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 Executive Summary 
This report represents deliverable D4.1, one of the outcomes of Task 4.1 in WP4 of the 
FitOptiVis project. The main objective of WP4 is to deal with the complexity of application 
runtime management while considering a diverse set of heterogeneous platform 
components and configurations. The WP4 solutions provide instances of the WP2 
reference architecture described in deliverable D2.1. 
In the first iteration, this deliverable provides an overview of runtime platforms that will 
serve as platform components as defined in deliverable D2.1. These technologies span 
different levels of abstraction and serve to satisfy applications with diverse set of 
requirements. Specifically, we describe a latency-managed edge-cloud platform for 
latency sensitive cloud applications, a distributed OpenCL-centric heterogeneous device 
runtime software stack which provides a unifying backbone to applications relying on 
hardware accelerators, both local and remote, and the CompSOC platform for 
applications targeting execution on system-on-a-chip. 
To enable adaptive control of application quality attributes (e.g., image resolution and 
quality, or frame rate) in response to resource availability and the desired quality trade-
off, the runtime platforms need to provide means for resource managers to control 
application parameters linked to individual quality attributes and to manage resources 
assigned to an application. Each of the platforms enables adaptation at different levels 
of abstraction and at different time scales. To facilitate design of the necessary 
management interfaces, the deliverable also reports on adaptation scenarios relevant 
to use cases from various partners contributing to WP4. 
The content of this deliverable contributes to MS3 (Preliminary components and 
methods release with standalone assessment). 
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 Introduction 
Work package 4 addresses Objective 3 of the FitOptiVis project: 

Objective 3: Real-time multi-objective combinatorial optimisation; data and process 
distribution; run-time adaptation through virtualization; run-time quality and resource 
management; energy driven adaptations; workload (re-)distribution; support for run-time 
upgrades. 

Specifically, in WP4 the consortium develops techniques for run-time resource 
management within the system architecture template outlined in WP2. The main goal is 
to deal with the complexity of application runtime management, reconfiguration, and 
monitoring, while considering a diverse set of heterogeneous platform components and 
configurations. To increase developer productivity and to promote vendor independence 
with respect to compute platform, this diversity should become transparent from an 
application developer’s point of view. Task 4.1 focuses on run-time technologies and 
models to support management of performance, energy, and other qualities. This 
deliverable reports on the outcomes of this task in the first year of the project and outlines 
initial plans for the second year. 
In Chapter 3, the report provides an overview of technologies and concrete platforms 
that will serve as a basis for virtual reconfigurable platforms as defined in the FitOptiVis 
reference architecture (see deliverable D2.1). To satisfy the diverse set of requirements 
found in FitOptiVis use cases, multiple concrete platforms are needed, each tailored to 
serve different types of requirements. For example, while real-time applications with 
modest latency requirements and a time frame for reconfiguration measured in seconds 
may be well served by a solution utilizing a general-purpose compute cluster in an edge-
cloud environment, a hard real-time application implementing a tight control loop may 
need to utilize custom FPGA accelerators to meet latency requirements. Building a 
single unified hardware, software, and tooling framework to satisfy vastly different 
requirements would be neither possible, nor desirable. Instead, in FitOptiVis we aim to 
unify on the level of concepts, principles, and abstractions to find and extract 
commonalities found in different domains. 
A common theme of FitOptiVis systems is the support for runtime management of 
various quality aspects through adaptive adjustment of configurable system parameters. 
Such a task is generally implemented using a MAPE-k loop [KEP03], which generalizes 
the concept of a control loop for adaptive systems. Such control loops can be nested to 
form a hierarchy of control loops operating at different time scales. This approach can 
be applied also in the FitOptiVis project, where a top-level MAPE-k loop can be thought 
to operate with the time frame of seconds, determining the setpoints for a lower-level 
control loop operating at the time scale of milliseconds or even microseconds. The 
presented technologies are intended for solutions operating at different time scales. 
Section 3.1 describes a multi-node managed-latency private edge-cloud platform that 
will provide probabilistic guarantees to parts of applications (time-sensitive services) with 
soft real-time requirements that will be deployed in the edge-cloud. The platform is 
expected to support solutions with reconfiguration time frames in seconds, which can be 
either general soft real-time services, or top-level adaptation control loops managing set 
points for lower-level control loops. By focusing on probabilistic guarantees, we aim to 
reduce the impact on developers by not requiring them to express application 
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performance requirements through many low-level metrics, but rather through a simple 
end-to-end metric on application probe points. 
Servicing especially interactive applications targeting shorter time frames, Section 3.2 
provides a description of a distributed, heterogeneous-device runtime software stack 
based on OpenCL, which can be used to spread the execution of application’s 
computational tasks to all available resources (local or remote), and which can be fully 
controlled from the application running on a terminal device. The foundations for an 
extensible and portable heterogeneous system-software stack had been laid out in the 
ALMARVI project, and will be used and extended in FitOptiVis to support new use cases 
in distributed and reconfigurable computing. This part directly addresses the objective 
of managing the complexity of a heterogeneous distributed execution platform and 
allowing an application to harness all available resources through a standardized API. 
Because OpenCL can encapsulate all types of compute devices ranging from general-
purpose CPUs to fixed-function accelerators, the consortium believes that the diversity 
management goal is well met by relying on it as a backbone, by enabling easy 
support/integration path for the various hardware-software platforms developed in the 
project by partners, and by extending the standard whenever needed. Section 3.2 also 
lists potential extensions to the OpenCL API identified during the first year of the project 
that will enable runtime monitoring, among other requirements associated with a 
distributed, dynamically changing environment. OpenCL supports defining 
heterogeneous task graphs via its command queue abstraction, which provide a basis 
for distributed heterogeneous task scheduling envisioned to be done later in the project, 
which also helps Task 3.2 (Programming and Parallelization Support). 
A higher-level programming model, OpenMP 4/5, is being added as an example of an 
end-user programming language on top of the developed stack. This addresses the goal 
of transparency. Because the OpenMP view of the platform components is more 
restricted than that of OpenCL, more decisions on the suitable devices for each function 
are delegated to the management layers in the stack, instead of relying solely on the 
programmer in this choice. The developed OpenMP 4/5 offloading support on top of the 
OpenCL based stack is described in Section 3.3.  
For the lowest-level solutions operating at the shortest time frames, Sections 3.4 and 
3.5 discuss two hardware-software platforms that will be supported and extended in the 
project: The CompSOC platform for composable and analysable hard real-time 
applications running on a single system-on-a-chip, and platform templates tailored for 
Xilinx Zynq based FPGA SOCs as an easy-to-use implementation and prototyping 
platform. Both platforms target and support high-performance embedded computations, 
but place themselves in different layers of the work done within FitOptiVis: CompSOC 
defines a complete framework for design and implementation of hard real-time 
applications which utilize resource sharing, while the presented FPGA platforms enable 
prototyping and integrating of any hardware platforms with ease. The presented Xilinx-
based platforms make a connection to the design flows in WP3 (Design-time support) 
allowing to prototype and utilize new hardware IP in combination with already 
commercialized ones running in the same system as described in WP5 (Devices and 
components).  
Chapter 4 deals with support for adaptation in the runtime platforms and applications 
built on those platforms. To support different trade-offs between various quality aspects 
(visual quality, resolution, latency) and resource usage (compute resources, I/O 
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bandwidth, memory consumption), the architectural description of FitOptiVis 
applications (see Deliverable D2.1) will enable binding individual quality aspects to 
corresponding resource requirements. It will also expose configurable parameters that 
allows a runtime entity, e.g., an adaptation manager, to request a particular quality level 
for a specific aspect. Such an adaptation manager will then control the individual 
parameters to achieve a higher-level goal, e.g., best overall quality given fixed amount 
of resources, minimal resource usage, best quality possible, etc. The adaptation 
manager needs to closely co-operate (or be integrated) with the platform runtime in order 
to ensure that the resource requirements associated with the desired levels of different 
quality aspects are satisfied. 
Similarly as in Chapter 3, we have to deal with adaptation at different levels of 
abstraction corresponding to the supported runtime platforms. In Section 4.1 we, 
therefore, provide an overview of adaptation support in the context of the managed-
latency edge-cloud platform, where the system needs to manage deployment of 
applications to individual nodes as well as allocation of resources such as CPU time, 
memory, and I/O bandwidth to co-located applications. For applications targeting 
systems-on-a-chip implementation and have shorter time frames, Section 4.1 presents 
an overview of adaptation mechanisms and management interfaces on the CompSOC 
platform, along with mapping of CompSOC concepts to the FitOptiVis reference 
architecture. Section 4.3 provides an overview of adaptation support for reconfigurable 
hardware, and Section 4.4 collects adaptation scenarios related to use cases from 
partners contributing to WP4, detailing their particular use case/example application and 
focusing on the type of runtime challenges that they face along with their current solution 
plans. 
Chapter 5 provides a short conclusion and envisioned next steps for the second year of 
the project. 
Finally, to provide a basis for new contributions in FitOptiVis, a survey of existing 
virtualization and resource management techniques is included in Appendix A. 
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 Runtime Platforms 
This chapter provides an overview of technologies and concrete platforms that will serve 
as a basis for virtual reconfigurable platforms as defined in the FitOptiVis reference 
architecture. We describe the platform model and the correspondence to architectural 
concepts defined in WP2 (Reference architecture, virtual platform and integration), i.e., 
the “instantiation” of the WP2 architecture on a specific platform. Each platform serves 
to satisfy a different subset of the diverse requirements present in FitOptiVis use cases 
and is intended to applications operating at different time frames. 

3.1 Managed-Latency Edge-Cloud Environment 
Modern Cyber-physical Systems (CPS) rely on data from sensors and perform 
computationally-intensive tasks on the data (computer vision, data analytics, 
optimization, and decision making, learning and predictions) which often cannot be 
executed on edge devices due to the limited energy budget and computational power. 
To obtain the necessary computational power, such systems are typically split into parts 
that execute on edge devices and parts that execute in the cloud. However, the 
connection with the physical world inherent to CPS requires these systems to operate 
and respond in real-time, whereas the cloud was primarily built to provide average 
throughput through massive scaling. The real-time requirements impose bounds on 
response time, and when executing tasks in the cloud, a significant part of the end-to-
end response time is due to communication latency. 
The concept of edge-cloud aims to tackle this problem by moving computation to 
computational clusters that are physically closer to edge devices. While this reduces 
communication latencies, edge-cloud alone does not guarantee bounded end-to-end 
response time, which becomes more dominated by the computation time. The reason is 
that while the cloud itself focuses on optimizing the average performance and the cost 
of computation, it does not provide any guarantees on the upper bound of the 
computation time of individual requests. To satisfy the needs of modern cloud-connected 
CPS we need an approach that can reflect the real-time requirements of modern CPSs 
even with cloud in the computation loop. 

3.1.1 Probabilistic Latency Guarantees 
Strict latency guarantees on each individual request are the domain of real-time 
programming, which comes at a very high price, as it forces developers to use a low-
level programming language, severely limits the choice of libraries, and imposes a 
relatively exotic programming model of periodic non-blocking real-time tasks. 
We instead advocate the use of standard cloud technologies (i.e., micro-services 
running in a container-based cloud such as Kubernetes) and modern high-level 
programming languages (e.g., Java, Scala, Python). However, we restrict ourselves to 
a class of applications for which soft real-time guarantees are enough (i.e., the 
guarantee on the end-to-end response is probabilistic, such as “in 99% of cases the 
response comes in 100ms and in 95% of cases the response comes in 40ms”). 
It turns out that this is acceptable to a wide class of applications including augmented 
reality, real-time planning and coordination, video and audio processing, etc. Generally 
speaking, this class comprises any application that has a safe state and has a local 
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control loop that keeps the application in the safe state while computation is done in the 
cloud. Consequently, the soft real-time guarantee pertains to qualities such as 
availability and optimality, but not to safety. In the context of the FitOptiVis project, which 
generally focuses on developing distributed image and video processing pipelines, this 
applies to many of the use cases (augmented reality, habit tracking, municipal speed 
cameras, etc.). 

3.1.2 Probes and Latency Requirements 
One of the goals of our work is to minimize the impact of using a managed-latency edge-
cloud environment on application developers. Given that we aim to use standard cloud 
technologies, we also envision the developer creating artefacts, e.g., for the Kubernetes 
(K8S) platform. The only required extension is the specification of application real-time 
requirements in the application deployment descriptor. 
Contrary to common cloud deployment practices, we aim to spare the developer from 
dealing with the selection of VM type, the number of virtual CPUs, memory, IOPS, etc. 
Similarly, we aim to avoid specification of auto-scaling rules (including triggers), because 
we consider these to be implementation details of the cloud platform’s internal 
mechanisms which the developer is not equipped to set correctly without an experiment. 
We instead work with an abstraction in which the developer is responsible for providing 
the application and its soft real-time requirements, while the responsibility for assessing 
the performance of the cloud application, as well as allocating resources (i.e., the 
required number of virtual CPUs, memory, IOPS, etc.) and making scheduling and 
deployment decisions so as to ensure that the (probabilistic) guarantees are met, lies 
with the cloud platform. Consequently, if the platform determines that it cannot satisfy 
the requirements, it will not admit the application for deployment. 
Specifically, when developing an edge-cloud application, the developer has to describe 
the application in terms of an auto-scaling micro-service with added communication 
latency requirements. In the specific case of the Kubernetes cloud platform, we extend 
the Kubernetes application deployment descriptor to allow declaration of measurement 
probes, special functions provided by the developer which the system uses to assess 
the performance of the application in a particular deployment scenario. 
An example deployment descriptor for a sample face-recognition application is shown 
in Listing 1. The timing requirements for the application state that the response of the 
application on the “recognize” probe should be below 100 milliseconds in 99% cases, 
and below 50 milliseconds in 95% cases. 
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kind: Deployment 
metadata: 
  name: recognizer−deployment 
  labels: 
    app: recognizer 
spec: # microservice specification 
  template: 
  metadata: 
    labels: 
      app: recognizer 
  spec: 
    containers: 
    − name: recog 
      image: repo/recog 
      ports: 
      − containerPort: 7777 
      probes: # probes 
      − name: recognize 
      timingRequirements: 
      − name: recognize limit 
        probe: recognize 
        limits: 
        − probability: 0.99 
          time: 100 # Max. 100ms in 99% cases 
        − probability: 0.95 
          time: 50 # Max. 50ms in 95% cases 

Listing 1. Application deployment descriptor with timing requirements 

A probe (or a set of probes) has to capture the essential behaviour of the application so 
that when invoked by the cloud-edge platform, it will provide a representative sample of 
the application’s performance in the current deployment configuration. Expressing the 
application timing requirements over developer-supplied probes simplifies the 
specification of the contract between the application and the cloud-edge platform, and 
allows it to treat the application as a black-box. 

3.1.3 Platform Status 
The development of the managed-latency edge-cloud platform is in progress. During the 
first year of the project, several design iterations have been made and work on prototype 
implementation has been started. Inter-module interfaces, application middleware, and 
module prototypes have been implemented. 
Given the experimental nature and possibly involved installation and configuration of the 
prototype, we plan to make the platform available as a hosted service during the second 
year of the project. We will work closely with partners interested in deploying parts of 
their application in a managed-latency edge-cloud environment. 

3.2 Heterogeneous Distributed Software Runtime Stack 
The development of a single-node heterogeneous software stack based on OpenCL 
was initiated in the ALMARVI project. In FitOptiVis, this stack is being extended to 
support a distributed edge-cloud setup that can map the architecture models defined in 
WP2 to concrete run-time concepts of execution platforms and their topologies while 
supporting new devices developed with WP3 technologies and other devices and 
components of WP5.  
The primary questions we seek answers in the runtime stack development for are:  
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• What are the workloads that need to be executed on local devices given 5G, 
WiFi6 and other high-speed low-latency wireless network technologies? 

• Where are the latency bottlenecks when offloading interactive applications 
across such networks to cloud-edge servers? 

• Can we distribute event synchronization to minimize communication due to 
back-and-forth synchronization between the “application device” and the cloud-
edge servers? 

These questions are approached by developing a proof-of-concept heterogeneous 
runtime that is optimized also for low-latency tasks and which can support also other 
types of computation offloading in addition to those based on frame serving (e.g. cloud 
gaming which has become popular in the recent years). 
The software stack being developed is shown in Figure 1, while an example usage 
context is shown in Figure 2.  

 
Figure 1. Multi-node heterogeneous distributed software runtime stack. 
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Figure 2. An example use context for the distributed runtime software stack. A terminal device (here a 

smartphone) deploys and starts the OpenCL application which then through a fast wireless link 
communicates to remote GPU devices in clusters at the cloud-edge and in the cloud. 

3.2.1 OpenCL API Extension Candidates 
The current notion is that OpenCL can serve as a good basis for a compute API both in 
local and distributed scenarios. However, already during the first year of the project, we 
identified the following features, which might be beneficial to add to the API (first as 
extensions and later as official part of the standard) to better support remote cloud-edge 
offloading scenarios: 

• Platform: Device Proximity. The existing OpenCL API (practically) does not 
model connectivity between devices. Devices are assumed to reside in a single 
computer and to be accessible at most via a system bus such as PCIe or AXI, 
with shared external memory and/or per-device external memory. It would be 
beneficial to allow applications to make offloading decisions based on how 
efficiently devices are connected together: the API could be a platform-level 
query API with a possibility to query for the link between two devices. How the 
links are modelled and categorized is an open question at this point. E.g. 1) same 
shared memory hierarchy, 2) same system bus, 3) in the same local network, 4) 
internet connectivity  

• Device: Link Status. Especially with 3) of the previous item and especially with 
4), the performance of the link heavily depends on the simultaneous traffic and 
other varying conditions (e.g. the proximity of the nearest 5G base station). It 
would be useful to be able to monitor historical statistical information of the link’s 
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performance in the past 5 seconds or e.g. the past 5 buffer transfers. Because it 
is hard to isolate the network part’s time from the client side code, it might be 
useful as an OpenCL runtime API. Of course the most important link status 
information is whether the link is working in the first place, as it affects the 
reachability of the device. 

• Device: Reachability. In OpenCL there is already a flag for ‘availability’ of the 
device. This might be reused for scenarios where a remote device is temporarily 
unavailable due to networking issues. 

• Command Queues: Performance History. Auto-tuning scenarios attempt to 
execute a kernel on multiple devices while varying parameters that affect 
execution. While the information is natural to reside on the client side of the 
OpenCL API, it might be useful to provide some level of support in the runtime 
API for querying the estimated performance of the given kernel. The kernel 
performance estimate might be identified with a hash and input buffer sizes or 
similar. It might be difficult to design this API to fit OpenCL therefore it might be 
better to keep it in a client-side helper API layer. 

• Command Queues: Command’s Energy Consumption. Now the profiling 
command queues allow storing time stamps of events. In terms of tuning the 
power performance, it might be interesting to also record the consumed energy 
in case the target supports such information. This might be difficult to get 
accurate as it’s hard to account for which kernel consumed the energy in the 
processor especially if there are multiple ones running. It’s worth researching at 
least for the dedicated GPU farm scenario where we execute one kernel at a 
time and might then resort to average power numbers which can be multiplied 
with the execution time. The OpenCL API could be connected to the profiling 
command queues time stamping system: the time stamps could also record 
“energy stamps” at a similar incremental fashion. 

• Command Queues: More Profiling/Performance Counters: Advanced profiling 
information could include the cache hit miss counter values in a similar stamping 
fashion with the same caveat as above: in case multiple kernels are executing 
at the same time, it might be difficult to isolate which kernel caused which part of 
the cache level misses. 

• Device: Temperature Readings of the processor/memories or any other 
components equipped with a temperature sensor.  

• Command Queues: Real Time Commands with Execution Cancellation: In 
some soft real time cases we can just reduce quality when a kernel takes too 
long time. It would be useful to provide mechanism to the command queues that 
allow killing a kernel when a time limit is reached. This could yield a special 
“timeout event” which other commands could listen to and kill also the next ones 
that are dependent on the regular finish event that the killed command should 
have produced. 

• Buffers: Unreliable Buffers: This is connected to the soft real-time case and the 
cancelled kernels, and not delivering full data in time, but still producing some 
useful data. E.g. when we produce images in a tiled fashion, it may be useful to 
display a partially rendered/decompressed frame, especially when applying 
heavy filtering on top of it or when it’s assumed that the incomplete frame in 
general looks OK if there are enough complete frames displayed per second. 
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• Buffers: File-initialized Buffers: Some of the buffer content could be initialized 
from files (possibly an URI) in the system where the remote Device resides. This 
is currently not possible in OpenCL as it only allows initialization from an array. 

3.2.2 Distributed OpenCL Runtime Status 
The distributed OpenCL runtime is being implemented within the Portable Computing 
Language (POCL) open source project, with internal releases made available to the 
project partners until the runtime becomes mature enough for general use by the open 
source community, at which point the code will be published at http://code.portablecl.org. 
At the time of writing this document, the latest internal release available to project 
partners at https://github.com/cpc/pocl-fitoptivis was labelled as version 0.2 with the 
following feature highlights: 

• Improved support for more complicated multiple-device setups 
• Android build (see documentation for details) 

To provide the reader with an idea on how remote offloading works with pocl-remote, 
brief usage instructions are given here, while a more detailed documentation, including 
build instructions, can be found at: 
https://github.com/cpc/pocl-fitoptivis/blob/master/doc/sphinx/source/remote.rst 
On the server, the clinfo command must list at least one OpenCL device. The server 
can be then started using the following command: 
./server/pocld <IP ADDRESS> <PORT> 

Note that pocld will listen on two ports, PORT and PORT+1. The amount of messages 
produced by the server can be adjusted by setting the POCLD_LOGLEVEL environment variable 
to the desired level before running pocld. The default log level is err. The server accepts 
the following log levels: debug, info, warn, err, critical, and off. On the client, the following 
environment variables need to be exported: 
export POCL_DEVICES=remote 
export POCL_REMOTE0_PARAMETERS=<IP ADDRESS>:<PORT>/<DEVICE ID> 

The IP ADDRESS and PORT values are self-explanatory. PORT is the lower of the two 
port numbers assigned to the server. The DEVICE ID is the index of the device on the 
server. Valid indices range from 0 to N-1, where N is the total number of devices across 
all platforms on the server. The index is the order in which pocld lists the devices in the 
OpenCL platform it uses. This is the same order as displayed by clinfo. 

http://code.portablecl.org/
https://github.com/cpc/pocl-fitoptivis
https://github.com/cpc/pocl-fitoptivis/blob/master/doc/sphinx/source/remote.rst
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The clinfo tool can be used to perform a "smoke test" to ensure that the distributed setup 
works. When configured properly, the tool should also list remote devices: 
$ clinfo|grep pocl-remote 
Device Version OpenCL 1.2 CUDA HSTR: pocl-remote 123.456.789.123:10998/0 

A simple dot-product example can be then run by executing the example1 binary: 
$ cd examples/example1 
$ ./example1 
(0.000000, 0.000000, 0.000000, 0.000000) . (0.000000, 0.000000, 0.000000, 0.000000) = 0.000000 
(1.000000, 1.000000, 1.000000, 1.000000) . (1.000000, 1.000000, 1.000000, 1.000000) = 4.000000 
(2.000000, 2.000000, 2.000000, 2.000000) . (2.000000, 2.000000, 2.000000, 2.000000) = 16.000000 
(3.000000, 3.000000, 3.000000, 3.000000) . (3.000000, 3.000000, 3.000000, 3.000000) = 36.000000 
OK 

3.3 Extension of the OpenMP Runtime Infrastructure 
Since the 90’s, OpenMP has been a major standard for parallel programming of 
Symmetric Multi-Processing (SMP) architectures with shared memory. During the last 
years, new OpenMP versions have extended the specification to heterogeneous 
architectures. In fact, the last releases of popular compilers (such as gcc and clang) 
support the last specifications of OpenMP (versions 4.5 and 5.x) that include runtime 
code offloading to different devices such as NVIDIA GPUs, Intel Xeon-Phi co-processor 
and multi-core architectures. 
The OpenMP offloading methodology differs from the commonly used approaches such 
as OpenCL. In OpenMP, the offloaded code is compiled for all possible devices during 
compilation. The specific binary executable code for all possible devices is integrated in 
a common executable, resulting in a “fat binary file”. During execution, the OpenMP 
runtime library identifies the available devices and allows executing the device-specific 
offloaded code. Other approaches, for example OpenCL, rely on compiling code for a 
particular device at runtime. 
The main advantage of the classical OpenMP approach is that all offloaded code has 
been compiled before execution, providing an important reduction of execution time and 
avoiding runtime compilation errors. Additionally, performance and quality estimations 
can be included in the device-specific code during compilation to facilitate efficient 
runtime execution. The main disadvantage of this approach is that all possible devices 
must be supported by the OpenMP compiler. Additionally, the compiler can generate a 
very big (fat) executable binary with the execution code for all possible devices. OpenCL 
simplifies the process with a runtime compilation technique that facilitates new device 
integration. However, OpenCL requires specific host “C” code as well as additional time 
for runtime compilation and compilation error management. 
Additionally, there are devices, such as FPGAs, that cannot be efficiently programmed 
with these methodologies. In order to generate an efficient FPGA implementation, the 
source code usually requires synthesis-oriented modifications, code re-writing or even 
specific implementations in a hardware definition language (HDL). The FPGA synthesis 
process is more complex than a classical software compilation and it sometimes 
requires several iterations with different requirements. For this reason, it is difficult to 
integrate an efficient FPGA-oriented synthesis process with a standard software 
compilation methodology.  
In FitOptiVis, the consortium is developing a new OpenMP offloading methodology that 
explores solutions for these limitations. The new approach is based on two main 
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techniques: source-code offloading and dynamic offloaded code management. In the 
next section, we define the requirements for the new approach. 

3.3.1 Requirements for the New OpenMP Offloading 
The runtime implementation developed within the consortium to support the new 
methodology aims to meet several requirements that can be summarized as follows: 

1. During compilation, the compiler should include in the executable files the code 
of the threads that could be allocated in different computation resources at 
runtime. 

2. There should be a methodology that allows developing new thread 
implementations after compilation, but before application execution. The 
methodology allows extracting the thread code from the executable file and 
defines mechanisms for dynamic loading of the new implementations. 

3. During execution, the runtime infrastructure should identify all the available 
thread implementations. The new implementations will be dynamically loaded. 

4. The runtime infrastructure provides dynamic thread allocation during application 
execution. 

5. The runtime library provides information about the available thread 
implementations and well as identified computing resources. 

6. The computing resource information could optionally include performance data, 
such as memory size and clock frequency. 

7. The device-specific implementation of a thread could optionally include 
performance data, such as memory requirements, execution time or power 
consumption. 

8. During code execution, the runtime library provides a methodology to facilitate 
thread runtime monitoring.  

3.3.2 The OpenMP Framework 
In FitOptiVis, the consortium is extending the standard OpenMP methodology to meet 
the requirements of the previous section. The application is parallelized with OpenMP 
(versions 4.5 or 5.x). The compiler generates an executable file that includes the 
“standard” implementations (CPU cores and NVIDIA GPUs that support CUDA 
programming) as well as a new target: the thread source code and/or a compiler 
intermediate representation. After compilation, a tool extracts the thread code that is 
compiled in a different environment. To integrate these additional implementations in the 
application code, a dynamic library based methodology has been developed. During 
execution, the runtime environment identifies the available implementations and allows 
selecting the current thread implementation. The extended OpenMP framework is 
shown in Figure 3. The framework currently supports the activities shown in the solid-
green boxes, which implement the dynamic thread-implementation management at 
runtime. The compiler and standard OpenMP runtime library modifications are under 
development and they will be presented in a next deliverable.  
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Figure 3. The Extended OpenMP framework. 

3.3.3 OpenMP and OpenCL Integration 
The methodology presented in the previous section has been extended to implement 
OpenMP threads in OpenCL to fit on top of the OpenCL-centric runtime stack described 
in Section 3.2. This integration allows supporting runtime compilation in OpenMP. From 
the thread code, an OpenCL kernel is generated. The current approach only transforms 
the C thread code of the OpenMP “parallel for” sections. Additionally, a library that 
provides support for OpenCL in OpenMP has been developed. This library synchronizes 
the OpenMP thread management and the OpenCL-based resource control. During 
execution, the application can select the OpenCL device that will execute the thread 
code. This code is compiled at runtime with the OpenCL API. 
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Figure 4. OpenCL integration in the OpenMP infrastructure. 

This integration supports the Pocl-remote infrastructure presented in Section 3.2 and 
therefore it allows offloading OpenMP threads to remote devices. 

3.3.4 OpenMP Extension Status 
During the first year, the consortium has developed the methodology and the 
infrastructure to support dynamic thread implementations. Additionally, the integration 
of OpenCL in OpenMP has been demonstrated. During the next year, an open source 
compiler that supports OpenMP version 5.x (e.g. clang) will be modified to integrate the 
proposed methodology. 

3.4 The CompSOC Platform 
The CompSOC platform offers a Virtual Execution Platform (VEP) to each application. 
VEPs are entirely isolated from each other (space, e.g. memory, and time, e.g. TDM on 
processors or network-on-chip), such that each application can use its own Model of 
Computation and can be developed independently. This section is a summary of the 
platform description presented in [GOO17].  

3.4.1 Hardware Architecture 
MPSoCs contain multiple processors with local and shared memories. The processor’s 
local memories are always on-chip Static Random-Access Memory (SRAM), close to 
the processor. Nonlocal memories shared between processors may be on-chip SRAM 
but often include off-chip Dynamic Random-Access Memory (DRAM). The latter has a 
much larger capacity (number of bits) than the on-chip memory, but at the cost of a 
longer execution time. Processors reach shared memories using a communication 
infrastructure, which is increasingly a NoC. A NoC is a miniature version of the Internet 
in the sense that communication is concurrent, is distributed, and is either packet based 
or circuit switched. As a result, it can run multiple applications of different criticalities at 
the same time. The CompSOC platform consists of multiple tiles interconnected by a 
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NoC. Tile types are master tiles, slave tiles, or a mix of both, and include processor tiles, 
memory tiles, peripheral tiles, etc. 

3.4.2 Software Architecture 
The CompSOC hardware platform contains computation, communication, and storage 
resources. Almost all can be shared between multiple requestors, and almost all can be 
(re)programmed at run time. The CompSOC software extends the single hardware 
platform to offer multiple Virtual Execution Platforms (VEPs). A VEP is an execution 
platform that is a subset of the CompSOC hardware platform, in terms of time (e.g., time 
multiplexing a processor) or space (e.g., non-shared DMA or a region in memory). Each 
application runs in its own VEP, which is created, loaded, started, and possibly stopped 
and deleted, at run time. A CompSOC platform can run multiple VEPs concurrently, 
without any interference between them, i.e., composably. 

3.4.3 Microkernel and RTOS 
Task arbitration can be classified along several axes. First, it may be absent when there 
is only one task on a resource. Otherwise it is required. Second, it may be preemptive 
or not. Third, arbitration may be static and follow a static-order schedule or be dynamic 
where the order of tasks is determined at run time. Multiple applications can share the 
processor using a microkernel such as CoMik, which arbitrates only between 
applications. Each application can use virtualized RTOS, such as µC-OS III, to 
independently arbitrate between application tasks.  
An example CompSOC platform is shown in Figure 5 [GOO17]. 

 
Figure 5. An example CompSOC platform. 



 
 

 
© FitOpTiVis Public Document 

 

WP4 D4.1, version 1.0 

FitOpTiVis 

ECSEL2017-1-737451 

    

3.5 Runtime for the Xilinx Zynq Platform 
In contrast to the predecessor ALMARVI project, which only provided support for 
standalone boards and no board-to-board communication, the FitOptiVis project focuses 
on providing Peta Linux and Debian OS support, as well as enabling board-to-board 
communication in a local cloud. 
The first version of design time and runtime support for the family of Xilinx Zynq and 
Zynq UltraScale+ systems has been developed by WP4 partners and released for use 
by project partners and general public by the end of April 2019. The new runtime 
provides support for Ethernet-based board-to-board communication in the local cloud, 
utilizing the Arrowhead framework, which is compatible with C/C++ clients running on 
ARM processors. 
The following Xilinx Zynq systems are supported: 

• ZynqBerry (small). A small-size, low cost system with design time support 
developed in FitOptiVis. It has the Raspberry form factor and utilizes a 32bit 
Xilinx Zynq device (28nm) with small programmable logic area. WP4 provides 
support for Arrowhead-based board-to-board communication, Debian OS, and 
32bit C/C++ clients. See [KAD18a], [TE0726], and [ARROW] for details. 

• Zynq UltraScale+ (medium). A medium-size system with design time support 
developed in FitOptiVis. Utilizes a 64bit Xilinx Zynq device (16nm) and reuses 
the carrier board and the Full HD video I/O FMC card from the ALMARVI project. 
WP4 provides support for Arrowhead-based board-to-board communication, 
64bit Debian OS, and 64bit C/C++ clients. See [KAD18a], [KAD18b], [ARROW], 
[TE0820], and [TE0701] for details. 

• Zynq UltraScale+ (large). A large-size system with design time support 
developed in the FitOptiVis. The carrier board has the Mini-ITX form factor, 
utilizes a 64bit Xilinx Zynq device (16nm), and reuses the Full-HD video I/O FMC 
card from the ALMARVI project. WP4 provides support for Arrowhead-based 
board-to-board communication, 64bit Debian OS, and 64bit C/C++ clients. See 
[KAD18a], [KAD18c], [TE0820], [TE0808], and [TE080X] for details. 

3.5.1 Inter-Cloud Connectivity with Arrowhead 
The FitOptiVis (WP4) run-time resources are supported for the ZynqBerry board 
TE0726-03M by SW implementation of the Arrowhead framework compatible clients. 
The framework [ARROW] has been developed within the Artemis Arrowhead project and 
ECSEL Productive4.0 project. 
In FitOptiVis WP4, we support the Arrowhead framework for board-to-board 
communication as a SW design time resource. 
The targeted HW works with one Raspberry Pi3 board (bottom) and two ZynqBerry 
boards, as shown in Figure 6 below. The Raspberry Pi3 implements the Arrowhead 
framework [ARROW]. The ZynqBerry device on the top hosts a C++ producer capable 
of measuring the actual temperature of the Xilinx XC77010-1C device. The ZynqBerry 
device in the middle hosts a C++ consumer capable of requesting the temperature from 
the producer ZynqBerry board via the Arrowhead framework. 
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Figure 6. Raspberry Pi3, Arrowhead G4.0 clients on two ZynqBerry boards. 

3.5.2 Obtaining Arrowhead Image for Raspberry Pi3 
The client SW acts either as a Producer of a service, or as a Consumer requesting the 
service from the Arrowhead framework. The base hardware platform for the Zynq device 
is compiled with Xilinx Vivado 2018.2 tool.  
To run and test Arrowhead clients, a light-weight implementation of the Arrowhead G4.0 
framework needs to be installed and running on a Raspberry Pi3B board (RPi3). 
Testing and running of the Arrowhead C++ clients on ZynqBerry boards requires 
Ethernet access to the Arrowhead framework services. It is recommended to use the 
precompiled image for the RPi3 board, which includes a pre-configured installation of 
the lightweight implementation of the Arrowhead G4.0 framework. 
The image is available as one of the results of the running ECSEL JU project 
Productive4.0 at https://productive40.eu/, and is accessible to all Productive4.0 
consortium partners. Please contact the coordinator of the consortium for further 
information regarding access to the light-weight implementation of the Arrowhead 
framework G4.0 running on the RPi3 board. After receiving the access to the download, 
unzip the three downloaded files Arrowhead-40-raspi.z01, Arrowhead-40-raspi.z02 and 
Arrowhead-40-raspi.zip into the final image file image_180626.img (size 3.711.959.040 
bytes). 

https://productive40.eu/


 
 

 
© FitOpTiVis Public Document 

 

WP4 D4.1, version 1.0 

FitOpTiVis 

ECSEL2017-1-737451 

    

 
Figure 7. The Raspberry Pi3 will boot from the SD card, text output to monitor. 

3.5.2.1 Installing Arrowhead Support on ZynqBerry Boards 
At this stage, the Debian OS installed on the ZynqBerry boards can be updated to 
become compatible with the C++ demo applications implementing a service consumer 
and a service provider using the Arrowhead G4.0 framework. 

• The installation of Raspberry Pi3 is described in Chapter 8 of App note 
[KAD18a]. 

3.5.2.2 Installing Arrowhead C++ Producer on Zynq Boards 
The Arrowhead client SW acts as the Producer providing a service or as a Consumer 
requesting the service via the Arrowhead framework. 

• Installation on ZynqBerry is described in Chapter 10 of [KAD18a]. 
• Installation on Zynq UltraScale+ is described in Chapter 11 of [KAD18b] and 

[KAD18c]. 

3.5.2.3 Installing Arrowhead C++ Consumer on Zynq Boards 
The Arrowhead ConsumerExample can be compiled and run on the second ZynqBerry 
board. Alternatively, the ConsumerExample can be compiled and tested on the same 
ZynqBerry board as the ProviderExample. 

• Installation on ZynqBerry is described in chapter 11 of [KAD18a]. 
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• Installation on Zynq UltraScale+ is described in chapter 12 of [KAD18b] and 
[KAD18c]. 

3.5.3 Testing Arrowhead Operation on Zynq Boards 
To test the client running on the Consumer Zynq board, first execute the 
ConsumerExample binary: 
./ConsumerExample 

The program should receive the following response from the ProviderExample program: 
Provider Response: 
{"e":[{"n": "this_is_the_sensor_id","v":26.0,"t": "1553675692"}],"bn": 
"this_is_the_sensor_id","bu": "Celsius"} 

The first execution of the ConsumerExample program can fail if the Arrowhead database 
is used for the first time. The database of the Arrowhead framework running on the RPi3 
has to be configured, and the ProviderExample and the ConsumerExample programs 
have to be connected by the database operator. 

• The configuration of the Arrowhead database is described in Chapter 12 of 
[KAD18a]. 

Real temperature of the Xilinx chip on the Zynq board can be measured by a modified 
ProviderExample.cpp code, which is available in two variants, depending on the target 
platform: 

• C++ code for the ZynqBerry platform is described in Chapter 14 of [KAD18a]. 
• C++ code for the Zynq UltraScale+ platform is described in Chapter 15 of 

[KAD18b] and [KAD18c]. 
All other files of the ProviderExample project remain identical. To test the modified 
provider on the Zynq boards, replace the code in the ProviderExample.cpp file and 
recompile the project using make. 
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Figure 8. Registration (re-registration) of Provider to Arrowhead framework. 

When executed, the modified ProviderExample is registered in the Arrowhead database. 
For debug purposes it also prints the actual temperature of the Zynq chip to console, as 
shown in Figure 8. The output of the Consumer requesting the actual temperature is 
shown in Figure 9, while Figure 10 shows the output of the Provider receiving and 
handling the request.  
The measurement of the real temperature of the chip is an example of application-
independent run-time information that may need to be collected for a system consisting 
of multiple boards to autonomously adapt computation to environmental conditions. 
Additional application-specific metrics, e.g., frame rate, may need to be collected to track 
performance of the system. 
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Figure 9. Consumer reads temperature of the Zynq chip via Arrowhead. 
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Figure 10. Provider handling a request from the Consumer received via Arrowhead. 
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 Runtime Adaptation 
To manage trade-offs between different aspects of quality (e.g.,frame resolution,  
quality, rate or latency) and resource usage (e.g., CPU time, memory usage, I/O 
bandwidth, or energy), the runtime platforms need to be able to modify configurable 
parameters in response to desired quality set points and changing conditions. 
In this chapter, we review the developed mechanisms for runtime reconfiguration and 
resource management, and introduce some of the algorithms and techniques envisioned 
to achieve the desired trade-offs between quality (performance) and resource usage for 
selected systems. The latter part of the chapter includes partner descriptions of runtime 
adaptation scenarios in use case specific applications and contexts to serve as scenario 
descriptions for guiding the development in the next years of the project. 

4.1 Reconfiguration in Managed-Latency Edge-Cloud 
At the highest level of abstraction, the managed-latency edge-cloud infrastructure 
implements a MAPE-K loop [KEP03] as shown in Figure 11 to ensure that the runtime 
guarantees are satisfied even in face of continuously changing conditions. Each of the 
phases of the control loop has a distinct responsibility: 

• Monitoring. In general, the monitoring phase is responsible for keeping the 
internal model of the system up-to-date. In the context of the edge-cloud 
platform, the controller monitors the state of the K8S cloud (nodes, pods, and 
other entities such as services and deployments) as well as the state and 
performance of individual applications, e.g., how often . 

• Analysis. The analysis phase is responsible for finding a deployment 
configuration (an assignment of application components to nodes in the cloud) 
that satisfies performance guarantees. A Constraint Satisfaction Problem (CSP) 
solver is used to find feasible solutions (in which timing requirements can be 
expected to hold), while the controller is responsible for evaluating the feasible 
solutions and choosing from among them.  

• Planning. In the planning phase, the controller determines if the desired 
configuration differs from the actual configuration and if necessary, prepares a 
sequence of actions to bring the cloud to the desired state. 

• Execution. In the execution phase, the controller makes actual changes to the 
cloud platform, following the plan of actions produced in the planning phase. In 
many cases, the actions can be executed in parallel, except when there are 
explicit precedence constraints among tasks. 

The four phases execute simultaneously, sharing data through a central knowledge 
component. In its simplest form, the knowledge component can be represented by a 
single centralized database. However, it is entirely possible for the knowledge 
component to interface with several storage back-ends that can be used for different 
purposes. As an example, we can consider the data storage, analysis, and visualization 
platform developed in the context of Task 4.2.  
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Figure 11. Self-adaptation loop of the managed-latency edge-cloud platform. 

Note that this control loop applies only to management of latency in the edge-cloud 
platform. FitOptiVis systems in the role of edge-cloud applications will implement 
application-specific higher-level (higher-latency) control loops responsible for 
configuring the set-points (e.g., resource limits, desired framerate) for a lower-level (low-
latency) control loop responsible for achieving the desired set-points on the hardware 
components. 

4.1.1 Edge-Cloud Platform Architecture 
The architecture of the edge-cloud platform shown in Figure 12 comprises a number of 
modules, each with distinct responsibilities in the control loop. Yellow modules (need to) 
run on the master node, green modules do not (need to) run on the master node, and 
blue modules represent a middleware layer. We now elaborate on the role of individual 
modules and their interaction with other modules: 

• Event Cache. The module is responsible for persistent storage of important 
events, such as changes in application deployment (requests to deploy or 
undeploy an application) and connections from unmanaged components. 
Unmanaged components execute outside the edge-cloud platform (e.g., a 
hardware accelerator) and connect (as clients) to the managed components 
executing in the cloud. 

• Knowledge. Provides data storage and query capabilities to modules directly 
responsible for implementing the MAPE-K control loop. Knowledge data 
generally concerns cloud nodes (and their subtypes), application types and 
instances, and component types and instances. 

• Cloud Monitor. Implements the monitoring phase of the MAPE-K control loop 
by periodically collecting information about the state of the nodes in the cloud, 
network latencies, and unmanaged components. 

• Analyzer. Implements the analysis phase of the MAPE-K control loop and is 
responsible for finding an application deployment plan that satisfies the timing 



 
 

 
© FitOpTiVis Public Document 

 

WP4 D4.1, version 1.0 

FitOpTiVis 

ECSEL2017-1-737451 

    

requirements of all deployed applications. The module is internally split into 
Solver and Predictor submodules. 

o Solver. Responsible for finding the best deployment plan within a given 
time limit. Takes into account node utilization, network latencies, and 
predictions of component performance in deployment scenarios 
considered. 

o Predictor. Predicts performance of managed components, taking into 
account the hardware they are running on and the load induced by other 
components running on the same hardware. 

• Planner. Implements the planning phase of the MAPE-K control loop, which 
means identifying differences between the current application deployment and 
the desired deployment. Constructs an ordered execution plan of tasks that need 
to be executed to transition the system to the next state. 

• Cloud Executor. Implements the execution phase of the MAPE-K control loop 
by executing planned tasks either on the Kubernetes cloud, or on the other 
(Managed and Unmanaged) controllers. 

• Managed Controller. Responsible for invoking probes on managed 
components and for reconnecting dependencies of managed component 
instances. Can access all Node Controllers at runtime. 

• Unmanaged Controller. Responsible for reconnecting dependencies of 
unmanaged component instances from one managed instance to another, 
invoking probes on the client (which invoke managed components) to observe 
managed component performance including communication latency, and 
monitoring the state of unmanaged components. 

• Node Controller. Runs on each node and monitors the utilization of a particular 
node and of all the components executing on that node (using standard K8S 
facilities for resource monitoring). In addition, it serves as a proxy to managed 
component instances for the Managed Controller. 

• Probe Controller. Serves as a central entity through which all requests for probe 
invocation (on Managed and Unmanaged components) have to pass. Caches 
and forwards the results of probe invocations. 

• Network Controller. Responsible for making changes in network configuration 
and for collecting network utilization data and connection latencies. 
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Figure 12. Architecture of the managed-latency edge-cloud platform. 
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4.1.2 Performance and Interference Models 
To adaptively control deployment and redeployment of components in edge-cloud and 
thus to probabilistically guarantee end-to-end response time, the platform needs to build 
a model of application performance. This model needs to capture several modes of 
execution: baseline performance, when the application is exercised in isolation, 
performance under constrained resources, and performance in presence of other co-
located applications sharing the physical hardware through virtualization. 
Because we do not require the developer to provide the platform with apriori knowledge 
about application performance and resource requirements, the cloud platform needs to 
build the application performance model using experimental evaluation. 
The model then is used to predict application performance in different situations, 
especially during admission control (when deploying a new application), and when 
optimizing the deployment of existing applications (to ensure that real-time guarantees 
are met, or to manage the utilization of cloud resources). 
An important aspect of performance that the cloud platform needs to take into account 
is performance interference on shared resources (CPU caches, memory and IO 
bandwidth, etc.) when co-locating multiple virtual machines and/or containers on the 
same physical machine. 
On the other hand, we generally consider the underlying network bandwidth unlimited 
for modelling purposes. The rationale behind this assumption is that edge-cloud 
applications are generally likely to be latency-sensitive, but not necessarily bandwidth-
intensive – that would defeat the primary purpose of edge-cloud, which is to reduce 
communication latencies due to distance. 
We also assume that edge-cloud infrastructure can generally be private, i.e., with 
significant level of control (like in hospital use cases). Consequently, we assume that 
the network infrastructure can be configured to assign time-critical network traffic a QoS 
class with high priority; that latency-sensitive services with guaranteed response time 
requirements will not saturate the network with bulk transfers; and that applications with 
excessive bandwidth requirements can be dealt with by proper network infrastructure 
design. 

4.1.3 State of the Art 
Cloud computing has been both a blessing and a curse. Cloud users can benefit from 
unprecedented availability and elasticity of resources, but the benefits come with strings 
attached. Cloud platforms have to continually balance the tension between efficient 
resource utilization (which determines costs) on the one hand, and quality-of-service 
guarantees demanded by latency-sensitive (LS) applications on the other hand. 
Management of cloud resources has therefore become a vast and quickly moving 
research area, with many surveys mapping and categorizing the problems, challenges, 
and the state-of-the-art in various problem domains [CHE18, AMI17, HAM16, SIN15, 
FAN15, MAN15, GAR14]. In the context of our work we focus primarily on approaches 
to performance- and interference-aware self-adaptive systems which manage resource 
allocation and assignment in a cloud environment to achieve efficient utilization of 
available resources while allowing applications to meet their QoS target. 
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Q-Clouds [NAT10] is a QoS-aware control framework which transparently adjusts 
resource allocation to mitigate effects of interference on shared resources. Q-Cloud first 
profiles the virtual machines (VM) submitted by clients on a staging server to assess the 
amount of resources needed to attain the desired QoS without interference, and then 
manages the resources allocated to the deployed VMs in a closed control loop. 
Cuanta [GOV11] is a technique for predicting performance degradation due to shard 
processor cache for any possible placement using a linear (as opposed to exponential) 
number of measurements. Applications are replaced by a synthetic clone which is tuned 
to mimic the application's cache pressure, and interference due to colocation is predicted 
based on a matrix of know interference effects between different configurations of cache 
clones. Even though Cuanta is not a full-fledged cloud scheduler, it was used to make 
better workload placement decisions for a given performance and resource constraints. 
Bubble-Up [MAR11] avoids pairwise colocation profiling by characterizing the QoS 
degradation in LS applications using a synthetic workload with configurable memory 
subsystem stress test (the bubble), and the contentiousness of batch applications using 
a reporter workload with known sensitivity curve. The contentiousness of a batch 
application is mapped to a configuration of the bubble, which is then used to predict the 
interference inflicted by the batch application on the LS application. 
Bubble-Flux [YAN13] improves on Bubble-Up by performing online profiling for LS 
workloads to account for workload phase changes and to identify more colocation 
opportunities. 
Paragon [DEL13] is an online interference-aware scheduler, which uses collaborative 
filtering to classify incoming applications based on limited profiling signal and similarity 
to previously scheduled applications. It does not differentiate between batch and LS 
applications and schedules applications so as to minimize interference and maximize 
utilization. Applications are classified for interference tolerance using micro-benchmarks 
stressing a specific shared resource with tuneable intensity, which are run concurrently 
with an application to find out the interference level at which the application's 
performance falls below 95% of its performance in isolation. 
Quasar [DEL14] improves on Paragon in that it also performs resource allocation instead 
of only resource assignment. Quasar extends the classification engine of Paragon to 
consider scale-out and scale-up scenarios, as well as different workload types with 
different constraints and resource allocation controls. It also provides an API that allows 
expressing the performance constraints regarding throughput and latency. 
CloudScope [CHE15] is a representative of model-based approaches to QoS-aware 
cloud resource management and uses a discrete-time Markov Chain model to predict 
performance interference of co-located VMs. CloudScope runs within each host and 
collects application and VM-related metrics at runtime. The metrics serve to maintain an 
application-specific model capturing the proportion of the time an application uses a 
particular resource. The model is then used to predict slowdown due to colocation and 
ultimately to control placement of guest VM instances as well as adjusting the resources 
available to a hypervisor. 
CtrlCloud [ADA17] is a performance-aware cloud resource manager and controller, 
which optimizes the allocation of CPU resources VMs to meet QoS targets. It maintains 
an online model of the relationship between allocated resource shares and the 
application performance, and uses a control loop to adapt the resource allocation so as 



 
 

 
© FitOpTiVis Public Document 

 

WP4 D4.1, version 1.0 

FitOpTiVis 

ECSEL2017-1-737451 

    

to progress towards a probabilistic performance target expressed as a percentile of 
requests that must observe a response time within certain bounds. 
Pythia [XU18] is a colocation manager which uses a linear regression model to predict 
combined contention on shared resources when co-locating multiple batch workloads 
with an LS workload. Pythia performs contention characterization for each batch 
workload running together with a particular LS workload and removes batch workloads 
that are too contentious to allow safe colocation. It then selects a small subset of batch 
workloads to co-locate with a latency sensitive workload and measures their combined 
contention to build a linear regression prediction model for contention due to multiple 
batch workloads. 
Our selection illustrates a variety of approaches proposed over the years, each fitting a 
different context, yet none able to claim to solve the problem once and for all.                                                                                                                                                       
Our approach will not be different in this aspect, but will focus on a privately-controlled 
cloud infrastructure. Unlike other approaches, we aim to treat all resources equally for 
the purpose of performance interference characterization, and rely on statistical 
characterization and similarity to reveal dependencies between background workloads. 

4.2 Reconfiguration on the CompSOC Platform 
The following presents the concept of reconfiguration and resource management 
framework to be realized on the CompSOC platform. This framework is an instance of 
the FitOptiVis architecture described in Deliverable 2.1. The section also describes how 
the concepts map to the abstractions provided by the OpenCL-centric runtime API. 

4.2.1 Terminology 
• Component: A component is a part of a platform or an application. Components can 

be composed to form larger components—e.g., applications or (virtual) execution 
platforms. They have one or more configurations, determined by component 
parameters, and may be reconfigurable. Component configurations have budgets 
and qualities. A budget can be provided or required. In OpenCL terminology, a 
component can be an OpenCL device (e.g. a GPU, CPU or an FPGA device) or an 
OpenCL platform (including all the controllable devices). It can also mean the whole 
OpenCL application including the host and the device parts, depending on the 
abstraction level used. 

• Task: A task is an (application) component, which has only required budgets. In the 
OpenCL API, the kernels and buffer transfer commands are the tasks. 

• Application: An application is a set of tasks that provides functionality to a user. In 
OpenCL the application consists of a main program running on a host device and a 
number of commands created by the program. 

• Resource: A resource is a (platform) component, which has only provided budgets. 
This matches the concept of an OpenCL device. 

• Virtual Resource (VR): A virtual resource is a (platform) component, which is 
mapped to a single resource. In the case of pocl-remote, a virtual resource can be 
the device type/class/vendor for which an OpenCL kernel is optimized. Then the 
actual physical device will be assigned by the server-side resource manager. 

• Execution Platform (EP): An execution platform is the set of all resources. This 
matches the OpenCL platform. 
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• Local Execution Platform (LEP): A LEP is the set of resources managed by a 
single Local Execution Platform Manager (LEPM). Every resource is part of a single 
LEP. Each compute server in the pocl-remote scheme can use a LEPM to manage 
its devices (e.g. which GPUs are dedicated to which remote application’s use at 
which time).  

• Virtual Execution Platform (VEP): A VEP is a set of virtual resources that can host 
an application. An application has a valid deployment on a VEP when its required 
budgets match the budgets provided by the VEP. 

• Virtual Local Execution Platform (VLEP): A VLEP is a subset of a VEP that 
contains all VRs mapped to (resources that are part of) a single LEP. Each VLEP is 
managed by a Virtual Local Execution Platform Manager (VLEPM). The VEP/VLEP 
concepts currently do not have a direct counterpart in the OpenCL API, but these 
can be added within FitOptiVis as an additional initialization API by means of a 
runtime platform requirement description mechanism. 

4.2.2 Overview 
A block diagram of the proposed quality and resource management framework is 
depicted in Figure 13. Applications are composite components that are made up of 
tasks. Applications have one or more configurations, which are determined by 
application parameters. Applications may have certain provided qualities, and during 
their execution, they may be expected to provide certain quality levels (i.e., meeting QoS 
requirements). Each application configuration results in certain quality levels. 
As shown in Figure 13, an Execution Platform (EP) is used to execute applications. In 
order to use the EP efficiently, applications are consolidated in an isolated manner. 
Subsequently, to realize this isolated consolidation, applications are deployed on Virtual 
Execution Platforms (VEPs). VEPs are composite platform components, which are 
comprised of virtual resources each of which must be mapped to a resource located in 
the EP. An application has a valid deployment on a VEP when its required budgets 
match the budgets provided by the VEP. 
Applications may have certain quality requirements, which are met when they are 
properly configured and provided with sufficient resource budgets. Consequently, we 
propose a quality and resource management framework, which configures applications 
according to their quality requirements and ensures that application budget 
requirements are met. The proposed framework consists of several function blocks and 
databases, also shown in Figure 13. In the following section, we elaborate on the 
responsibilities of each block. 
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Figure 13. Block diagram of the proposed quality and resource management framework. 

4.2.3 Functional Blocks 

4.2.3.1 Application Quality Manager (AQM) 
The Application Quality Manager is responsible for lifecycle management of an 
application. Each application may have one AQM task, which performs application-
specific functions such as configuring application tasks with proper parameters. In 
particular, it has the following responsibilities: 

• Configuration and reconfiguration of applications during the instantiation and 
reconfiguration phases, respectively. Each application task may have certain 
parameters that must be set before the task starts to execute. Additionally, it may 
be necessary to modify these parameters during task reconfiguration. The AQM 
configures/reconfigures the application tasks using the parameters that are given 
by the VEPM. 

• Measuring application qualities during application execution. A quality is a 
measurable value that demonstrates how effectively an application is operating. 
Each application may have certain quality requirements that must be met during 
application execution. Employing an application-specific method, the AQM 
measures and monitors application qualities at run-time. 

• Making reconfiguration decisions when certain events happen. During 
application execution, certain events such as workload transitions may occur 
which necessitate application reconfiguration including modifying application 
allocated resources, application parameters, and/or application state (e.g., 
application tasks). Such reconfiguration decisions are made by the AQM. 

• Sending reconfiguration requests to VEPMs. Since the AQM is not privileged 
enough to modify the application VEP, it must ask VEPMs to perform 
reconfiguration when the application VEP must be modified. 
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4.2.3.2 Orchestrator 
The orchestrator, which serves as the entry point of the system, manages the execution 
of applications (i.e., instantiation and reconfiguration) by orchestrating the EPM and 
VEPMs. The orchestrator is responsible for the following: 

• Receiving user requests regarding running and lifecycle management of 
applications. As mentioned above, the orchestrator is the entry point of the 
system. The end user sends its requests regarding loading (i.e., running) and 
lifecycle management (e.g., updating quality requirements) of applications to this 
entity. 

• Management of Application Bundles Database (ABDB) and Application 
Instances Database (AIDB). 

• Lifecycle management of Virtual Execution Platform Managers (VEPMs). Each 
application VEP is managed by a VEPM, and a VEPM itself is managed by the 
orchestrator. VEPM lifecycle management tasks such as VEPM instantiation are 
performed by the orchestrator. 

• Management of application deployment. To deploy an application, the 
Orchestrator asks the Broker to select one of the application configurations and 
determine a VEP to host it. 

4.2.3.3 Virtual Execution Platform Manager (VEPM) 
The Virtual Execution Platform Manager is responsible for the lifecycle management of 
the VEP an application is deployed on. This is done through orchestration of VLEPMs. 
For each application, there exists one and only one VEPM. Upon user requests to 
instantiate an application, a VLEP is created, and the VEPM is loaded onto it by the 
Orchestrator. Subsequently, the VEPM creates VLEPs for VLEPMs, and manages the 
creation of application VEP by orchestrating the VLEPMs. The VEPM has the following 
responsibilities: 

• Lifecycle management of VLEPMs. Each application VEP is distributed 
among several VLEPs, each managed by a VLEPM. VLEPM lifecycle 
management tasks such as VLEPM instantiation are performed by the 
VEPM. 

• Lifecycle management of application VEPs. Lifecycle operations (including 
creating, destroying, and reconfiguration) of application VEPs are managed 
by the VEPM. Since an application VEP is composed of one or more VLEPs 
each of which managed by a VLEPM, its lifecycle management requires the 
orchestration of VLEPMs, which is performed by the VEPM. 

4.2.3.4 Virtual Local Execution Platform Manager (VLEPM) 
The Virtual Local Execution Platform Manager is responsible for the lifecycle 
management of a VLEP, which is a part of an application VEP. VLEPMs are instantiated 
by VEPMs and are responsible for lifecycle operations of VLEPs including creating, 
destroying, and reconfiguration of VLEPs. To do so, each VLEPM communicates with 
the LEPM and Resource Managers of the LEP it is mapped on. Constrained by its 
access rights, a VLEPM must ask the LEPM to reserve/release virtual resources. 
However, for other lifecycle operations, such as allocation and initialization, it directly 
asks the Resource Managers. 
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4.2.3.5 Execution Platform Manager (EPM) 
The Execution Platform Manager is responsible for managing the resources that the 
Execution Platform (EP) is comprised of. All the global resource-related requests are 
passed to this entity. Additionally, it keeps track of available resources, their costs, and 
resources used by VEPs. In particular, the EPM is responsible for: 

• Management of Execution Platform Database (EPDB) and Virtual Execution 
Platforms Database (VEPDB). The information regarding available resources, 
resource costs, and the resource shares owned by VEPs are collected and 
managed by the EPM in two databases. These information are provided by 
LEPMs. 

• Exposing resource information to the Broker. During the resource brokering 
process, the Broker provides the EPM with a set of application required budgets 
and the maximum affordable costs. Having the global view of available 
resources, the EPM provides the Broker with a set of VEPs meeting the required 
budgets and costs. 

4.2.3.6 Local Execution Platform Manager (LEPM) 
As mentioned before, each resource is part of a LEP and is managed by a single Local 
Execution Platform Manager. LEPMs are entry points of LEPs. Resource-related 
requests sent by remote functional blocks are received by this entity. LEPMs are 
responsible for: 

• Management of resource reservations and allocations. In order to create VLEPs, 
their required resources must be reserved and allocated. The actual reservations 
and allocations are performed by Resource Managers. However, given the fact 
that each VLEP may be composed of various resources, a single entity is 
necessary to ensure that all the required reservations and allocations are done 
successfully. 

• Exposing resource information to the EPM. In order to keep the global view of 
EP updated, each LEPM informs the EPM about the available resources and 
their costs. 

4.2.3.7 Resource Manager (RM) 
Resource managers are employed to create, configure/reconfigure, and destroy virtual 
resources. As shown in Figure 14, several steps must be taken for each operation. To 
create a virtual resource, first, its required budget – described in the Budget Descriptor 
– must be reserved. In this step, the required budget is being compared to the budget 
provided by the resource. If the reservation is successful (i.e., the provided budget is not 
less than the required one), a virtual resource identifier is generated, and the creation 
process continues with allocating the resource. During this step, the budget is 
programmed into the resource using the identifier. Hence, the allocation step may take 
more time than the reservation step. After the allocation step, the virtual resource is 
created and it is ready to be initialized (i.e., to be configured, e.g., load instruction 
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memory of a vCPU with application code). Finally, the initialized virtual resource starts 
running. 
Similarly, several steps must be taken to destroy a virtual resource. First, the virtual 
resource must be stopped. Given the fact that the virtual resource may be busy at this 
point, stopping a virtual resource can be a slow process. After the resource becomes 
stopped, it may need to be reset to its initial state. Finally, the programmed budget must 
be released. When the budget is released, the available budget gets back to its previous 
state, and the virtual resource is destroyed. Besides lifecycle management of virtual 

resources, RMs measure and monitor performance and costs of resources. In order to 
keep the LEPM updated about the status of local resources, RMs provide the LEPM with 
the measured performance and costs. Such provided data are maintained in the EPDB 
by the EPM. 

4.2.3.8 Broker 
The Broker, which acts as a decision maker in the system, determines the optimal 
configurations for all the platform and application components. For instance, when an 
application is planned to be instantiated, the Broker decides which application 
configuration should be deployed to meet the application’s quality demands and which 
VEP configuration should be selected to host the application instance. To do so, the 
Broker needs to know information concerning application configurations (including their 
required budgets and offered qualities) and VEP configurations (including their provided 
budgets and costs). The former is provided by the Orchestrator using Application 
Bundles stored in ABDB, and the latter is provided by the EPM using the information 
stored in EPDB. The decisions are made in such a way that the application quality 
requirements are met and the aggregate cost of resources is minimized. 

Figure 14. Lifecycle FSM of a virtual resource. 
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4.2.3.9 Databases 
As shown in Figure 13, there are several databases in the proposed architecture 
containing information necessary for quality and resource management. Generally, the 
information of each component is stored in a structure called Component Bundle, shown 
in Figure 15. For each component configuration, the Component Bundle contains its 
parameters, qualities, Budget Descriptor, and initial state. Configurations are determined 
using the parameters. Qualities describe offered qualities of application components or 
costs of platform components. The Budget Descriptor, which has a hierarchical 
structure, describes either the provided budget of a platform component or the required 
budget of an application component. 

The mentioned databases store the following information: 

• Application Bundles Database (ABDB): This database stores all the application 
bundles. Each application bundle contains all the application configurations. This 
database is created and maintained by the Orchestrator. 

• Application Instances Database (AIDB): It stores the bundles of application 
instances. Since each application instance is configured with one application 
configuration, the application instance bundle contains only one configuration. 
This database is also created and managed by the Orchestrator. 

• Application Configurations Database (ACDB): The AQM needs to know about all 
the application configurations for making reconfiguration decisions. This 
database provides the AQM with this information. In essence, it stores the 
application bundle, which is also stored in the ABDB. 

• Execution Platform Database (EPDB): It contains information of all the resources 
within the Execution Platform. This database is maintained by the EPM using the 
information collected from LEPMs. 

• Virtual Execution Platforms Database (VEPDB): This database maintains 
information of all the created VEPs. Since each VEP is configured according to 
a single configuration, its bundle has only one configuration. This database is 
also maintained by the EPM using the information collected from LEPMs and 
VEPMs 

4.3 Reconfiguration in Processor/Co-processor Systems 
In general, designers should be supported at design-time, to define, characterize and 
be able to deploy platforms that optimally match the given requirements, while 
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guaranteeing that customized applications are still interoperable. Nevertheless, in 
dynamic and reactive systems, such as CPS, design-time customizability is not 
sufficient. 
Modern systems are required to be flexible and versatile, capable of supporting multiple 
operational profiles corresponding to different trade-offs, and capable of dynamic 
reconfiguration to switch between the profiles at runtime [BYS10]. We are therefore 
addressing the definition of efficient run-time methodologies capable of coping with 
these flexibility needs at all levels of CPS systems, from edge to cloud. Here we deal 
specifically with run-time adaptability at the hardware component level. More 
specifically, we refer to multi-purpose co-processing units.  
The concept of dynamic parameter adjustment was introduced by Burleson et al. in 
[BUR01]. As illustrated in Figure 16, tuning processing in response to content variation 
and/or changing user/system requirements is made possible by runtime variation of 
different parameters. These can be classified as follows: 

• Functional parameters. This kind of parameters allows tuning the output of a 
computation. They may include, e.g., filter and transform lengths, or quantization 
levels. 

• Architectural parameters. This kind of parameters allows tuning guaranteed 
performance and energy consumption without modifying the output of the 
computation. They may include, e.g., the level of parallelism employed in the 
computation, which may affect throughput and energy consumption. 

 
Figure 16. Dynamic parameter adjustment [BUR01]. 

The work of Burleson et al. refers mainly to video codec specifications, but it can be 
generalized to image and video processing pipelines such as the ones we are dealing 
with in FitOptiVis. In particular, this way of describing a dynamically tuneable computing 
infrastructure fits the work carried out in WP2 of the project, where a composable, 
customizable and reconfigurable virtual reference platform for video and image 
processing pipelines is defined. According to this formalism, both functional and 
architectural parameters can be customized to optimize a system before deployment to 
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meet the given constraints, and to adapt the system at runtime to adjust to variable 
environmental or system conditions or to human requests. 
The contribution specific to WP4 is at the predictor level. In processor to co-processor 
systems (see Deliverable 5.1 for more details on this kind of co-processing units) 
deployed using the Multi-Dataflow Composer (MDC, see Deliverable 3.1 for more 
details) coarse-grained functional and non-functional reconfiguration is enabled. In 
particular, MDC generated co-processors/accelerators are specialized hardware 
modules capable of accelerating different algorithms (functional reconfiguration) and/or 
different variants of the same algorithm (non-functional reconfiguration). Being applied 
at a coarse-grain, reconfiguration is very quick and takes place by simply overwriting a 
unique configuration register on the accelerator. Decisions on parameter tuning can be 
then taken at run-time, starting with the knowledge of the current state and taking into 
consideration varying objectives/requirements, characteristics of the processed data, 
and actual processing and architectural Key Performance Indicators (i.e. offered quality 
of service, throughput, energy consumption etc.). 
Current status of this activity can be summarized as follows: 

• We have completed the definition of the automated support for dynamic 
reconfiguration. The MDC tool is capable of automatically generating the APIs 
for transparent accessing of co-processors/accelerators from a host-processor 
and supports different types of coupling (e.g., loose coupling, utilizing memory-
mapped communication, or tight coupling, utilizing stream-based 
communication), different host processors, and optionally using DMA for data 
transfers (WP3 & WP5 work). These APIs also enable reconfiguration of the co-
processor/accelerator by simply changing the specific function call used to 
offload computation on the co-processor/accelerator. 

• There are currently ongoing activities with respect to the definition of a proper, 
minimally invasive, monitoring infrastructure. Preliminary studies on the usage of 
HW performance monitoring counters are ongoing and we are discussing with 
other partners the best way to integrate our studies on HW monitoring, so as to 
implement the most efficient solution. Complete reporting and achievements on 
this activity are expected to be included in D4.3. 

• Planned activities and preliminary discussions. These concern the predictor 
component, which is necessarily use case specific – the target platform and the 
use case goals determine specific details of this component. Starting from the 
low level requirements of the Water Supply use-case which are expected to be 
defined at M12, we intend to define use-case relevant run-time models. These 
models, taking as input the information coming from the above-mentioned 
monitors, are meant to be used within the predictor to report on system status 
and to enable (partially) autonomous decisions on runtime adaptation. Complete 
reporting and achievements on this activity are expected to be included in D4.2. 

4.4 Specific Adaptation Scenarios 
The following subsections provide details on adaptation specific to selected use cases. 

4.4.1 Modelling System Variants and Configuration Changes  
In the design phase of computer vision systems, it is most often left to the human 
designer to model and define the rules that can be applied dynamically at run-time to 
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achieve adaptability (e.g., choosing a reduced frame rate or picture size). This can be 
theoretically made quite effective but often requires manual fine tuning of these rules. 
In FitOptiVis we aim for an incremental advancement over the current state of practice 
in this field. We rely on principles of reconfiguration and variability modelling coming 
from past efforts such as CVL [FLE09] and [LOP13]. In these modelling frameworks, 
variability is used as a means to construct Software Product Lines (SPLs). Such software 
product lines can be defined as a set of software intensive systems sharing a common, 
managed set of features that satisfies specific needs of a particular market segment or 
mission and that are developed from a common set of core assets in a prescribed way. 
The variability model makes explicit definitions of the constraints and requirements that 
define these software assets and how they relate to one another. Then, this information 
is used to make a change in the produced software via a set of different mechanisms 
(e.g., reconfiguration, code generation) at a given time in the process (design, time, 
compile time, link time or run-time), what is called in the literature the variability binding 
time [EID12]. 
In the course of the work in FitOptiVis WP4 we propose a mechanism to implement this 
in computer vision modules built for the UC3 Habit Tracking which control the distribution 
of load between edge nodes (running on computing-power constrained ARM devices) 
and more powerful cloud nodes (running similar algorithms but on powerful x86 nodes). 
The computer vision will be based on Deep Learning efforts such as OpenPose [CAO17] 
running on top of pyTorch1. 
The general outline of the work to be undertaken in FitOptiVis is as follows: 

We will start with a basic reconfigurable system relying solely on static rules provided by 
the designer (e.g., different configuration options triggered by rules defined by the 
developer). In second iteration, we will extend the system to leverage the variability 
models (based on BVR Tool [Vas15], used also in the ECSEL AMASS2 project) while 
still using rulesets provided at design time by human experts. In the final iteration, the 
system will be extended to use both rules provided by experts, but also rules inferred by 
AI systems using optimization techniques for the criteria of interest for the use case (e.g., 
energy consumption). 
As of the writing of this document, work has started with experiments in the set-up of the 
UC-3 use case (Habit Tracking). The diagram in Figure 17 below illustrates the 
architecture of the system. 
The system currently consists of a processing node in the cloud (running DenseCap 
deep learning network that uses the pyTorch framework on an x86 Linux machine) and 
a simulated edge node also using an x86 machine. The edge node will be migrated to 
Android/ARM-A in the next iteration. The system uses a single high level configuration 

                                                
1 https://github.com/pytorch/pytorch (PyTorch Neural Networks on Python) 
2 https://www.amass-ecsel.eu/content/bvr-tool-amass (Use of BVR in the AMASS project) 

https://github.com/pytorch/pytorch
https://www.amass-ecsel.eu/content/bvr-tool-amass
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file (config.json in the image) which is provided to both systems and then locally 
interpreted using a static rule system (based on JSR-94 compliant rules). This 
transformation, which is currently static and based on hand-written rules will be changed 
into a more advanced system that uses variability for decision making as described in 
deliverable D3.1. 
The high-level configuration is currently only interpreted once—during launch. Future 
iterations will include a reconfiguration system that can adapt to the environment, 
especially in the node (e.g., for low-energy scenarios). 

 
Figure 17. Architecture of the Habit Tracking system. 

4.4.2 Selection and Compression of Task-Specific Features  
During the first year in FitOptiVis, a study has been performed that assesses the 
feasibility of using visual attention to reduce data bandwidth in computer vision models 
for tracking and activity recognition applications. We have also considered other active 
vision approaches that include changing geometrical parameters of the sensor 
according to the task, or changing the perspective or focal length of the selected sensor. 
From current centralized methods, different metrics have been studied to be considered 
for the resource management (runtime or not), adopting the edge-cloud paradigm. 
Some issues related with the streaming of video are: scalability when using multiple 
image/video sources, data bandwidth of the shared network, real-time performance of 
the video processing components, or privacy issues related with the transmission of 
images or the additional computational complexity when encryption is required. 
Regarding these issues, task-driven mechanisms that select the most relevant 
information (e.g. through visual attention) while smartly compressing it are required. 
These mechanisms are part of the active vision [CHI17] concept, which covers (among 
others) adaptation or smart compression. 
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Visual attention efficiently selects relevant features, and allows for data bandwidth 
reduction [BAR14]. The concept is taken from Biology, where perception is an active 
selection mechanism, where adaptation and compression plays an important role. Many 
visual attention models have been presented in the literature emulating the biological 
process, conjugating a bottom-up saliency and a top-down modulation pathways. The 
saliency mechanism selects areas based on how discriminative they are with respect to 
their environments. The top-down modulation biases the selection according to the 
performed task. This efficient mechanism has been applied in the past to many different 
fields such as robotics [FUJ10], autonomous navigation [LIU12], or military [CHE11].  

 
Figure 18. Example of saliency estimation from a driving scenario [BAR14]. Road mark, and the traffic 

sign are highlighted in the final saliency image (estimated with intensity, orientation, and color 
discriminative features). 

The mechanisms will be applied to the Smart Grid and the Habit Tracking use cases. In 
the Smart Grid use case, the vision subsystem is focused on the video-surveillance of 
the perimeter of an electrical substation and the main functionality is the detection of 
suspicious behaviour and robust tracking of suspicious targets. In the Habit Tracking 
use case, the vision component will be focused on the classification of person behaviour 
indoors. Briefly, it consists on the understanding of human actions, determining its 
purpose and usually entails: a) feature extraction from video sequences and b) action 
classification fed with the features extracted in the first step to assign the correct label.  
Two different strategies will be used: adaptation and selection of task-driven relevant 
features in order to reduce the data bandwidth and achieve real-time performance at the 
video processing components. The metrics upon which adaptation will be based depend 
on the application. 
For the tracking application, accuracy and performance are the two qualities that will be 
taken into account. Accuracy can be defined as the deviation in pixels from the ground 
truth (real or labelled) location and the estimated location of the target. Performance is 
measured in number of processed frames per second. The adaptation will be based on 
the number of targets to track versus the expected performance in frames per second, 
ensuring real-time processing for up to 4-5 targets (we are not expecting many more 
targets for the considered use case application). However, we also expect the reduction 
of performance along with the increase of number of tracked targets. 
To illustrate this with a real example, consider transmitting a video stream of 1024p 
images at 50 frames per second sums up to 150 MB/s. The application of an active 
scheme could bring it down to 3.7 MB/s by selecting a box of 64x64 (full resolution) for 
the target, and transmitting the original image using only 1 channel and scaled to 1/4 
(256p), keeping the original frame rate. 
Secondly, we will also implement a mechanism to adapt the resolution of the video feed 
to the saliency of the image data. Given a specific video source, more resolution and 
priority will be assign to that video source when a possible interesting target is detected 
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in its field of view. Otherwise, low-resolution image transmission will ensure the sensible 
use of the data bandwidth and real-time processing. 
For the behaviour classification, the actions to be studied are determined by the task. 
Potential actions identified at this point could be cooking, preparing coffee/tea, and 
actions that will trigger alarms such as accidental fall, fainting, or leaving the stove on 
(for the indoor scenario). The action classifier does not need to be run constantly, it 
requires a video sequence to do the action inference, which is just a label. With respect 
to the qualities to be used, Precision (fraction of positive labels that are correctly 
classified) and Recall (fraction of real positives that were correctly labelled) values are 
the most common ones in classification tasks. The adaption is this case correlates the 
number of actions to be classified (number of different labels, that determine the 
complexity of the classification method) and the performance (or actions labelled per 
second, or fixed number of frames). 
Moreover, the number of visual features for the classification will also be adapted 
according to the number of classes. This will also determine the performance of the final 
network. 
Although it is very seminal at this point, we are also considering the features that can be 
estimated at the node, and how to send only the relevant ones to the cloud to do the 
final processing. In this case, not only performance is considered; also the privacy, 
avoiding the transmission of full images to the cloud. 
Our contributions will be packed in software libraries. Regarding tools, we are currently 
using C++ and OpenCV libraries, and GPU-based CUDA implementations to achieve 
real-time performance for our processing, running on Ubuntu systems. 

4.4.3 Distributed Image Pre-Processing 
and Optimized Image Segmentation 

Multiple view geometry is a complex and resource-demanding task. Thus, image pre-
processing, such as undistorting and segmenting, has to be carried out in the most 
efficient way. Nonetheless, precision in the segmentation process is key to offer 
accurate results that truthfully represent the reality. Specially, when the application is 
focused on industrial inspection. 
As pointed out by Shi et al. [SHI16], in a system where several images taken by a 
number of devices have to travel to a single node, an edge-computing approach can 
reduce latency and bandwidth usage, while increasing throughput. This approach is 
based on the principle that the workload should be finished in the nearest layer with 
enough computation capability to the things at the edge of the network. This translates 
into providing the cameras with computation capability in our envisioned application. We 
propose a distributed image processing pipeline where low-power execution boards are 
in charge of performing an initial image processing and a fast segmentation in order to 
increase throughput and reduce energy consumption. 
Another approach for image processing distribution is based on the remote OpenCL-
based software stack described in Section 3.1. A modification of this framework enables 
image processing pipelines to be distributed among several computational nodes 
located anywhere in the network. We were investigating the suitability of this approach 
for our foreseen final application (3D industrial inspection system), but this approach 
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requires sending the images through the network, which increases bandwidth usage, 
rendering it a non-viable solution. 
Therefore, we proposed a distributed image processing pipeline where low-power 
execution boards are in charge of performing an initial image processing and a fast 
segmentation in order to increase throughput and reduce energy consumption. These 
low-power boards are installed close to the cameras, thus, the first layer with 
computation capabilities is located immediately after images are captured. 
The diagram in Figure 19 shows a typical configuration of this kind of system, where the 
number of low power execution boards and cameras can be decided at design time, 
while we include a new element, a ‘dispatcher’ to perform workload decisions at runtime. 
The innovation proposed with our approach is twofold; first, until now, the 3D industrial 

inspection system we are enhancing in FitOptiVis relies on a single computing node 
where all the image processing takes place. Throughput can be increased with the 
distributed segmentation, as the low-power execution boards can segment new captures 
while the main computing node is working on the previous capture. 
As a first step in our work, we evaluated several low-power execution boards to identify 
those most suitable in terms of computation power and cost trade-off. The table below 
shows the evaluated boards and their average segmentation time in milliseconds. 
 

Table 1. Segmentation performance and cost of low-power execution boards 

Board Segmentation time 
[milliseconds] 

Cost (approx.) 
[euro] 

Espresso bin µ = 1045.37; σ = 2.89 44€ 
Grapeboard µ = 1839.74, σ = 23.88 190€ 
Raspberry Pi µ = 3450.43; σ = 55.86 Discontinued 
Raspberry Pi 
(optimised, neon flag) 

µ = 2603.37; σ = 19.47 Discontinued 

Raspberry Pi 3 µ = 1554.24; σ = 87.11 30€ 

Figure 19. Typical configuration of an industrial inspection system. 
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Raspberry Pi 3 
(optimised, neon and tune flags) 

µ = 758.04; σ = 21.09 30€ 

Nvidia Jet-son TX2 µ = 130.78; σ = 5.26 500€ 

The times shown in Table 1 above were obtained using the same segmentation 
algorithm that is currently deployed on the main computing platform. No platform-specific 
optimizations were applied to the algorithm. 
An example of one of the hardware configurations used is shown in Figure 20 below. 

 
Figure 20. Marvell ESPRESSObin board connected to a HD camera. 

To plan which phases of the segmentation process we should prioritize during the 
optimization of the algorithm on the most promising boards, we measured the average 
execution time of each phase of the algorithm on the low power execution boards. Table 
2 below shows the fraction of time spent on each of the sub-tasks (only OpenCV related) 
in the segmentation process for the Espresso Bin board. The results are similar for the 
other boards tested. 

Table 2. Fraction of execution time spent in different phases of the segmentation 
algorithm running on the Marvell EspressoBin board. 

Background 
diff. Blur Erosion & 

Dilation 
Finding 

contours 
Gaussian 

Filter Thresholding 

3.63% 7.55% 29.04% 8.79% 47.37% 3.62% 

Based on these results, the algorithm could benefit most from (platform-specific) 
optimizations in the ‘Erosion & Dilation’ and the ‘Gaussian Filter’ phases. To optimize 
these two phases, we are working on specific modifications of the OpenCV API to adapt 
to the particularities of the most promising boards. Specifically, we are working on 
removing floating-point computations and on a two-step segmentation process in which 
an initial (approximated) region of interest is found on a low-resolution image. 
The second innovation that we achieve by employing low power execution boards 
installed close to the cameras is the reduction in bandwidth usage. Because images 
travel from the low-power boards to the main computing node already segmented, less 
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bandwidth is used. As an example, the two images in Figure 21 below show a part 
processed by the system. The image on the left shows the raw data captured, while the 
image on the right shows the segmented image, reducing the total size of the image by 
about 30%. This kind of bandwidth reduction is extremely important, especially when 
using many cameras.  

 
Figure 21. Example of image before (left) and after (right) segmentation 

 
 

Moreover, low-power execution boards are capable of detecting incorrect captures and 
asking the capture system to retry a new capture of the same part. This decision is taken 
without the information travelling from the cameras to the computation cluster, which 
reduces bandwidth consumption even further. 
All optimizations will be implemented in the segmentation algorithm in subsequent work, 
which will allow us to evaluate these innovations in comparison with the currently used 
approach. We are plan to focus on the optimization of the following metrics: 

• Average throughput: this metric measures the number of parts processed per 
time unit. To obtain a relevant evaluation, a variety of tasks with different types 
of parts has to be employed. This variety should include parts that due to their 
shape are prone to produce incorrect captures. 

• Bandwidth usage: this measures the number of bits per time unit that are 
transferred on average from the capturing devices to the main computation node. 

The diagram in Figure 22 below shows the architecture of the system in which we plan 
to test and evaluate our optimizations. 
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Figure 22. Architecture of the optimized capture system. 

The workload dispatcher component (‘Dispatcher’) is a critical element for the runtime 
support. It will distribute the captured images among worker agents (‘Workers’). To this 
end, the dispatcher learns (at runtime) the average computation time that each worker 
requires to process a capture. Moreover, the dispatcher is able to recognize the type of 
part contained in the capture, because different part types require different checks and 
analyses and therefore the required processing time varies greatly. Using this 
information, the dispatcher delivers each capture to the worker that will contribute the 
most to the overall throughput of the system. The dispatcher component is currently 
under development. To evaluate the performance of the workload dispatcher we 
consider using average throughput. 
Finally, we will integrate a performance monitor in the system so as to allow the operator 
to check and monitor the overall performance of the system. With the monitor, the 
operator will be able to detect malfunctioning hardware or incorrect configurations that 
are affecting the system, and take appropriate corrective measures. 

4.4.4 Selective On-Demand Resource Loading  
To achieve near real-time (soft real-time) performance on low-power mobile platforms, 
such as the HURJA’s Salmi Augmented Reality (AR) system, we plan to utilize smart 
feature extraction, segmentation, and classification algorithms to reduce bandwidth 
usage by only sending the necessary parts of images/videos. 
Specifically in the context of the Salmi AR system, a mobile application called Extent 
can (upon request) download a JSON packet which consists of a list (descriptions) of 
wakeup images, objects, entities, and actions. Either the request can come from the 
Salmi MAPS website, from the Salmi AR mobile application, or directly from the Extent 
mobile application if the “free roam” state has been switched on (requires GPS). End-
users have the option to switch the “free roam” state off at any time and when this 
happens, the Extent mobile application downloads new content only upon request from 
an external source (currently only the Salmi system related sources are available). The 
Extent mobile application downloads all required wakeup images, 3D-models, textures, 
audio files, videos, etc. based on the instructions received via JSON packet. 
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To optimize the run-time performance of the Salmi AR system, all of these packets can 
be downloaded in advance. All files will be saved locally into end-users’ mobile device 
(smart phone or tablet) and those will be shown to end-users based on instructions 
received via JSON packets as soon as matching wakeup image, object, entity, or action 
has been found, or when an end-user is within a certain pre-defined distance from the 
target. Free roam data will be removed on-the-fly from end-users’ devices when each 
session ends. The Extent mobile application is currently being developed using C# 
programming language on top of the Unity 3D engine and the server back-end side is 
currently being developed using PHP. During our early testing phase, all description 
packets are in JSON format. 
The runtime state of the system includes measured performance and energy usage, 
which can be handled by a generic data model. Relevant metrics to be 
monitored/evaluated are the following: 

• Near real-time (soft real-time) performance: System performance can be 
monitored/evaluated in terms of frames-per-second or kilobits-per-second, but 
AR-feature robustness/performance depends highly on the selected AR-glass 
model. We plan to start development with state-of-the-art Magic Leap and/or 
HoloLens 2 glasses to ensure that all possible use cases can be implemented 
easily. Later on we plan to investigate the use of other (cheaper and less 
powerful) AR-glass options that may require more optimization of the system 
code to achieve the level of performance comparable with the high-end, state-
of-the-art AR-glasses. 

• Optimal energy usage: It is not an easy task to calculate the initial energy usage 
for the whole Salmi AR system before the first MVP version is fully implemented, 
but continuous camera feed and required advanced algorithms will present a 
challenge in terms of optimizing the energy usage of the system as a whole. As 
soon as the first MVP version is ready, we will perform extensive measurements 
on power usage and based on the achieved results, we will make adjustments 
to the implemented algorithms to enable optimal energy usage of Salmi AR 
system. 

In addition, the system monitors the achieved level of satisfaction of all end-user groups 
that can be handled by a generic data model: 

• The intended users of the Salmi AR system will be brain damage patients 
(assisted living), elderly people (assisted living), relatives (monitoring and 
situational awareness), nurses (home visits), and doctors (emergency cases). 
We have made careful plans to achieve the required level of satisfaction for all 
of these end-users of our Salmi AR system. However, when our first MVP version 
will be ready by June 2019, we cannot yet completely fulfill all of the below-
mentioned end-users requirements or all the needed features, but by the end of 
the project, we will have fully functional version of Salmi AR system that fulfils 
the level of satisfaction for all of these end-user groups. 

 

4.4.5 Deterministic Networking for Time-Sensitive Data 
Time Sensitive Networking (TSN) is an update of the IEEE Ethernet standard aimed to 
achieve synchronized and distributed control. TSN transports multi-purpose traffic 
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providing differentiated Real-Time Quality of Service (RT-QoS). Protected traffic has 
guaranteed packet transport, in terms of bounded low latency, low packet delay variation 
and low packet loss. 
The implementation of TSN for FitOptiVis is currently at a proof-of-concept stage. After 
a review of the latest revisions of the IEEE 802.3 and IEEE 802.1Q standards, a 
functional architecture and user APIs have been described. This solution will be applied 
to the Surveillance of smart-grid critical infrastructure and the Habit Tracking use cases. 
The Surveillance of smart-grid critical infrastructure use case represents a distributed 
real-time control system. In this context, TSN provides the network backbone, 
transporting time-sensitive traffic between smart-grid, surveillance sub-networks in 
electrical substations, and remote central stations. Furthermore, accurate time 
synchronization is required to enable coherent processing and control monitoring. 
The Habit Tracking use case requires hybrid communication between edge and cloud 
processing nodes. Each application will require traffic differentiation and RT-QoS for 
side-band communication between edge and cloud processing, as well as best effort 
bandwidth for processed data. In this context time synchronization will be sourced to 
support coherent processing of time-dependent signals and images. Furthermore, time 
synchronization between edge and cloud will enable performance monitoring. 
The proposed TSN solution is devised for Xilinx Zynq-7000 platforms, which consist of 
a processing system (ARM-v9) and programmable logic. Thus, TSN functional modules 
are either software programs executing on the processor or IP-cores implemented in 
gateware. Configuration and monitoring can be achieved through corresponding APIs 
on each TSN module. 
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Figure 23. Architecture of a system implementing TSN. 

The TSN system architecture, shown in Figure 23 above, can be split into two functional 
components: 

• The networking component, which provides 1000 Base-T Ethernet connection, 
traffic differentiation and prioritization, in addition to priority-based, time-driven, 
strict arbitration of the output bandwidth. The blue modules, i.e., the redirector, 
the VLAN tagger (and untagger), and the Time-Aware traffic Shaper (TAS) 
implement the IEEE 802.1Q functionality, while the green modules, i.e., MAC, 
PHY, and DMA are off-the-shelf Xilinx IP-cores implementing standard IEEE 
802.3 functionality. A Linux network driver is provided for this particular 
gateware. 

• The timing component, which provides IEEE 802.1AS functionality, i.e. highly-
accurate time synchronization among all TSN stations of the network. This 
component (orange modules) consists of a gPTP cyclic executive running on the 
PS and a PTP hardware clock, supported by TimeStamp Units (1G TSU's), 
present on each gPTP-capable interface. 

Note that the TAS mechanism alone does not prevent interference between time-critical 
messages and lower-priority jumbo frames found in video streaming applications. This 
issue can be addressed considering guard bands on the output bandwidth cyclic 
schedule, at the cost of available bandwidth. To avoid potential RT-QoS violations and 
to optimise bandwidth usage, a frame pre-emption mechanism is being considered. 
Frame pre-emption is a MAC sublayer enhancement described on IEEE 802.3BR that 
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stops lower priority frame transmissions whenever TAS notices a time-critical message 
should be transferred. 
 

4.4.6 Algorithms and Techniques Envisioned to Achieve Real-
Time Performance for PCC Demo System  

With the selection of MPEG V-PCC as PCC encoding and distribution scheme, Nokia 
can utilise available video hardware decoders to carry the major load in the decoding 
process. Figure 24 illustrates the current V-PCC decoding scheme block diagram, where 
available hardware decoding support is marked in teal. 
 

 
Figure 24. V-PCC TMC2 decoding structure. 

For the three decoding instances, texture, geometry and occupancy video 
decompression, not much special attention on real-time capability is required, as the 
current video decoding hardware can achieve much higher levels of decoding 
performance than demanded by the use case. However, attention is required due to 
three simultaneously running video decoder instances, which must be synchronised. 
This aspect and any possible implications must be further investigated within FitOptiVis.  
As for the real-time decoding of auxiliary patch information, little is known so far, and 
detailed experiments have to be carried out to assess any implications on real-time 
performance, e.g. maximum number of patches per frame, inter-prediction between 
patch auxiliary information, random access structures, etc. This investigation will also 
be part of the planned FitOptiVis research topics. 
Finally, decoding and rendering altogether has to happen in real-time. Thus, any 
unnecessary data transfers, e.g. copying 3D point cloud data from the CPU to the GPU 
for rendering, should be avoided. Therefore, we envision V-PCC decoding straight into 



 
 

 
© FitOpTiVis Public Document 

 

WP4 D4.1, version 1.0 

FitOpTiVis 

ECSEL2017-1-737451 

    

the GPU memory, as well as tools for partial and simultaneous decoding and playback. 
Such tools, together with support of the hardware video decoders, should ensure real-
time capability of our PCC demo system.  
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 Conclusion 
In our summary of the outcomes of Task 4.1 from the first year of the project, we deal 
primarily with two aspects of runtime support for adaptive applications developed using 
the FitOptiVis approach. 
The first aspect concerns runtime platforms. To establish a consortium-wide awareness 
and agreement of platform components (as defined in deliverable D2.1) developed 
within the project, we presented an overview of the available runtime platforms. Each 
platform is suitable for different kind of applications, with requirements at different levels 
of abstractions, and operating at different time scales. 
The second aspect concerns runtime adaptation and comprises two parts. The first part 
presented an overview of adaptation mechanisms and concepts supported by the 
runtime platforms. The second part presented an initial collection of adaptation 
scenarios from use-case owners participating in WP4. These will be used in the following 
year to steer development of the runtime platforms and interfaces for use by adaptive 
resource managers developed in the context of other WP4 tasks. 
While a development version of some platforms (pocl-remote) had been already made 
available to project partners, other platforms are still not mature enough for consortium-
wide release. In the following year, we will focus on making the runtime platforms 
available to partners in the project and provide assistance to partners targeting specific 
runtime platform components, and optimizing the scalability of the pocl-remote 
especially to reduce synchronization overheads in latency critical interactive 
applications. Where applicable, contributions to relevant open-source code bases will 
be made. 
Also, with the reference architecture concepts from WP2 firmly in place, we will finalize 
the instantiations of the runtime platforms within the framework of the reference 
architecture to make the platforms amenable to tool support. 
These activities will result in second iteration of this deliverable, which will incorporate 
outcomes from the second year of the project in deliverable D4.2. 
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A. Review of Virtualization and 
Resource Management Techniques 

This appendix provides a review of the state-of-the art in the area of virtualization and 
resource management techniques. 

A.1 State-of-the-art in Virtualization Techniques 
Virtualization refers to the abstraction of a physical component into a virtual object 
whereby a greater measure of utility can be obtained from the resource component 
offers [1]. From the hardware perspective, virtualization refers to the abstraction of 
computer resources whereby applications are decoupled from the hardware they 
execute on. While the virtualization concept has been there since 1960s, when IBM 
developed virtualization to enable concurrency by partitioning a mainframe into logical 
machines [2], it has gained extra attention in the past decade possibly due to the 
proliferation of cloud services. The main advantages of virtualization are: 

• Consolidation: Consolidation refers to bringing together separate parts into a 
single or unified whole. Virtualization enables consolidation by bringing together 
several under-utilized execution platforms (i.e., machines) into a single execution 
platform, thereby reducing operating costs. This has been commonly referred to 
as multi-tenancy in the literature. 

• Isolation: Virtualization enhances security as well as reliability by providing 
isolated environments where applications running in one virtual execution 
platform cannot affect applications running in another one. Regarding the 
security, less-trusted applications can be executed in separate virtual execution 
platforms, thereby preventing them from accessing and affecting other 
applications. Virtualization improves the reliability by providing isolated 
environments where faults and bugs in one environment cannot interfere with 
other environments. 

• Flexibility: Virtualization provides flexible environments for applications where 
their allocated resources can change dynamically in response to changes in their 
demands. This includes modifying both the amount of resources and the 
mapping of virtual resources to physical ones. They are commonly called 
elasticity and live migration in the literature [3]. 

Although there are several types of virtualization (such as application virtualization, 
network virtualization, storage virtualization, etc.), we focus on platform virtualization 
(also called hardware virtualization or system virtualization in general, and server 
virtualization in cloud-oriented papers). By platform virtualization, we mean adding a 
layer between applications and the underlying hardware (called virtualization layer) 
which creates virtualized environments for applications to be deployed on. Based on 
the type of this layer, we classify the existing techniques into two classes, namely 
hypervisor-based virtualization and container-based virtualization, which are 
elaborated upon in the following sections. 

A.1.1 Hypervisor-based Virtualization 
For a long time, the term virtualization was used only for hypervisor-based virtualization. 
The hypervisor, also called Virtual Machine Monitor (VMM), is a software that abstracts 
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the underlying hardware into virtual components called Virtual Machines (VMs). Since 
the VMs need a complete execution platform (made up of various resources) to run, the 
hypervisor must virtualize all the underlying hardware resources (such as CPU, memory, 
storage, and I/O devices). The underlying hardware where the hypervisor runs is usually 
called the host, and the VMs that run on top of the hypervisor are called guests. Similarly, 
the operating system that runs on the host is called the host operating system, and the 
one running in a VM is called the guest operating system. 
Based on the presence of the host OS, hypervisors are categorized into two classes, 
namely Type-1 (also called native or bare-metal) hypervisors and Type-2 (also called 
hosted) hypervisors. As their names imply, Type-1 hypervisors run directly on the 
hardware and have their own drivers, whereas Type-2 hypervisors run on top of a host 
OS and need its facilities to perform their tasks. The most well-known Type-1 
hypervisors are: 

• VMWare ESX Server [4] 
• Microsoft Hyper-V [5] 
• Xen [6] 
• L4 microkernel family 
• CoMik [7] 
• XtratuM [8] 
• PikeOS [9] 

The examples of Type-2 hypervisors include but not limited to: 

• Vmware Workstation and Vmware Player [10] 
• VirtualBox [11] 
• Parallels Desktop for Mac [12] 
• QEMU [13] 
• KVM [14] 

Virtualization using Type-2 hypervisors is more suitable for enabling single users or 
small organizations to run VMs on a single machine. However, when high performance 
virtualization strategies are demanded, virtualization using bare-metal hypervisors, 
which impose less overhead due to direct interaction with the hardware, are more 
appropriate. Hypervisor-based virtualization approaches can be further classified into 
four categories which are explained next. 
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Full Virtualization 
In full virtualization, the hypervisor emulates all 
hardware resources on the virtual system, allowing 
for running unmodified guest operating systems in 
VMs. One of the key components that must be 
emulated in this method is the processor’s 
instruction set architecture. When operating systems 
run within VMs, they are not privileged enough to 
execute privileged instructions for interrupt handling, 
reading and writing to devices, and virtual memory. 
For instance, on the x86 architecture, there are four 
privilege levels (also known as rings) where the 
components running in level 0 are the most 
privileged, and the ones executing in level 3 are the 
least privileged. Usually, in non-virtualized systems, operating systems execute at level 
0, and user applications execute at level 3. Unlike the normal instructions (e.g., ADD, 
SUB, etc.), the privileged instructions (e.g., HLT, invalidate a TLB entry, etc.) can only 
be executed by the components running in level 0. As shown in figure, in a virtualized 
environment, guest operating systems execute in level 1, which inhibits them from 
executing privileged instructions.  
Since guest operating systems are unaware that they are running in a virtualized 
environment, they try to execute the privileged instructions similar to the case where 
they run in level 0. However, these attempts result in creating traps that go into the 
hypervisor which then emulates the expected functionality. Therefore, the guest OS 
never knows that it is running in a VM. Note that the non-privileged instructions execute 
directly on the hardware without the intermediation of the hypervisor. This technique is 
called trap and emulate. 
However, there are some thorny issues with this technique. In some architectures, some 
privileged instructions may fail silently (which are sometimes called virtualization holes). 
For example, some instructions execute both in the privileged mode and non-privileged 
mode. However, they produce different results depending on the execution mode. To 
overcome this issue, a common approach called binary translation is used by the 
hypervisor. In this approach, the hypervisor scans the unmodified operating system 
binaries and modifies the offending instruction sequences, making sure that they are 
dealt with carefully. Since every privileged instruction results in a trap into the hypervisor, 
the full virtualization method can cause significant performance loss in some workloads. 
The most well-known products that perform full virtualization are Vmware Workstation, 
Microsoft Virtual Server, VirtualBox, Parallels Desktop for Mac, and QEMU. 
Para-virtualization 
Para-virtualization (also known as OS-assisted virtualization) is an alternative approach 
to perform the virtualization. In this approach, the guest operating system is modified 
such that it is aware of being running within a VM. That is, as shown in figure, privileged 
instructions (i.e., non-virtualizable instructions) are replaced by calls to the hypervisor 
(also known as hypercalls). Therefore, compared to the full virtualization where the 
communication from the guest operating system to the hypervisor is always implicit via 
traps, in para-virtualization, the communication is explicit via hypercalls. This can offer 
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performance improvements compared to the 
full virtualization for some workloads. 
However, since the guest operating system 
needs to be modified, it causes compatibility 
and portability issues. Note that the para-
virtualization does not require any changes in 
Application Binary Interfaces (ABIs). Hence, 
the applications running on top of guest 
operating systems do not need any 
modifications. The most notable hypervisors 
performing para-virtualization are Vmware 
ESX, OKL4, XtratuM, and Xen.  
Hardware-assisted Virtualization 
In hardware-assisted virtualization (also 
known as accelerated virtualization), the underlying hard-ware provides facilities to 
accelerate the execution of VMs. For instance, as shown in figure, a new CPU privilege 
mode (called root-mode) has been added to x86 processors since 2006 whereby 
privileged calls are automatically trapped to the hypervisor without needing to perform 
binary translation or para-virtualization. These virtualization extensions are introduced 
in Intel VT-x and AMD-V technologies for Intel and AMD processors respectively. Since 
the guest operating systems are not modified in hardware-assisted virtualization, it is 
similar to full virtualization to 
some extent. However, 
given the fact that binary 
translation is not required 
anymore, hardware-assisted 
virtualization is considered to 
be a faster approach. Note 
that hardware-assisted 
virtualization is not 
supported in older systems. 
The hypervisors that 
leverage hardware-assisted 
virtualization include, but are 
not limited to Vmware ESX, 
KVM, Hyper-V, and Xen.  
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Unikernels 
Unikernel technology emerged in 2013 with the development of MirageOS [15]. The aim 
was to create specialized, single-purpose VMs whose unnecessary functionalities are 
removed at compile time, thereby reducing the footprint of an application running in the 
cloud. Unikernels are based on library operating systems proposed in the past (e.g., 
Exokernel [16] and Nemesis [17]). However, the hardware compatibility problems faced 
by these library Oss are solved in unikernels by targeting a standard hypervisor. As 
shown in figure, during the 
creation of unikernels, the 
required system libraries, 
language runtime, application 
binary, and configuration files 
are compiled into a single-
address-space VM which runs 
directly on a standard 
hypervisor. Accordingly, the 
scheduling and resource 
management of unikernels are 
done by the hypervisor. Note 
that since there is only one 
address space, context 
switches between user and 
kernel space are not needed 
anymore, which results in a 
better performance compared to the traditional VMs. In other words, both the application 
and kernel components run at the privilege level 0, which is not optimal in terms of 
security isolation [18]. Although unikernels were first introduced for cloud applications, 
their lightweight nature has made them a promising solution for upcoming IoT edge 
applications [19]. 
The most notable unikernel implementations include:  

• MirageOS [15] 
• HaLVM [20] 
• Osv [21] 
• IncludeOS [22] 
• ClickOS [23] 

A.1.2 Container-based Virtualization 
Container-based virtualization (also known as operating system virtualization or 
containerization) aims at virtualizing the OS kernel rather than the hardware. It is usually 
considered as a lightweight alternative to hypervisor-based virtualization. The main 
difference between hypervisor-based virtualization and containerization is that in the 
former, each VM has its own OS kernel, while in the containerization, all the containers 
share a single kernel. Hence, containers are more lightweight than VMs. However, 
hypervisor-based solutions provide more flexibility by enabling the running of multiple 
operating systems on a single machine. A container image contains an application plus 
all its dependencies, libraries, and configuration files. A container is a runnable instance 
of a container image, which essentially is a group of processes that are isolated from 
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other containers or processes in the system. The OS kernel (or container engine in 
particular) provides this isolation. Being light-weight in nature, containers are becoming 
the predominant technology in resource-constrained environments such as edge- and 
fog-based systems [24]. The examples of containerization solutions include, but are not 
limited to: 

• Linux Containers (LXC) [25] 
• Ubuntu LXD [26] 
• Windows Containers [27] 
• Docker [28] 
• OpenVZ [29] 
• BSD Jails [30] 
• Solaris Zones [31] 

Since the Linux-based solutions are more common in embedded/IoT architectures, 
Linux containers have been more focused on. Containers in Linux are realized by 
leveraging two kernel features, namely control groups and namespaces. Control groups 
(also called cgroups) is a kernel feature that limits, accounts for and isolates the CPU, 
memory, disk I/O and network’s usage of one or more processes. On the other hand, a 
cgroup is a set of processes that are bound to a set of limits defined by the cgroup 
filesystem. Namespaces allow for isolation of global system resources between 
independent processes, and they provide processes with their own system view. 
Processes within a namespace only see processes in the same namespace. This type 
of isolation prevents groups of processes from manipulating other groups. Linux 
provides several namespaces to isolate system resources such as process identifiers 
(PIDs), filesystem mount points, and network devices, to name but a few. 

A.1.3 Comparison 
From the previous discussions on virtualization techniques we can conclude that each 
approach has its own advantages and disadvantages, which makes it impossible to 
designate a single approach the perfect solution for virtualization. Accordingly, in this 
section, we compare the aforementioned techniques from various aspects. Quite a few 
works exist in the literature that compare virtualization techniques. Hence, to begin with, 
we review a group of these publications, and subsequently, we summarize the outcomes 
of these works. 
Literature Review 
A detailed performance comparison of hypervisor-based virtualization and recently 
proposed lightweight solutions (including the containers and unikernels) is presented in 
[32]. Using a number of benchmarking applications, the authors compared four 
virtualization solutions, namely KVM (as a hypervisor-based approach), LXC and Docker 
(as containerization approaches), and Osv as a unikernel approach. The considered 
performance aspects include CPU, Memory, Disk I/O, and Network I/O performance. 
The measurements show that dominance of a virtualization solution is not necessarily 
consistent in all the applications. For instance, in two disk performance experiments, 
LXC performs better than Docker in one experiment, and in the other one, the results 
are the other way around. However, it can be generally stated that containers outperform 
VMs in roughly all the experiments. For instance, containers achieve near-native 
performance for disk intensive benchmarks, while KVM’s throughputs for disk write and 
read are approximately a third and a fifth of the native run, respectively. Since the 
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unikernel approach is not included in all the experiments, we cannot reach any 
conclusions about its performance compared to others. Nevertheless, they have shown 
that in memory performance experiments, unikernels perform worse than containers and 
VMs, and in the network performance experiments, they perform better than VMs but 
worse than containers. 
The work presented in [33] compares four hypervisors (Hyper-V, KVM, vSphere, and 
Xen) under hardware-assisted virtualization settings in different use cases. The most 
important outcome of the work is that none of the hypervisors has been found superior 
to the others. Accordingly, effective management of hypervisor diversity with the goal of 
matching applications to the best platform is a significant challenge. The authors point 
out that a cloud environment should support different software and hardware platforms 
to meet various requirements. The authors have also performed experiments to 
measure interference caused by multiple tenants, showing that Hyper-V is sensitive to 
CPU, memory, and network interference. For KVM, although the response times are 
highly variable, none of the interfering benchmarks considerably degrade the 
performance. vSphere is highly sensitive to memory interference, while its sensitivity to 
CPU, disk, and network interference is very low. Finally, Xen’s interference sensitivity 
on memory and network is relatively high compared to the other hypervisors. These 
results also support the fact that there is no dominant hypervisor with superior 
performance in all circumstances. 
The work presented in [34] evaluates the effects of multi-tenancy on the performance of 
different virtualization technologies (VMs and containers) in data center environments. 
The authors compare LXC containers and KVM virtualization and the results show that 
in general, the interference caused by co-located applications is more severe in the case 
of containers. In the case of single-tenant scenario, LXC performance is near the 
performance of bare-metal execution. On the other hand, KVM imposes high 
performance overhead in case of I/O intensive applications. In case of co-located 
applications (i.e., multi-tenancy), the results for CPU intensive workloads show that 
containers are more susceptible to interference. However, in memory-intensive 
workloads, containers offer acceptable isolation, whereas KVM performs better. In disk 
I/O isolation experiments, the latency increases by a factor of 8 for LXC, which implies 
the poor disk isolation in containers. Since the disk I/O performance is not high for VMs 
even in the isolated cases (and therefore enough bandwidth is available for other VMs), 
the latency increases only two times for KVM. These measurements demonstrate that 
isolation is stronger in VMs. Additionally, the authors have studied the impact of 
virtualization solutions’ capabilities on the management and development of 
applications. In particular, they show how the different characteristics of containers and 
VMs affect their management in a cluster. From the resource allocation perspective, 
since VMs somehow share the raw hardware, the resource allocation is also in that 
granularity (e.g., a fixed number of virtual CPUs). However, in the case of containers, 
resource control knobs offered by the OS (e.g., CPU scheduling) are more varied, which 
adds more dimensions to resource allocation. In other words, the resource allocation for 
containers involves allocation of both physical and OS resources. They also point out 
that dynamic resource allocation in VMs is fundamentally a hard problem, on the 
grounds that their virtual hardware is allocated before boot-up, and dynamically change 
their resource during execution requires “device hotplug” support by the guest OS. 
However, soft limits in containers provide a dynamic resource allocation mechanism, 
thereby achieving better performance on overcommitted hosts. Additionally, the authors 
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compared VMs and containers from migration perspective. It is stated that unlike VM 
migration which is mature and widely used in data centers, container migration is more 
challenging and not mature yet. Another comparison between VMs and containers made 
in this work is comparison of their images. It is shown that for the same applications, 
container images are considerably smaller and faster to construct, which enables faster 
deployment and lower storage overhead. 
Several other works exist in the literature which perform such experiments to compare 
the virtualization techniques and solutions; [35] compares Xen and KVM; [36] compares 
KVM and Docker; [37] compares Xen, OpenVZ, and XenServer; [38] performs a 
comparison between Xen, KVM, VirtualBox, and VMWare ESX; [39] compares software 
and hardware techniques for x86 virtualization; and [40] presents a comparison between 
VMs, containers, and unikernels; to name but a few. Additionally, a survey of container-
based performance evaluation is conducted in [41]. However, the outcomes of these 
works are in line with what we discussed above and we therefore do not review them 
here. 
Summary and Conclusions 
Based on the technique used to perform virtualization, the virtualized environment is 
called VM, container, or unikernel. Figure 25 compares the structure and layers of these 
virtualized entities. Two key points can be inferred from this figure: 
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• Container and unikernels do not have a complete guest OS in their software 
stack, making them lighter than VMs. 

• VMs are used to isolate complete systems – including an OS and a number of 
applications running on top of it – whereas containers and unikernels are 
employed to isolate applications. 

Furthermore, we can draw an important conclusion from the results of prior works on the 
comparison of virtualization techniques which is the lack of a predominant virtualization 
solution performing better than other solutions in every circumstance. Even within a 
technique (such as hypervisor-based technique), each solution can only outperforms 
others in a few aspects, but never in all. Accordingly, to demonstrate the trade-offs 
between virtualization solutions, we summaries the outcomes of the prior works in Table 
3. 
 
 

Figure 25. Structural comparison of virtualization solutions. 
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Table 3. Comparison of virtualization solutions characteristics. 

Virtualization 
Technology 

Image Size Boot Time Memory 
Usage 

Isolation Flexibility in 
Resource 
Management 

Performance Programming 
Language 
Restrictions 

Live 
Migration 
Support 

Virtual Machine ~1000 MBs ~3-10 s ~100 MBs High Low The worst No Yes 

Container ~50 MBs ~<1 s ~5 MBs Low High The best No Yes (not 
mature yet) 

Unikernel ~<10 MBs ~<40 ms ~10 MBs High Low Better than 
VMs, worse 
than 
containers 

Yes No 

 

A.2 State-of-the-art in Resource Management 
In a computing infrastructure, at any instance of time, resources must be effectively 
allocated to applications in such a way that their quality requirements are met. The 
dynamic nature of applications, which implies fluctuations in their resource demands, 
and the limited amount of available resources, which indicates that resources must be 
shared among applications, complicate the resource management process. 
Although the infrastructure where resource management is performed span cloud 
infrastructures to stand-alone devices, in this work, we narrow our focus on resource 
management in fog/edge environments. Hong et al. [24] argue that resource 
management in fog/edge environments is challenging, since the applications compete 
for the resources which have limited capacity (e.g., limited power budget) and are 
heterogeneous (e.g., processors with different architectures), and their workloads 
change dynamically. Additionally, they argue that the cloud computing model is not 
practical for using in this paradigm, because it is likely to increase communication 
latencies when scores of devices are connected to the Internet. Consequently, 
applications will be adversely impacted because of the increase in communication 
latencies, and the overall Quality of Service (QoS) and Quality of Experience (QoE) will 
be degraded. Before getting into further discussions, it is worthwhile to make a distinction 
between the edge computing and the fog computing paradigms: 

• A computing model that makes use of resources located at the edge of the 
network is referred to as "edge computing " [42]. Note that there is no single 
accepted definition of "edge" in the literature. There exists a broad definition 
"anything that's not a traditional data center could be the 'edge' to somebody" 
[43], which implies that edge of the network is somewhere nearer than data 
centers to the requestors. 

• A model that makes use of both resources located at the edge of the network 
and the cloud is referred to as "fog computing" [44]. 

In order to study the literature, we review the following aspects of existing resource 
management frameworks. 

A.2.1 Resource Types and Models 
As discussed earlier, in the fog computing model, resources located both at the cloud 
and the edge of network are used to form a computing environment. These resources 
can be categorized under four resource types, namely compute resources, networking 
resources, storage resources, and power resources. In the cloud context, compute 
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resources are a set of Physical Machines (PMs) that are usually partitioned into several 
virtual machines using techniques. Each physical machine has one or more CPUs, 
memories, network interfaces, and I/O devices. However, most of the works only 
consider processing and memory capacity in their compute resource models [3]. The 
PMs located at the cloud must be interconnected with a high-bandwidth network. It is 
shown that the overall performance of cloud services is governed by the communication 
overhead of PMs [3], which emphasizes the importance of managing the network 
resources within a cloud infrastructure. Storage services provided by public cloud 
providers (e.g., Amazon) include various types ranging from virtual disks and database 
services to object stores [3]. In the cloud infrastructures, the power consuming 
components are servers, networking equipment, power distribution instruments, cooling 
appliances, and supporting infrastructure. It is estimated that energy costs account for 
42% of the overall operational costs in data centers [47]. Although devising low-power 
hardware components and efficient application implementations can reduce these costs, 
power-aware resource management can substantially contribute to total cost reduction 
as well. A survey of such power-aware resource management techniques for cloud 
computing systems is presented by Hameed et al. [48]. 
On the other hand, in the edge computing context, Single Board Computers (SBC) and 
commodity products comprise the compute resources [24]. SBCs (e.g., Raspberry Pi) 
are small computers containing processors, memory, network, and storage devices. 
They have been used in some works as fog/edge nodes [49, 50]. Besides the SBCs, 
commodity products (e.g., laptops and smartphones) are also employed as fog/edge 
nodes. Networking resources (i.e., network devices) for fog/edge computing are 
comprised of gateways and routers, WiFi Access Points (APs), and edge racks [24]. 
Hong et al. [51] have proposed an approach where under-utilized laptops (resources 
from public crowds), desktops at the edge of the network, and servers in the cloud are 
utilized to execute an animation rendering service. They have proposed a prediction 
method based on machine-learning techniques to predict the completion time of 
rendering jobs according to available resources. Using a motivational example, they 
have demonstrated that GFLOPS (Giga Floating Point Operations per Second) is not 
enough to abstract computation power. Other factors such as number of cores and clock 
frequency must be included in the model as well. To train their prediction models, they 
have used datasets where CPU, RAM, disk, and network resources have been 
considered [52]. The budgets are described in GHz and number of cores for CPUs, GB 
for memories, read/write throughputs in MB/s for disks, and receive/transmit rates in 
MB/s for network resources. 
Noreikis et al. [53] have proposed a capacity planning solution for hierarchical edge 
cloud consisting of edge nodes and public clouds that considers QoS requirements in 
terms of response delay, and diverse demands for CPU, GPU, and network resources. 
CPU and GPU budgets are described in utilization percentage, and network budgets for 
transmission and receiving are expressed in KBps, indicating the network speed. Chen 
et al. [54] have proposed an offloading framework—called HyFog—that accounts for 
device-to-device and cloud offloading techniques. They have used CPU cycles per unit 
time to describe compute capacity, and the network links (including cellular links and 
device-to-device links) are abstracted using download/upload data rates and 
transmission/receiving power. Wang et al. [55] have proposed the ENORM (Edge NOde 
Resource Management) framework that realizes fog computing by integrating the edge 
of the network in the computing environment. They propose a provisioning and 
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deployment mechanism to integrate an edge node with a cloud server. The proposed 
framework provisions CPU and memory to users. They are described in terms of the 
number of resource units each of which is one core of CPU and 200MB of RAM. 
Liu et al. [56] have proposed an edge computing framework—called ParaDrop—which 
is implemented on WiFi Access Points or other wireless gateways. In the resource 
management part of ParaDrop, the controlled resources include CPU (expressed in 
CPU shares), memory (expressed in maximum allowed memory), and networking (traffic 
shaping is used to restrict the bandwidth). A fog computing architecture has been 
proposed by Gu et al. [57] which uses VMs for a medical cyber-physical system (MCPS). 
The proposed architecture utilizes computational resources in the network edge (e.g., 
base stations) to store and analyze the health information collected from low power 
sensors and actuators. Their research investigates the QoS guaranteed minimum cost 
resource management in fog computing supported MCPS. It is stated that the framework 
manages the computation capacity of base station resources; however, the resource 
types and models are not reported. An elastic real-time surveillance system architecture 
is proposed by Wang et al. [58] where surveillance cameras send images to a distributed 
edge cloud platform. The proposed system launches Virtualized Network Functions 
(VNFs) on the edge servers to execute data processing tasks. Resources are 
provisioned using VMs where resources are described by the number of vCPUs, size of 
RAM, and size of storage. Morabito et al. [59] have proposed the design of an Edge 
Computation Platform which leverages container-based virtualization technologies to 
build an environment for IoT applications. They use single board computers to create 
smart gateways whose CPUs, GPUs, and storage resources are being managed. There 
are no discussions on resource models. 
An architectural framework—called Foggy—is proposed by Santoro et al. [60] which 
offers the functionality of negotiation, scheduling, and workload placement considering 
resource requirements (e.g., CPU, RAM, and disk requirements) and constraints on 
location and access rights. Foggy is designed to operate in Fog environments with 
generally more than three tiers, namely Cloud tier (with high resource capacity), Edge 
Cloudlets tier (with medium resource capacity), Edge Gateways tier (with low resource 
capacity), and Swarm of Things tier (IoT devices). In Foggy, resource refers to any 
computational (such as vCPUs, RAM, and disk), storage or network capacity provided 
by the nodes of the infrastructure. Foggy uses a set of usage profiles for characterizing 
the resources. For computational and storage resources, the following profiles are used: 
General purpose (default profile), Compute optimized, Memory optimized, and Storage 
optimized. For network resources, the considered profiles are Best Effort (default 
profile), Interactive application, Signaling and video streaming, Interactive and real-time 
video. Having focused on performance interference, Shekhar et al. [61] have proposed 
INDICES (INtelligent Deployment for ubiquitous Cloud and Edge Services) framework 
which performs online performance monitoring, performance prediction, network 
performance measurements, and server selection and application migration from the 
cloud to the fog. The architecture model considered in this work contains a Central Data 
Center (CDC) connected to a set of Micro Data Centers (MDCs) which are located at 
the edge. Each MDC comprises a set of computer servers which can be allocated to the 
CDC for its operations at a specified cost. There are no further discussions on types of 
resources and their models. 
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A.2.2 Resource Estimation Models 
In order to meet application quality demands, enough resources must be allocated to 
applications. Accordingly, the required resources for each application should be 
estimated beforehand for enabling efficient resource management. This is commonly 
called as resource demand profiling. In this regard, we study the resource estimation 
techniques employed in the aforementioned works. 
The completion time prediction method proposed by Hong et al. [51] utilizes an 
animation rendering dataset which contains a huge number of records each of which is 
a rendering job from an animation studio. Each record is described by the resource 
usage (including CPU usage in percentage and RAM usage in KBs), the characteristics 
of rendering jobs (e.g., number of frames, number of polygons, and image size in pixels), 
the network conditions (e.g., the time of sending a job), and the completion time. The 
capacity planning solution proposed by Noreikis et al. [53] estimates the minimum 
capacity required for satisfying QoS demands of real-time applications. Their developed 
profiler measures resource usage while executing a task on a computing node. Based 
on the measured usage patterns, resource demands are expressed in terms of CPU and 
GPU utilization (%), network latency (ms), and network bandwidth (kbps). The task 
execution model used in the HyFog framework [54] characterizes the resource 
requirements of a task by the required number of CPU cycles. However, they argue that 
this model can be easily extended to include other resource types. There are no 
discussions on how to obtain the required number of CPU cycles for a task.  
The ENROM framework [55] initializes the applications using a default amount of CPU 
and memory. However, while the application is running, the proposed auto-scaler 
mechanism upscales/downscales the allocated resources dynamically. A number of 
metrics (e.g., round-trip application latency and hardware utilization of CPU and 
memory) are monitored to make scaling decisions at the auto-scaler component. 
Therefore, application resource requirements are not estimated beforehand, and the 
requirements are expressed in terms of application latency (not resource requirements). 
The ParaDrop framework [56] runs the requested services in virtualized environments 
called chutes. Resource requirements for chutes are specified in a config file which is 
necessary for creating chutes. CPU requirement for a chute is specified by a share value 
which indicates a relative share of the CPU resource that a chute gets compared to what 
other chutes get. The maximum amount of memory that a chute is allowed to consume 
is also specified in the config file. It is stated that a strategy based on shares (similar to 
CPU shares) is planned to be implemented for specifying the network requirements. It 
is not discussed in the paper how these requirements are extracted. 
The resource management framework proposed by Gu et al. [57] considers the overall 
expected delay (including communication and processing delays) as application quality 
requirements. Application resource requirements are expressed by storage 
requirements and processing speed of applications; however, units and resource 
estimation methods are not discussed. The three-tier edge computing system 
architecture proposed by Wang et al. [58] expresses application configurations by 
templates in the form of a text file describing the resource assignments including IP 
addresses, bandwidth volumes, compute node flavors, security group and etc. There is 
no discussion on how to determine the resource requirements. In their experimental 
results, as discussed before, the VM resources are described by the number of vCPUs, 
size of RAM, and size of storage. Morabito et al. [59] argue that there may be 
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dissimilarity (e.g., in terms of CPU architecture) in different nodes in a heterogeneous 
environment. Therefore, for each application, different images, where hardware 
requirements (processor architecture, GPU, and storage) and software requirements 
(libraries and operating system) are described, must be provided. It is not explained how 
these requirements are specified. 
Deployment requests in Foggy [60] contain the application component to be deployed 
and a set of optional deployment requirements which are expressed in terms of resource 
requirements and/or specific application needs such as location and access rights. 
Foggy employs a set of profiles to express these requirements. The profiles that are 
used to express application requirements are similar to the ones used to characterize 
the resources, explained in Section 3.2.1. There is no discussion on how to automatically 
determine the deployment requirements. Shekhar et al. [61] argue that the performance 
of an application depends on several factors including: 

• the workload: the workload variation can change the performance, 
• the hardware hosting platform: application performance can vary from one 

hardware platform to another in a heterogeneous environment, 
• co-located applications that cause performance interference: hypervisors do not 

provide enough isolation for two reasons, namely presence of non-partitioned 
shared resources (e.g., cache spaces) and resource overbooking. 

In their proposed framework (INDICES) they run applications in a fixed VM configuration 
(e.g., 2 GB memory, either 1 or 2 VCPUs). However, according to the reasons 
mentioned above, this fix configuration may lead to various performance levels. They 
leverage their built performance models to determine whether running an application on 
a platform causes SLO (Service-Level Objective) violations or not. Therefore, they only 
consider performance requirements (not resource requirements). 

A.2.3 Resource Provisioning Techniques 
There is no concrete definition of resource provisioning in the literature. In some works, 
it is used to describe the whole resource management process, while in some other 
works, it refers to the resource allocation procedure. In this section, we want to study 
how the resources are provisioned (i.e., provided) to applications. 
The multimedia fog computing platform proposed by Hong et al. [51] utilizes resources 
from public crowds (e.g., laptops), desktops at the edge of the network, and servers in 
the cloud to execute animation renderings. Although the available resource dataset they 
have used to train their models contains resources in VMs, it is not clarified that how the 
resources are provisioned to users. Noreikis et al. [53] employ Docker containers to 
provide virtual resources to users in their capacity planning solution. In the HyFog [54] 
framework, applications tasks can be executed on either mobile devices or cloud 
servers. Resources in the former case are provided using VMs; however, resource 
provisioning in devices is not explained. The ENORM framework [55] leverages edge 
nodes to host servers offloaded from cloud servers. It is argued that edge nodes have 
limited hardware resources, which makes the containers more appropriate for providing 
resources to users. LXC containers are used in this framework. ParaDrop WiFi APs [56] 
are implemented on SBCs whose resources are provisioned in containers (Docker 
containers in their current implementation) due to their lightweight nature. Gu et al. 
employ VMs to provision base station resources. The surveillance system architecture 
proposed by Wang et al. [58] launches a group of VMs in distributed edge cloud servers 
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to provide resources for surveillance tasks. Lightweight characteristics of container-
based virtualization are leveraged by Morabito et al. [59] to provision resources in their 
proposed IoT gateways. 
It can be concluded from the studied works that virtualization plays a significant role in 
resource provisioning, and the virtualization technique for each solution is decided 
based on the capabilities of employed platforms. 

A.2.4 Resource Allocation Strategies 
In this part, we study the policies used to allocate resources to applications and map 
applications on resources. Hong et al. [51] decide where (i.e., which node) to run 
rendering jobs based on estimated available resources and predicted completion time 
of jobs on each node. The completion time is predicted using state-of-the-art machine 
learning algorithms. The details of employed decision-making policies are not discussed. 
The solution proposed by Noreikis et al. [53] maps long-running and latency insensitive 
tasks on the cloud and tasks with the shortest tolerable response delay on edge nodes. 
Additionally, tasks with complementary resource demands are bundled together and 
mapped on the same node, leading to better resource utilization. They have used the 
Knapsack algorithm to perform the optimization. In the HyFog framework [54], task 
offloading decisions are made using a three-layer graph-matching algorithm. The three-
layer graph is constructed by taking the offloading space (mobiles, edge nodes, and the 
cloud) into account. The problem of minimizing the total task execution cost (including 
the energy cost per CPU cycle and transmission/receiving power costs) is mapped onto 
the minimum weight-matching problem over the constructed graph, and it is solved using 
the Edmonds’s Blossom algorithm. 
The ENORM framework [55] offers several mechanisms for resource management, 
including handshaking, deployment, auto-scaling, and termination mechanisms. The 
handshaking is performed between a cloud manager and edge nodes, and it is used to 
select a node (based on the available free resources on nodes) for application 
deployment. The auto-scaling mechanism periodically scales the resources allocated to 
applications whose latency requirements are not met. The termination mechanism 
terminates an edge service when either it has been idle for a long period or its QoS 
requirements cannot be satisfied by an edge server deployment. The ParaDrop 
framework [56] does not provide any resource allocation policies. Rather, the user 
selects an edge node (i.e., WiFi AP) to deploy its application. Gu et al. [57] investigate 
QoS guaranteed minimum cost resource management in fog computing supported 
MCPS. They formulate the cost minimization problem in a form of mixed-integer 
nonlinear programming (MINLP), and they linearize it as mixed-integer linear 
programming (MILP) problem to cope with the high complexity of solving MINLP. Further 
more, they propose a low-complexity two-phase LP-based heuristic algorithm to solve 
the MILP problem. In their problem formulation they consider four constraints, namely 
1) user association constraints (each user must be associated with a base station, and 
a subcarrier in the BS must be allocated to the user), 2) task distribution constraints (the 
application data uploaded to a BS can be distributed to other BSs to get processed), 3) 
VM placement constraints (VMs must be deployed on BSs, and their resource 
requirements must not exceed the capacity of BSs), and 4) QoS constraints (the overall 
expected delay, including communication and processing delay, shall not exceed the 
application delay constraint). The total cost they seek to minimize includes the total VM 
deployment cost, uploading cost, and inter-BS communication cost. 
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Wang et al. [58] offer an elastic resource allocation mechanism in their surveillance 
system where computing resources are reallocated when emergency events happen. 
To do so, at any point in time, the closest edge nodes to the tracked object are selected 
to run surveillance tasks. When resource shortage happens, a part of the workload is 
transferred to another node whose selection depends on its distance to the monitor that 
captures the object’s video. It can be implied that their approach minimizes the 
deployment costs by minimizing communication latencies. In the Foggy framework [60], 
to map applications to edge nodes, the orchestrator filters the nodes that can satisfy 
application requirements. Then, it sorts the filtered nodes according to a priority function 
whose details are not discussed. Subsequently, the node with the highest rank will be 
chosen to deploy the application. The objective of the INDICES framework [61] is to 
assure the SLOs (i.e., response times) for all the applications (by identifying SLO 
violations and migrating applications from the cloud to edge servers) while minimizing 
the overall deployment cost. To identify the SLO violations, application execution times 
are estimated using performance and interference profiles. An interference profile of an 
application identifies the degree to which that application will degrade the performance 
of other running applications on the host—called pressure—and how much its own 
performance will degrade due to interference from other applications—called sensitivity. 
Accordingly, the framework offers a performance interference-aware server selection 
algorithm where the SLO-violated applications are migrated to the edge nodes in such 
a way that the so-called pressure and sensitivity do not cause SLO violations, and 
furthermore, the overall deployment cost is minimized. The optimization problem is 
solved using a heuristic-based algorithm since the problem is an NP-Hard one. 

A.2.5 Resource Management Architectures 
In this section, we study the architecture introduced by the prior works to perform 
resource management. The framework proposed by Hong et al. [51] has three 
components, namely an available resource predictor, a completion time predictor, and 
a job scheduler. The job scheduler decides where to deploy a job based on the 
information provided by the resource predictor and completion time predictor. The 
ENORM framework [55] works across three tiers, namely the cloud tier, the edge node 
tier, and the user device tier. The cloud tier is where the application servers are located, 
and a cloud server manager runs on each application server. A cloud server manager 
sends requests to edge nodes, deploys services on edge nodes, and updates the global 
view of the application server based on the deployments. Each edge node has several 
components to receive requests from the cloud server manager, negotiate with it, deploy 
applications upon accepted requests, monitor resources and applications, and perform 
the auto-scaling mechanism.  
The ParaDrop framework [56] has two main resource management agents, namely the 
ParaDrop backend and the ParaDrop daemon. The ParaDrop backend manages all the 
resources of the platform in a centralized manner and provides APIs for users to deploy 
services on the gateways. The ParaDrop daemon runs on each Access Point to perform 
all the functions required by the ParaDrop platform, including registering the AP to the 
backend, monitoring the status of AP and reporting to the backend, resource and 
process management, and receiving RPCs (Remote Procedure Calls) and messages 
from the backend and performing lifecycle management of chutes (i.e., application 
containers) accordingly. The architecture proposed by Wang et al. [58] consists of three 
tiers, namely applications tier, edge computing tier, and data tier. The applications tier 
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contains resource requirements of tasks, plans resource allocations and configurations, 
and monitors the running status of the applications. The edge computing tier contains 
an edge control node which performs resource orchestration (to satisfy resource 
requirements of tasks) and a SDN controller which monitors, configures, and manages 
VMs. The data tier contains terminal monitors that collect and upload real-time video 
data to the nearest available compute node. 
The architecture proposed by Morabito et al. [59] contains an IoT Application 
Orchestrator which determines which software (i.e., application) is used for processing 
the data of a specific device as well as the best location (data center or gateway) for 
deploying it. It is stated that the orchestrator takes the hardware requirements 
(processor architecture, GPU, storage) and software requirements (libraries, operating 
system) of processing software into account during its decision makings. Foggy [60] is 
an architectural framework which offers the functionality of negotiation, scheduling, and 
workload placement. The management architecture is composed of an inventory, a 
negotiator, and an orchestrator. The inventory maintains the status of the infrastructure 
(i.e., available resources and their location). The negotiator decides whether to accept 
or reject deployment requests based on the status of the infrastructure. For the accepted 
deployment requests, the orchestrator deploys application components on the node that 
best satisfies the deployment requirements. 
The architecture model considered in the INDICES framework [61] contains a Central 
Data Center (CDC) connected to a set of Micro Data Centers (MDCs) which are located 
at the edge. Each MDC comprises a set of computer servers which can be allocated to 
the CDC for its operations at a specified cost. A global manager on the CDC is 
responsible for detecting and mitigating global SLO violations. On each MDC, one of its 
servers acts as local manager which is responsible for data collection, performance 
estimation, latency measurements, and MDC-level decision making. During run-time, 
the global manager identifies the SLO violations, and the local managers decide where 
to migrate the SLO-violated applications. The works that are not discussed in this section 
have not made a clear discussion about their architecture. 

A.2.6 Summary and Conclusions 
The reviewed techniques are summarized in Table 4.  
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Table 4. Summary of reviewed resource management works. 
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