameterized and 
Interfaced Synchronous Dataflows [DPN+2013] (PiSDF), to have an abstract view of the 
application to be executed. They virtualize the targeted MPSoC devices by means of a 
S-LAM model of architecture. According to application abstraction and architecture 
virtualization, the proposed tool, PREESM7, generates code that can be statically or 
dynamically mapped onto the considered MPSoC. Run-time re-mapping is then possible 
by means of an online analysis of application execution on the architecture, also 
considering current timing and parameter data. SPIDER, a dataflow-based RTOS for 
MPSoCs, is taking care about run-time behaviour [HPD+2014]. As shown in Figure 19, 
the mapping is decided by a master core (global run-time, GRT) that sends job tokens 
to different slave cores (local run-time, LRT) within the MPSoC. Here authors also 
provide a way to take decisions according to the workload to minimize execution time, 
however they still do not consider again power/energy aspects. 

 
Figure 19: Spider environment for run-time re-mapping and monitoring of the executed 
dataflow application on MPSoCs. 

Goossens et al. [GAC+2013] proposed CompSOC, a solution again based on dataflows 
and intended for NoC based MPSoCs. Basically, applications are deployed on virtual 
execution platforms hosted by the corresponding physical execution platforms. 
Applications are divided in tasks, while execution platforms, physical and virtual, are 
composed by resources. The core of CompSOC is the broker, a software entity capable 
of matching budgets available on physical resources (coming from a dedicated resource 
manager) and the available set points possible for applications, given in terms of 
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required qualities by a system manager (see Figure 20). In order to properly control 
virtual resources, a sequence of states is used for reserved, allocated, initialized and 
running cases. CompSOC revealed to be an effective solution for achieving efficiency, 
predictability and composability. However, again, no power/energy aspects have been 
considered so far. 

 
Figure 20: CompSOC approach overview: on the left operation related entities, on the right 
management ones. 

According to the state of the art, virtualization seems to be a powerful instrument not 
only to achieve faster re-deploy of applications, easier backups, wider reproducibility, 
clean-up of the environment, as commonly delivered by commercial virtualization 
products, but also for improving efficiency of the underlying employed devices with a 
more tailored resource allocation. Here efficiency mainly deals with execution time, but 
also with power/energy and quality are important especially when dealing with 
embedded and cyber physical systems. The improvement of efficiency becomes even 
more effective if it is applied at run-time, thus reconfiguring on-the-fly virtual and, in turn, 
physical environment. In this sense, all the solution proposed in literature, are lacking 
some points in terms of metrics to be considered, e.g. power/energy, or in terms of limits 
in targeted applications and devices. 

6.3 Virtual Platform Models 
The virtual reconfigurable platform is one of the FitOpTiVis reference architecture parts, 
dealing with the abstraction of the, optionally reconfigurable, physical resources that are 
available for the execution of a certain application (see Figure 1). To have a 
representative and effective virtual platform, it is necessary to provide a model of the 
underlying physical resource(s), in particular by extracting and exposing to the reference 
architecture only the information useful to be aware of the context and to take decisions 
accordingly. 
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In FitOpTiVis, such information is represented by parameters, qualities and budgets. 
From the virtual platform point of view, parameters are used, when possible, to configure 
a virtual platform such that it provides certain qualities and budgets. Indeed, virtual 
platform components can be configurable and then expose different sets of qualities and 
budgets. These latter, from virtual platform components point of view, are intended as 
aspects (e.g. availability of specific features, level of guarantee, amount of memory, etc.) 
provided by the virtual platform component and they must meet the corresponding 
required budgets from the abstract application components. 

By means of the domain specific language described in Section 5, it will be possible to 
describe different kinds of virtual platform models that could be adopted in different 
FitOpTiVis use cases or application fields. In the following, some examples of these 
virtual platform models will be proposed, trying to highlight the aspects that are compliant 
with the virtual reconfigurable platform view of the FitOpTiVis reference architecture. 

6.3.1 Example Instance: Virtual Platform Models in 
CompSOC 
In the CompSOC platform, Component Bundles (see Figure 21) are used to store 
component models (both application and platform models). For each component 
configuration, the Component Bundle contains its parameters, qualities, budget 
descriptor, and initial state. Configurations are determined by setting the parameter 
values. Qualities describe offered qualities of application components or costs of 
platform components. The Budget Descriptor, which has a hierarchical structure, 
describes the provided and/or required budget of a component. The initial state contains 
the data that is used to initialize the components (e.g., application data). It is not part of 
the component abstraction but needed in the platform to instantiate a platform and an 
application. Similarly, the bundle also includes the application instructions. 

Component Bundle

Configuration

1..*

Parameters

1

Qualities

1

Budget Descriptor

1

Initial State

1

 
Figure 21: Structure of Component Bundle. 

Virtual Execution Platforms are composite components whose models can be stored in 
the aforementioned structure. Given the fact that a Virtual Execution Platform is 
composed of one or more virtual resources, the Budget Descriptor for such composite 
components has a hierarchical structure containing the budgets of all their virtual 
resources. In CompSOC, the deployment of applications in Virtual Execution Platforms 
is done by Virtual Execution Platform Managers (VEPMs). They create virtual resources 
(and eventually VEPs) according to the Budget Descriptors that describe VEPs that 
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applications require for deployment. These bundles are stored in certain sections in the 
ELF (Executable Linkable Format) binary which contains the compiled application. 

Example. For an application that runs on two processors in a parallel fashion, the 
Budget Descriptor contains two Tile Budget Descriptors which describe the required 
virtual resources on each platform tile such as processors, instruction/data memories, 
DMAs, etc. Based on this bundle, a VEPM creates virtual resources (e.g., virtual 
processors) on two platform tiles separately to create the required VEP that can execute 
the parallelized application. 

6.3.2 Example Instance: Virtual Platform Models in PREESM/ 
SPIDER 
In PREESM8 rapid prototyping tool for heterogeneous multi/many-core systems, as well 
as in its run-time version SPIDER [HPD+2014], the Linear System-Level Architecture 
Model (LSLA) [PMD+2017] is adopted for virtualization. An example of LSLA has been 
shown in Figure 17. Basically, it is composed by processing elements, communication 
nodes and links. Each LSLA is a functional model of the underlying architecture in terms 
of a specific metric, e.g. energy or latency, making it possible to estimate the value of 
such metric for the whole architecture according to the current application being 
executed and its mapping among available resources. The corresponding estimated 
metric value, namely the cost, can be exploited for decision making purposes. 

The LSLA is linear since the architecture cost is obtained through the linear combination 
of the costs of its components: processing elements, communication nodes and links. 
LSLA is represented with an undirected graph 𝐺𝐺 = (𝑃𝑃,𝐶𝐶, 𝐿𝐿, 𝑐𝑐𝑣𝑣𝑠𝑠𝑐𝑐), where 𝑃𝑃 is the set of 
processing elements (PEs), 𝐶𝐶 is the set of communication nodes (CNs), 𝐿𝐿 is the set of 
arcs between two CNs or between one CN and one PE, while 𝑐𝑐𝑣𝑣𝑠𝑠𝑐𝑐 is a function that 
associates a cost to the different components of the model. To execute a certain 
application, each processing token (atomic part of application processing) must be 
mapped onto a PE, while each communication token (atomic part of application 
communication) must be mapped onto a CN. 

Example: According to the FitOpTiVis approach, to make LSLA models fit with the 
proposed reference architecture and domain specific language, constraints related to 
processing and communication tokens mapping can be expressed as budgets and, in 
particular, “processing” budgets could be provided only by PEs and “communication” 
budgets instead could be given by CNs. On the other hand, the cost modelled by the 
LSLA can be expressed as a quality of the virtual resource, so that it can be exploited 
to take reconfiguration decisions and to manage resources. 

6.4 Quality and Resource Management Conceptual 
Architecture 
The quality and resource management architecture is shown in the reference 
architecture in Figure 1. In the reference architecture, platform and application 
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components have been optimized and characterized at design-time and may in general 
support multiple configurations, while the platform resources that are actually available 
will be known only at run-time. The quality and resource management in FitOpTiVis 
reference architecture works with the component abstractions of the platform resources 
and the applications. For the platform, these abstractions form the virtual reconfigurable 
platform shown in the same Figure 1. 

Also applications are characterized by their own components abstractions, and expose 
their configurations with corresponding trade-offs between quality and resource budget 
requirements. The compositions of platform components and application components 
defines which combinations are feasible and which are not, and which combinations are 
optimal by means of constraints on the configuration parameters. 

The quality and resource manager is the entity in charge of identifying possible solutions 
and selecting which solution(s) will be realized. 

The envisioned FitOpTiVis multi-objective optimization aims at ordering possible 
solutions in terms of better and worse. The FitOpTiVis reference architecture does not 
prescribe how optimal choices are selected, whether this is done in a centralized or a 
distributed manner, or whether users are involved in the decision making or not. So, the 
generic optimization problem is likely to be complex and domain-specific methods and 
heuristics should be used. The quality and resource manager only ensures that Virtual 
Platforms are created or modified for the applications to run on and that the applications 
are started or reconfigured. In the following, few examples of quality and resource 
management strategies that could be adopted in FitOpTiVis will be described, 
underlining how they fit with the FitOpTiVis reference architecture. 

6.4.1 Example Instance: Quality and Resource Management 
in CompSOC 
The hardware layer in the CompSOC platform [GAC+2013] contains multiple tiles 
(including processor tiles, memory tiles, peripheral tiles, etc.) interconnected by a NoC. 
In CompSOC, virtualization is used to consolidate multiple applications in a composable 
manner on the same platform. Accordingly, resources are partitioned into multiple virtual 
resources which are further composed together to form Virtual Execution Platforms 
(VEPs) on which applications are deployed. 

To realize the composable virtualization, physical resources are either exclusively 
dedicated to a unique VEP or composably shared among multiple VEPs. Resources 
such as DMAs and local memories, which are relatively cheap in area, are exclusively 
allocated to a VEP. Other resources such as processors and global memories are 
temporally or spatially shared among VEPs. In CompSOC, resource-specific entities 
called resource managers are used to virtualize resources. A virtual resource is the 
result of programming a required budget into a resource, which leads to the reservation 
of a part of the resource for a VEP. Abstracting physical qualities and other parameters 
of resources away, budgets are used to model virtual resources. The virtual resources 
are the abstractions of the resources that include all information that is relevant to quality 
and resource management. And the budgets are abstract models that describe precisely 
what is necessary to verify that the needs of an application are met. 
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In CompSOC, processors and the NoC are partitioned in time by Time-Division 
Multiplexing (TDM) arbitration, which realizes composable resource sharing. A 
TDM-arbitrated resource provides a periodic budget. Its provided budget can be 
expressed by a tuple (𝑆𝑆, 𝐼𝐼) where 𝑆𝑆 is the service that is provided in every 𝐼𝐼 units of time. 
Section 7.1 illustrates how for a particular application model (static dataflow) 
performance predictions can be derived from such budget descriptions. 

Service describes the type and size of a budget. For processors and the NoC, services 
are expressed in cycles and bytes respectively. Therefore, virtual processors (virtual 
NoCs) are modeled by their budgets which are represented by the number of cycles 
(Bytes) that are provided/required in certain intervals. 

Example. Suppose we have a processor which is partitioned by TDM arbitration, and 
its TDM wheel is of length 1𝑚𝑚𝑠𝑠 is partitioned into 4 TDM slots, each of which provides 
100 kcycles. The budget of a virtual processor that has been allocated one TDM slot of 
this processor can this be abstractly modelled as (100𝑘𝑘, 4𝑚𝑚𝑠𝑠). Such a budget description 
is rich enough for an application component to perform response time analysis. Imagine 
a task that takes 550𝑘𝑘 cycles to complete. It can be assigned a response time of 24𝑚𝑚𝑠𝑠 
for performance or schedulability analysis purposes. For a virtual processor that has 
been allocated two non-consecutive TDM slots, the budget can be captured as either 
(200𝑘𝑘, 4𝑚𝑚𝑠𝑠) or (100𝑘𝑘, 2𝑚𝑚𝑠𝑠). Note that the latter provides a strictly stronger guarantee 
than the former, i.e., response times computed from the former budget are never longer 
than response times computed from the latter. 

Memories in the CompSOC platform (it distinguishes instruction, data, and global shared 
memories) are spatially partitioned by memory controllers such that the partitions do not 
have overlaps in space. The required/provided memory capacity expressed in Bytes are 
used to describe spatial memory budgets in CompSOC. Next to spatial budgets 
applications also need budgets to access memories that characterize latency and 
bandwidth of such accesses. The memory controllers in the platform are specifically 
designed to be composable to eliminate interference between applications and to be 
able to provide budget guarantees to its virtual resources. 

6.4.2 Example Instance: Quality and Resource Management 
in SPIDER 
The Synchronous and Interfaced Dataflow Embedded Runtime (SPIDER) [HPD+2014] 
is a Real-Time Operating System (RTOS) for the efficient scheduling of applications on 
multi-core architectures. It adopts Parameterized and Interfaced Synchronous 
DataFlows (PiSDFs) [DPN+2013] to describe applications. PiSDF is a good trade-off 
between flexibility, offering parameterization and hierarchy possibilities, and 
predictability of the behaviour. In SPIDER, this model is translated at run-time in order 
to have a global view of dependencies between tasks. In terms of parameters and 
hierarchy, it is needed to compute parameters before scheduling and this can be done 
only sequentially among different hierarchy levels, one level at a time. The scheduling 
consists of two phases, namely task ordering and mapping: the former sorts the non-
executed tasks, while the latter assigns them to each processing element in the 
architecture. SPIDER can schedule tasks in order to optimize different metrics, like 
latency, throughput, memory utilization or energy. 
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Once defined the optimization goal, the scheduling may still vary according to the 
evolution of the parameters of the PiSDF application and to the execution constraints. A 
SPIDER RTOS is based on a master/slave execution scheme, as depicted in Figure 19. 
Local RunTimes (LRTs) are slave lighweight operating systems capable of processing 
PiSDF tasks, while the Global Run Time (GRT) is the master, being aware of the whole 
PiSDF application topology and taking decision upon scheduling strategies. These latter 
are communicated through Jobs, that embed data needed to execute PiSDF tasks and 
are sent to LRTs by means of job queues. Different kinds of data can be sent back from 
LRTs to GRT: they can be output parameters, timing, or any other quality provided 
directly by the LRT underlying physical resource. These data are the core of the SPIDER 
quality and resource management approach, since they may change the way tasks are 
scheduled and executed on the underlying physical architecture. 

Example. In FitOpTiVis the quality and resource management is the core of the 
reference architecture, connecting applications abstraction, quality requirements and 
virtualized platform resources In the same way, SPIDER is the conjunction between 
PiSDF applications, embedding qualities in parameters or providing them through 
dedicated queues (e.g. timing ones in Figure 19), and the virtualized platform, for 
instance modelled by means of the LSLA model of architecture (see Section 6.3.2). 

A possible example of SPIDER quality and resource management could be a video 
encoder (described as a PiSDF application) where quality of the encoding can be tuned 
by means of a PiSDF parameter. The video encoder is implemented on an embedded 
multi-core system, so that an energy constraint is present, given by the remaining battery 
level. By default, the application is executed at the maximum quality and the scheduling 
effort is put on throughput. When the remaining battery level goes above a certain 
threshold, SPIDER can decide to optimize energy, to lower the quality of the encoding 
or to lower the throughput, if there are not higher priority constraints on these metrics. 
Here, it is possible to define different set points, each providing a different tuple of 
encoding quality/consumed energy or throughput/consumed energy, to increment the 
number of possible solutions and take more effective decisions. 
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7. Instances of the Reference Architecture 

7.1 Component Abstractions for Multi-Source Streaming 
This section shows an example of an instantiation of the reference architecture in the 
specific domain of dataflow-based modelling for mapping of dataflow applications onto 
a predictable multi-processor architecture such as CompSOC [GAC+2013, 
Deliverable 4.1]. It introduces the component abstraction for an example similar in spirit 
to the multi-source streaming use-case. 

Let 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3 be three streams, which come from three different sources and encoded 
as M-JPEG. We assume that sources can be configured to send streams either with 
720p or with 360p resolution, which we refer to as full scale and half scale, respectively. 
There is a full HD display, on which a user may desire to visualize one or a combination 
of the streams either at half scale or full scale. Figure 22 depicts this scenario. We 
assume that the required frame rate for both half and full scale streams is 30 fps. 
Network and screen can be modelled as platform resources in the component 
abstraction, but we focus here on modelling of the processing part. 

 
Figure 22: multi-source streaming example 

To provide streaming applications with guaranteed performance properties, such as 
minimum throughput and maximum latency, we model streaming applications with the 
Synchronous Data Flow (SDF) model of computation [LM87,SB09, SGTB2011]. SDF 
enables us to conservatively capture the timing behaviour of the system. We would like 
to embed the SDF model into the reference architecture as a component abstraction. 

A dataflow graph describes repetitive tasks and their dependencies in an application. 
Figure 23 depicts an example SDF graph, where the nodes are the set of actors 𝐴𝐴 =
 {𝑎𝑎0,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3} representing individual tasks of an application. Edges represent the set 
of channels 𝐶𝐶 ⊆ 𝐴𝐴 × 𝐴𝐴 modelling dependencies, which can be data dependencies or 
control dependencies. An actor can be executed once its input channels have at least 
the number of tokens that are denoted by rates on input channels. Once the actor firing 
is completed, it consumes the tokens on its input channels and produces tokens on its 
output channels. For the sake of simplicity, rates of 1 for production and consumption 
are not shown. Different configurations of an application can be represented as separate 
SDF graphs and the integrated application including reconfiguration can be modelled in 
a model called Scenario-Aware Dataflow (SADF). The details of this model and 
performance properties analysis are explained in more detail in [SGTB2011]. 



 

 

 

© FitOpTiVis Consortium public 

WP2 D2.1, version 1.0 
FitOpTiVis 

ECSEL2014-2-737451 
Page 66 of 95 

A dataflow application can be captured as a component abstraction in the reference 
architecture. Half scale vs. full scale is a parameter that determines the configurations 
of the streaming application. We see later how resource budgets are also included in 
the configurations. The inputs and outputs of the component abstraction correspond to 
unconnected ports of the SDF graph model. Half scale or full scale is also considered 
as one of the qualities of the component. Note that it may happen that a certain aspect 
occurs in multiple roles in the component abstraction. The scale is, on the one hand, a 
configuration that impacts the type of input and output data and the required computation 
budget, but on the other hand, it can also assume the role of a quality aspect, full scale 
being better to look at than half scale. 

 
Figure 23: A Synchronous Data Flow graph 

Figure 24 depicts the SADF model of applications 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3, described in the 
introduction part of this subsection. In this graph, VLD is the variable length decoder 
function, whose input is a compressed stream and output are macro-blocks constructed 
of six blocks. IDCT and IQZZ stand for inverse discrete cosine transform and inverse 
quantizer and zig-zag ordering, respectively, both operate at the level of blocks. RC is 
the reconstruction block producing a bitmap digital image of a macro block. SRC and 
DP are the source and display blocks. Their functionalities operate at the video frame 
level. 

 
Figure 24: SADF model of 𝑆𝑆1 

There are mathematical performance analysis techniques that can compute tight 
conservative bounds on throughput and latency of dataflow graphs, if we have 
worst-case execution times or response times of the functional components of the 
application [SGTB2011]. Network and memory resources can also be modelled and 
accounted for [BDLT2019], but we do not include them in this example. 

In the FitOpTiVis architecture, we cannot assume that we know a priori on which 
processor(s) the application is mapped and what budget it gets from the processing 
resource. Instead, we intend to calculate conservative bounds on throughput and 
latency, only using the required budget information. The computed throughput and 
latency metrics then serve as additional qualities of the streaming application 
component. 

The analysis and design-space exploration can be performed at design-time and leads 
to a number of alternative processor budgets with different, Pareto optimal combinations 
of the scale, and latency metrics under the throughput constraint derived from the video 
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frame rate of 30fps. To determine latency and throughput, a mapping and scheduling of 
the dataflow graph need to be decided and they are recorded as part of the component 
configuration. 

In the FitOpTiVis reference architecture, we introduce budget abstractions of the virtual 
resources that the dataflow applications execute on. We consider, as an example, the 
following budget model for a virtual processing resource. We assume that processing 
budgets are abstractly characterized for a single processor by a pair of two numbers as 
follows. 

𝐵𝐵 = (𝐶𝐶, 𝐼𝐼) 
𝐼𝐼 is a positive real-valued number and 𝐶𝐶 is an integer that denotes a lower bound on the 
number of processor cycles that the processing resource provides in any time interval 
of length 𝐼𝐼. This abstraction is suitable for budget schedulers, such as round robin or 
TDMA based pre-emptive schedulers [MO2014]. More refined models such a (some 
finite representation of) service curves of Real-Time Calculus [TCN2000] may provide 
tighter bounds but are also more complex to handle by design-time or resource 
optimization and management techniques. From the budget abstraction we can 
determine a lower bound on the number of cycles for any given interval, as well as a 
minimal interval for any required number of cycles. These relations are visualized in the 
graph in Figure 25 with the time interval Δ on the horizontal axis and the corresponding 
bound on the number of cycles on the vertical axis. 

 
Figure 25: An abstract budget relating time intervals and cycles 

One of the research questions addressed in the FitOpTiVis project is whether existing 
execution or response-time based performance analysis techniques for dataflow can be 
generalized to provide performance bounds based on allocated budgets from virtual 
resources for a dataflow graph with a given binding and scheduling to virtual processors. 
Another question is how to find good mappings and schedules on virtual processors. 

A known scheduling order can be incorporated in the dataflow model in the form of 
additional dependencies [DSG+2012]. The configurations of the application can be 
represented with models such as shown in Figure 26. The four actors of the model of 
Figure 23 are mapped onto two virtual processors 𝑃𝑃1 and 𝑃𝑃2. The number of kcycles 
required per actor firing on the specific processor is annotated inside the actor. A 
schedule 𝑎𝑎0𝑎𝑎1𝑎𝑎1is enforced on the first processor by adding extra dependencies and 
initial tokens. Similarly, schedules are enforced on the second processor and between 
the processors. 
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Figure 26: A dataflow graph with virtual processor binding and scheduling 

The response time of a sequence of actor executions mapped onto a processor budget 
can be calculated. For instance, assume that the provided budget by virtual processor 
𝑃𝑃1 is (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠). To calculate the worst-case response time of the sequence of 
actor firings 𝑎𝑎0𝑎𝑎1𝑎𝑎1, first, the (worst-case) required number of cycles for the execution 
of this sequence (5 + 2 × 1 = 7 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠) is computed. This number, divided by a lower 
bound on the number of cycles provided per each interval is computed, which provides 
the worst-case number of time intervals required. In the example, this is 
7 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠 / 3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, rounded to a whole number of intervals, which equals 3 intervals. 
Hence, we can conclude that it takes at most three times the interval length, which 
means it takes at most 3 times 2 𝑚𝑚𝑠𝑠. Therefore, it is shown that the execution time of 
this sequence cannot be more than 6 𝑚𝑚𝑠𝑠 when executed with the given budget. 

The component is finally captured with a finite number of configurations that give it a 
trade-off between the allocated budget and the quality that is provided. The resulting 
component abstraction of the dataflow application component is something like Table 2, 
where each row represents a different configuration with a particular processing budget, 
throughput, latency and scale qualities. Configurations also include the actor mapping 
and scheduling, which are not shown in the table. For the half scale case, the channel 
(𝑎𝑎2,𝑎𝑎3) has rate 2 on the side of 𝑎𝑎3, and this is the only difference between this and the 
full scale configuration. 
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Table 2: Component abstraction of a decoder application. 

# of Proc. 
 

Pbudget 
(kcycles, ms) 

Throughput 
(θ) 

Latency 
(ms) 

Scale 

1 (3,2) 20 50 full 

2 (3,2) 27.7 38 full 

4 (3,2) 27.7 38 full 

1 (4,2) 26.6 38 full 

2 (2,2) 18.5 56 full 

4 (1,2) 9.25 108 full 

1 (3,2) 38.5 26 half 

2 (3,2) 46.8 24 half 

4 (3,2) 46.8 24 half 

1 (4,2) 50 20 half 

2 (2,2) 31.25 34 half 

4 (1,2) 15.6 64 half 

Assume that we have a number of identical virtual processors with the same provided 
budget of (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠). The corresponding latency and throughput of the application 
mapped onto one processor is shown in the first row of the table. The second and third 
rows of the table represent the quality of the scheduled SDF graph mapped onto 2 and 
4 identical processors with the budget of (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠), respectively. The third row 
shows that although the resource allocated for application is doubled compared to the 
second row, the throughput and latency are not improved. Thus, this is not a Pareto 
optimal configuration and is best removed from the component model. 

The next three rows of the table compare the quality of different numbers of processors 
with the overall provided budget. This reveals that distributing a constant budget 
deployed for running application tasks in parallel would decrease the quality of this 
application. The remaining rows similarly represent the half scale configurations. 

This table enables the system to select an optimal configuration, as long as it realizes 
the constraints on either quality properties and the required budget at run-time. For 
instance, to run a half scale with a throughput at least 30 and the latency not bigger than 
30ms, the system considers one CPU with (3 𝑘𝑘𝑐𝑐𝑘𝑘𝑐𝑐𝑘𝑘𝑣𝑣𝑠𝑠, 2 𝑚𝑚𝑠𝑠) as a feasible option. 
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7.2 Component Abstractions for an Industrial Inspection 
System 
UC4, the Industrial Inspection system use case, defines multiple components in the 
model/architecture (for the details please see D1.1, D4.1 and D5.1). This section 
describes the main components that take part in such use case. The ZG3D Industrial 
Inspection system captures objects in free fall using 16 cameras. To analyse an object 
the system performs multiple complex and computationally costly operations. The main 
objective is to decrease the required bandwidth and increase the throughput using a 
distributed system of IoT low-power devices (edge capturers) to pre-segment and 
transfer images to the following components of the ZG3D system. 

The system we are proposing is composed of network resources, edge capturers and 
camera devices, etc. All of them require different configurations and settings, and quality 
features like resolution, latency, workload, availability of edge devices and workers, 
among others. 

An abstract application of the system has been derived and divided in multiple 
components as shown in Figure 27. 

 
Figure 27: An Industrial Inspection System 

The main component that is added in FitOpTiVis is the Edge component with the 
following internal architecture described in Figure 28. 
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Figure 28: Component Abstraction of an Industrial Inspection System 

This Edge component has the following component, budgets and channel definitions 
that describe it at its first stages: 

budget BoardExecution { 
  property bandwidth; 
  property throughput; 
  property consumption; 
  property resolution; 
} 
 
budget VirtualEdgeExecution { 
  property bandwidth; 
  property throughput; 
  property consumption; 
  property resolution; 
} 
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channel ImageStream { 
  property resolution; 
  property encoding; 
} 
 
component Camera { 
  configuration capturer { 
    outputs ImageStream out { 
      resolution = { width: 2280, height: 2048 }; 
      encoding = "raw"; 
    } 
  } 
} 
 
component EdgeBoard { 
  quality memory; 
  quality bandwidth; 
  quality throughput; 
  parameter resolution; 
  supports BoardExecution board { 
    bandwidth = this.bandwidth; 
    throughput = this.throughput; 
  }; 
  requires ImageStream cam { 
    resolution = this.resolution 
  }; 
} 
 
component VirtualEdge { 
  quality memory; 
  quality bandwidth; 
  quality throughput; 
  requires BoardExecution board; 
  supports VirtualEdgeExecution vep { 
    bandwidth = this.bandwidth; 
    throughput = this.throughput; 
  }; 
} 
 
component ImageSegmentation {  
  inputs ImageStream in; 
  outputs ImageStream out; 
  equires VirtualEdgeExecution vep; 
} 
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component TransferEncoding { 
  inputs ImageStream raw; 
  outputs ImageStream raw; 
  requires VirtualEdgeExecution vep; 
} 

7.3 Model-based component abstraction 
The project intends to develop also a methodology that provides UML-MARTE based 
component abstractions that comply with the reference architecture developed in WP2. 

The work in WP2, includes the definition of abstract components that can be easily 
integrated in a UML-MARTE design flow. The methodology is based on work in other 
projects (e.g. MegaMaRt2) in which the basic component modelling methodology and 
tool framework have been developed [MV2017]. The FitOpTiVis innovations in this part 
are focused in five areas: efficient specification of dataflow models, non-functional 
parameter specification and verification, single-source based virtual platforms for real-
time video systems, modelling of multiple component configurations (set points) and 
efficient run-time reconfiguration. 

The FitOpTiVis abstractions and component templates have been integrated in a 
UML-MARTE based design flow. Additionally, a C++ implementation methodology that 
supports multiple implementations (or set points) and run-time re-configuration has been 
developed and it is being integrated in the UML-MARTE based framework that is 
presented in Deliverable 3.1. The main steps of the methodology are presented in 
Figure 29. 

The FitOpTiVis abstractions and DSL descriptions will be captured with a wizard that 
transforms the FitOpTiVis concepts into UML-MARTE elements. The models will be 
captured with the UML-MARTE tool ecosystem that has been described in deliverable 
D3.1 and they could use the available platform/application component libraries. The 
UML-MARTE ecosystem provides several types of tools such as code generators and 
virtual platforms. The software synthesis tool generates base component 
implementations from the UML-MARTE models. In FitOpTiVis, a new C++ 
implementation methodology has been defined. The new approach defines the way to 
codify UML/MARTE components in C++. These components support several 
implementations (e.g. sequential/concurrent implementation, GPU implementation, 
FPGA implementation, …) that can be selected on run-time. This allows adapting the 
system to particular system situations (system resilience). From a UML-MARTE model, 
the methodology defines a base component implementation. Typically, this base 
component is a C++ class that defines the component interfaces. These classes derive 
from a parent class that provides run-time reconfiguration capabilities. From the base 
component, different target specific implementation classes are derived. 

Additionally, the UML-MARTE framework generates all the infrastructure that is required 
to simulate the application in a virtual platform and analyses its performances. The host-
compiled virtual platform takes into account the platform model (that include the 
hardware and operating system models) and the application source code. The virtual 
platform verifies the system functionality and estimates basic performance (execution 



 

 

 

© FitOpTiVis Consortium public 

WP2 D2.1, version 1.0 
FitOpTiVis 

ECSEL2014-2-737451 
Page 74 of 95 

time and power consumptions). Other system qualities are estimated with simulation 
traces and simulation monitors. 

 
Figure 29: UML-MARTE based design methodology 
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7.3.1 Component modelling in UML-MARTE 
This section presents an extension of an existing methodology that has been developed 
in the MegaMaRt2 project. The extension supports the FitOpTiVis concepts and 
abstractions. A classical UML-MARTE methodology defines 3 system views: 

• PIM (Platform Independent Model). This view captures information related with 
the application and it describes the platform-independent functionality of the 
system. PIM exhibits an enough degree of independence so as to enable its 
mapping to different platforms. To develop this view in the proposed 
methodology, two types of diagrams are included: application view and 
verification view. 

• PDM (Platform Dependent Model) that describes the computing resources in 
which the application will be implemented. This view models the hardware (e.g. 
CPU cores, GPUs, memories, buses, …) and software resources (e.g. RTOS, 
memory spaces) of the execution platform. In the proposed methodology, the 
PDM includes 3 views: SwPlatformView, HwResourceView and 
MemorySpaceView. 

• PSM (Platform Specific Model) that defines the relation between the PIM and 
PDM views. This model specifies the mapping of the application threads/tasks to 
the platform computing resources. So, it is captured all the implementation 
decisions taken during the design process. In this case only the architectural 
view is included in the proposed methodology. 

 
Figure 30: Proposed methodology views 

These views are captured with and Eclipse-based framework (Papyrus) that has been 
improved with several specific plugins that provide requirement capture, performance 
analysis as well as automatic generation of software and verification code. Figure 30 
presents the list of the PIM, PSM and PDM views of the proposed methodology in the 
UML-MARTE framework (Papyrus). 

In FitOpTiVis, application and platform components are used in the same view. 
UML-MARTE provides different views for these components in order to facilitate PIM 
and PDM independent specification. This approach improves physical platform reuse 
and application porting to different physical platforms. 

In the proposed approach, the application is described as a network of components. The 
basic abstraction that models these components is the “UML-MARTE Generic 
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Component Model (GCM)”. A generic component only requires a description of the 
external component interfaces or ports. The original methodology only supports service 
interfaces (Client-Server Ports in UML-MARTE). A service is a functionality that the 
component requires or provides. These services can be modelled as functions with 
input, output and input-output parameters that are equivalent to the “input and output 
and parameter ports” of the FitOpTiVis abstract model. The methodology has been 
extended in FitOpTiVis to support dataflow ports (FlowPorts in UML-MARTE) that 
provide access to objects that are not included in the component. The components are 
included on packages that facilitates their reuse. 

The generic component can provide services and/or dataflow ports to other components. 
Additionally, they can require services or data from other components. Next figure 
presents the structure of a system with 3 components whose ports provide/require 
services to other components. 

 
Figure 31. Model-based application example 

Currently, different component implementations are specified with UML attributes. 
These attributes specify the variant identification, the required computation resources 
and several performance-related parameters (e.g. execution time, required memory, 
latency …). In the original methodology [MV2017], only 2 types of components are 
supported: passive and active components. An active component is a concurrent 
computing unit with real-time features (a real time unit, RTUnit, in UML-MARTE). For 
example, a sensor that provides periodic samples (periodic task) is typically modelled 
with an active component. The passive components (Protected Passive Unit, PPUnit, in 
UML-MARTE) do not own schedulable resources. A function that transform an image is 
a typical implementation of a passive component. In FitOpTiVis, the original 
methodology has been extended to support OpenMP based implementations. The new 
approach defines active components that include OpenMP-based code with passive 
components. 

In the proposed approach, the PIM is captured with the application view. The PIM also 
includes the test plan that is modelled in the verification view. The application view 
models the relations between components as well as the component hierarchy or 
system structure. Figure 32 presents an example of an application view in the Eclipse 
framework. The components are interconnected through ports that use 
required/provided interfaces. 
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Figure 32: Application view example 

In order to model the platform component, the methodology defines 3 views: memory 
space, software platform and hardware resource views. The memory view identifies the 
application processes that normally require a specific memory space (MemoryPartition 
in UML-MARTE). The software view models the RTOS (real-time operating system) and 
peripheral/system drivers. The hardware resource view defines all the hardware 
elements of the platforms: sensor, processors, buses, memories, … Figure 33 presents 
an example of a hardware resource view. 

 
Figure 33. Hardware Resource View 

The mapping between the application and platform components is modelled in the 
architectural view. For every component different mapping or set points can be specified. 
At run-time, the previously commented reconfiguration infrastructure allows selecting 
the specific component implementation that has to be used. 

From these views, the UML-MARTE framework generates the implementation code as 
well as all the information required to estimate system behaviour and 
performance [HMV2017]. 
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7.4 Component Abstractions for Time Sensitive Networks 
This section introduces an abstraction of the Time Sensitive Network (TSN= station 
component). A TSN station can be classified as TSN bridge if it is able to forward TSN 
streams with required real-time Quality-of-Service (RT-QoS) (bounded latency, 
guaranteed bandwidth). Otherwise, it is designed as TSN end-station. Consequently, 
TSN end-stations can be assimilated as TSN bridges with no forwarding capability. 

The user should specify RT-QoS traffic objects through the configuration API. Traffics 
are recognized by a combination of protocol fields and encapsulated into multicast VLAN 
frames, conforming TSN streams. 

A TSN station should support the following capabilities: 

1) Identification and prioritization of entering user traffics 

2) Forwarding policy to entering TSN streams. TSN streams can be forwarded to 
other ports or VLAN-stripped to be handed to the user application layer. 

3) Execution of the generalized Precision Time Protocol (gPTP, [IEEE802.1AS-
2011]). This includes the capability of  

a) collaborating in the election of the network time reference (grandMaster), 

b) self-synchronization to the grandMaster 

c) Time synchronization event message forwarding, with corresponding 
correction to the timestamp generated at the grandMaster. 

These functionalities are implemented through three major functional subsystems, which 
require specific configuration. 

First, the VLAN sub-module should identify entering traffics, i.e. untagged user traffics 
or forwarded TSN streams. On the one hand, untagged user traffics should match any 
of the user-provided combination of protocol fields to apply specific RT-QoS or routing 
policy. On the other hand, forwarded TSN streams should also be identified to apply the 
corresponding forwarding rule. The configuration of this submodule is specified on the 
vlan_entry budget. 

Second, the TAS sub-module should perform strict time-and-priority-driven cyclic 
scheduling of the output bandwidth. Egressing TSN streams are queued according to 
their priority and released following a strict time-driven cyclic schedule. Therefore, a 
scheduling table consist of a time interval and a list with the opened and closed gates, 
as exposed on the sched_config budget. 

Third, the timing sub-module should execute gPTP and eventually forward time 
synchronization information to attached stations. Furthermore, it is responsible to spread 
network timing to local entities. It requires configuration to send protocol messages at a 
certain frequency besides information to be elected as grandMaster (priorities). 

Hence, a VLAN budget can be captured as follows. 
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budget vlan_config { 
  property vlan_tag; 
  property traffic_protocol_fields; 
  property forwarding_policy; 
} 
 
budget sched_config { 
  property gatelist_cfg; 
  property interval_time; 
} 
 
budget traffic_cfg { 
  property vlan_config[N]; 
  property sched_config[M]; 
} 
 
budget gPTP_cfg { 
  property protocol_message_periodicity; 
  property priorities; 
} 
 
channel TSN_stream { 
  property RT-QoS; 
  property vlan_tag; 
} 
 
channel user_traffic { 
  property traffic_protocol_fields; 
} 
 
channel gPTP_sync_info { 
  property origin_timestamp; 
  property correction_field; 
} 
 
component TSN_station { 
  requires traffic_cfg cfg_config; 
  requires gPTP_configuration gptp_config; 
 
  inputs TSN_streams TSN_in “or” user_traffics ustrf_in; 
  inputs gPTP_sync_info sync_in; 
  
  outputs TSN_streams TSN_out “or” user_traffics ustrf_out;  
  outputs gPTP_sync_info sync_out; 
 
  property synchronization_accuracy; 
  property traffic_differentiation_and_prioritization; 
  property output_bandwidth_time_driven_scheduling; 
} 
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Figure 34. Model of a TSN station 

7.5 Component Abstractions for High-availability Seamless 
Redundancy in Remote Terminal Units 
The Surveillance of Smart grid critical infrastructure use case (UC9) defines a High-
availability Seamless Redundancy (HSR) network component to ensure the exchange 
of information between different Remote Terminal Units (RTU) that allow the 
communications with the other components of the use case. 

An abstract definition of this component is shown below: 

 
Figure 35 HSR Abstract definition 

The main objective of this component is to avoid the interruption in the communications, 
even for minimal times, because in critical infrastructure that is unacceptable. To deal 
with this need, redundant communication must be included. In an abstract way the 
requirement to implement redundancy is to have additional links for communication and 
a redundancy control protocol to administrate the links. 
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Figure 36 Components for HSR implementation in RTU 

budget interface { 
  property transmission delay 
  property availability 
  property jitter 
  property packet loss 
  property bit rate 
  property latency 
} 

Figure 37: Budget for HSR implementation in RTU 

component communication link { 
  requires interface  
  inputs communication packet 
  outputs communication packet  
} 

Figure 38: Communication link component for HSR implementation in RTU 

component redundancy control protocol { 
  requires microprocessor 
  inputs communication packet 
  outputs communication packet 
  provides 0 time recovery in a single fail 
} 

Figure 39: Redundancy control protocol component for HSR implementation in RTU 

7.6 Component Abstractions for People Tracking System 
This section includes a basic overview of the components of the people tracking system. 
The detection and tracking of people have always been an important area of study in 
the field of computer vision. However, computer limitations derived from algorithms with 
high computational requirements have been a limit to real-time performance. Today, the 
new approaches proposed have led to significant improvements in this field and allow 
us to develop more reliable and efficient systems. 

The main objective of this system is both to detect the different human subjects that may 
appear on the scene during video recording given by 𝑚𝑚 cameras in situations likely to 
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include people and to monitor and track their situation within the area of interest of the 
recording. Thus, this system includes two fundamental tasks that have been called 
"Human detection" and "People tracking" according to their purpose within the system. 
Thus, these tasks, in turn, determine the two fundamental abstract components of the 
system, as shown in Figure 40. 

 
Figure 40: Components for Person Tracking System 

The human detector component (Figure 42) is responsible for carrying out a detection 
of the different people within each of the frames of the video stream that receives as 
input. Thus, the output of this component will be the detections made on each of the 
analysed frames. 

The people tracker component (Figure 40) is responsible for monitoring the people 
detected by the human detector. Depending on the amount of camera perspectives 
available for a particular scene, this component can track people in the video (a single 
camera perspective) and can track people in the 2D plane of the ground (more than one 
camera perspective for the same scene). We call this last feature World Tracking. 
Moreover, the existence of more than one camera perspective allows the execution of 
the occlusion handler, since different camera views allow to better detect targets that 
may be partially overlaid. 
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Figure 41: Components for Person Tracking System 

 
Figure 42: Human detector component for people tracking system 

7.7 Component Abstractions for Action Recognition 
This section shows the main components that take part in the use case of Habit 
Tracking (UC3). The habit tracking will be performed using techniques of action 
recognition. The issue of solving the problem of identifying different human actions 
through video analysis has gained importance in recent years. So, one of these 
techniques will be part of our main component in this regard. 

The problem of recognizing the different actions that a person can perform at their own 
homes could be very interesting because if we focus mainly on using this for elderly 
people, the system would be able to record the activities they carry out and, for example, 
detect those actions that may have harmful consequences for them. 

Despite the different technologies available that can be helpful for monitoring people, 
using just video analysis for detecting actions can provide a successful approximation 
considering works published in the state of the art within other fields of application. 

budget controller { 
  property memory; 
  property core_count; 
  property gpu_core_count; 
} 
 
channel video_stream { 
  property resolution; 
  property fps; 
} 
 
channel detection_frame {} 
 
channel person_position { 
  property video_position; 
  property world_position; 
} 

component human_detector { 
  requires controller cnt {} 
  
  inputs video_stream raw; 
  outputs detection_frame df, video_stream raw; 
} 
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In relation to the main components that take part in this system, we consider one main 
component related to the task of action recognition, which the main objective will be to 
describe and detect the action performed in a video stream provided by the camera 
component. Thus, Figure 43 shows a graphical representation of the components 
mentioned before. We should consider that inside the action recognizer controller, 
depending on the resources that we have and the performance that we want to get, 
there are several set points that offer different accuracy, precision, and recall 
considering more or less resource consumption. The qualities are better or worse 
depending on the number assigned in set point from 1 to 5, number 5 being the best 
that can be reachable, and 1 the worst. 

 
Figure 43: Action recognizer component 

 

budget controller { 
  property memory; 
  property core_count; 
  property gpu_core_count; 
} 
 
channel video_stream { 
  property resolution; 
  property fps; 
} 

channel classification_output {} 
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component action_recognizer { 
  requires controller cnt { } 
  quality performance;  
  quality accuracy;  
  quality precision; 
  quality recall;  
 
  inputs video_stream raw; 
  outputs classification_output out, video_stream raw; 
 
  any [ // Definition of set points 
    all [performance=5, accuracy=3, precision=2, recall=4], 
    all [performance=3, accuracy=4, precision=3, recall=4], 
    all [performance=1, accuracy=5, precision=5, recall=5] 
  ] 
} 
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8. Conclusions 

In this deliverable we have laid down the initial reference architecture for FitOpTiVis. It 
acts as a common reference model for the diverse activities in the project to allow for 
general solutions to emerge from those activities. 

The ingredients of the architecture and the structure of the architecture have been 
introduced, namely, the component abstraction, a DSL to describe systems and 
components, a semantics to the model in terms of compositions, parameters, constraints 
and multi-objective optimization criteria. The architecture and the various aspects of the 
models are illustrated with examples related to the use cases. The architecture defines 
a structured outline for resource and quality management and the virtualization 
techniques required to realize it. 

Next steps are to consolidate the DSL with tool support and to describe use cases, 
design-time methods, run-time methods and components with it in collaboration with 
other work packages. These activities lead to a second iteration of the reference 
architecture that will be presented in Deliverable D2.2. 
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10. Appendix A Grammar of the DSL 

 

Here follows the grammar of the proposed DSL in Extended Backus-Naur Form (EBNF). 
The version written here is optimized for reader clarity and can be used as reference 
point when using the language.  

 

<Model>: { <Element> } 

<Element>: <Import>  

| <BudgetDefinition>  

| <ChannelDefinition>  

| <ComponentDefinition> 

| <SystemDefinition> 

<Import>: “import” “(“ <StringLiteral> “)” “;” 

<BudgetDefinition>: “budget” <ID>  

“{“ { <QualityDefinition> } “}” 

<ChannelDefinition>: “channel” <ID>  

“{“ { <QualityDefinition> } “}” 

<QualityDefinition>: “quality” <ID> “;” 

<ComponentDefinition>: “component” <ID>  

“{“ ( <DefaultConfiguration> | <Configurations> ) “}” 

<DefaultConfigruation>: <ConfigurationBody> 

<Configurations>: { <Configuration> } 

<Configuration>: “configuration” <ID>  

“{“ <ConfigurationBody> “}” 

<ConfigurationBody>: { <ComponentRule> “;” } 

<ComponentRule>: <SupportsPredicate> 

| <RequiresPredicate> 

| <InputsPredicate> 
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| <OutputsPredicate> 

| <PropertyPredicate> 

| <SubcomponentPredicate> 

| <ConstraintPredicate> 

<System>: “system” <ID> “{“  

{( <SubcomponentPredicate> | <ConstraintPredicate> )} “}” 

<SupportsPredicate>: “supports” <InterfaceUsagePredicate> 

<RequiresPredicate>: “requires” <InterfaceUsagePredicate> 

<InputsPredicate>: “inputs” <InterfaceUsagePredicate> 

<OutputsPredicate>: “outputs” <InterfaceUsagePredicate> 

<SubcomponentPredicate>: “component” <ID> <ID>  

[ <ArrayIndex> ]  

<ArrayIndex>: “[“ <Expression> “]” 

<InterfaceUsagePredicate>: <ID> [ <ID> ] [ <ArrayIndex> ] 

[ <InterfaceUsageConstraints> ] 

<InterfaceUsageConstraints>: 

“{“ { <ConstraintPredicate> “;” } “}” 

<PropertyPredicate> :  

( “quality” | “property” | “parameter” ) <ID>  

[ “=” <Expression> ]  

<ConstraintPredicate>: <AndPredicate> 

| <OrPredicate> 

| <ImplicationPredicate> 

| <RunsOnPredicate> 

| <OutputsToPredicate> 

| <BooleanExpression> 

<AndPredicate>: “all” “[“ { <ConstraintPredicate> “,” }  
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[ “,” ] “]” 

<OrPredicate>: “any” “[“ { <ConstraintPredicate> “,” } 

[ “,” ] “]” 

<ImplicationPredicate>: <BooleanExpression> “=>"  

<ConstraintPredicate> 

<RunsOnPredicate>: <QualityExpression> “runs” “on”  

<QualityExpression> 

<OutputsToPredicate>: <QualityExpression> “outputs” “to”  

<QualityExpression> 

<BooleanExpression>: <InExpression> 

| <UnaryBooleanOperator> <BooleanExpression> 

| <ComparisonExpression> 

 { <BinaryBooleanOperator> <ComparisonExpression> } 

<InExpression>: <Expression> “in” <InlineArrayExpression> 

<ComparisonExpression>:  

<Expression> <ComparisonOperator> <Expression> 

<Expression>: <AdditiveExpression> 

| <InlineArrayExpression> 

| <InlineObjectExpression> 

<InlineArrayExpression>: “[“ <Expression>  

{ “,” <Expression> } “]” 

<InlineObjectExpression>: “{“ <InlineObjectMemberExpression>  

{ “,” <InlineObjectMemberExpression> } “}” 

<InlineObjectMemberExpression>: <ID> “=” <Expression> 

<AdditiveExpression>: <MultiplicativeExpression> 

{ <AdditiveOperator> <MultiplicativeExpression> } 

<MultiplicativeExpression>: <Term> 



 

 

 

© FitOpTiVis Consortium public 

WP2 D2.1, version 1.0 
FitOpTiVis 

ECSEL2014-2-737451 
Page 94 of 95 

{ <MultiplicativeOperator> <Term> } 

<Term>: <BracketedExpression> 

| <UnaryExpression> 

| <QualityExpression> 

| <CallExpression> 

| <Literal> 

<BracketedExpression>: “(“ <AdditiveExpression> “)” 

<UnaryExpression>: <UnaryOperator> <Term> 

<QualityExpression>: <ArrayAccessExpression> 

| <SubQualityAccessExpression> 

| <ID> 

<ArrayAccessExpression>: <QualityExpression> 

“[“ <Expression> “]” 

<SubQualityAccessExpression>: <QualityExpression> “.” <ID> 

<CallExpression>: <ID>  

“(“ [ <Expression> { “,” <Expression> } ] “)” 

<Literal>: <IntLiteral> 

| <StringLiteral> 

<UnaryBooleanOperator>: <LogicalNot> 

<LogicalNot>: “!” 

<BinaryBooleanOperator>: “&&” | “||” 

<ComparisonOperator>: “==” | “<” | “>” | “<=” | “>=” | “!=” 

<AdditiveOperator>: “+” | “-” 
<MultiplicativeOperator>: “*” | “/” 

<UnaryOperator>: “+” | “-” 

<StringLiteral>: ‘”’ { <Character> } ‘”’ 

<ID>: ( <Letter> | “_” ) { <Letter> | “_” | <Digit> } 
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<IntLiteral>: <Digit> { <Digit> } 

<Digit>: “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8”  

| “9” 

 

<Letter> is any letter of the Latin alphabet (in regular expression notation [a-zA-Z]), 
<Character> is any valid printable character except for quotation mark and backslash, 
which must be escaped with backslash. 
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