

ECSEL 783162

FitOptiVis

From the cloud to the edge - smart IntegraTion and
OPtimisation Technologies for highly efficient Image and VIdeo

processing Systems

Deliverable: D3.2 Design time, optimisation,
deployment and programming strategies V2

Due date of deliverable: (31-05-2020)
Actual submission date: (31-05-2020)

Start date of Project: 01 June 2018 Duration: 36 months

Responsible: Tampere University (of Technology) (TUT)

Revision: Draft

Dissemination level

PU

Public

PP

Restricted to other programme participants (including the Commission
Service

RE

Restricted to a group specified by the consortium (including the Commission
Services)

CO

Confidential, only for members of the consortium (excluding the Commission
Services)

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 2 of 119

© FitOpTiVis Consortium public

1. DOCUMENT INFO

Author

Author Company E-mail

Pekka Jääskeläinen TUT pekka.jaaskelainen@tuni.fi

Jiri Kadlec UTIA kadlec@utia.cas.cz

Pablo Sanchez UC sanchez@teisa.unican.es

Carlo Sau UNICA carlo.sau@diee.unica.it

Dip Goswami TUE D.Goswami@tue.nl

Roman Juranek BUT ijuranek@fit.vutbr.cz

Luis Medina 7SOLS luis.medina@sevensols.com

Francesca Palumbo UNISS fpalumbo@uniss.it

Luigi Pomante UNIVAQ luigi.pomante@univaq.it

Tero Säntti UTU teansa@utu.fi

Massimo Massa AITEK mmassa@aitek.it

Tomas Bures CUNI bures@d3s.mff.cuni.cz

Jukka Saarinen Nokia jukka.saarinen@nokia.com

Jari Hannuksela Visidion jari.hannuksela@visidon.fi

Document history
Document
version #

Date Change

V0.1 20.2.2020 Starting version based on D3.1 – Jiri Kadlec, UTIA

V0.2 31.3.2020 Partner contributions

V0.3 19.5.2020 Integrated, ready for review by participating partners

V0.4 22.5.2020 Ready for internal review by Pekka Jääskeläinen

V0.9 25.5.2020 Edits by PJ before internal review.

V0.95 29.5.2020 Send for internal review by Marcos Martinez de
Alejandro and Zaid Al-Ars

V0.96 3.6.2020 Update after review

V0.99 4.6.2020 After internal review, all internal comments addressed.

V1.0 5.6.2020 Final version.

Document data
Keywords

Editor Address data Name: Pekka Jääskeläinen
Partner: TUT – Tampere University (of Technology)
Address:
Phone:

Distribution list
Date Issue E-mailer

5.6.2020 V1.0 Final version.

mailto:pekka.jaaskelainen@tuni.fi
mailto:kadlec@utia.cas.cz
mailto:sanchez@teisa.unican.es
mailto:carlo.sau@diee.unica.it
mailto:D.Goswami@tue.nl
mailto:ijuranek@fit.vutbr.cz
mailto:luis.medina@sevensols.com
mailto:fpalumbo@uniss.it
mailto:luigi.pomante@univaq.it
mailto:teansa@utu.fi
mailto:mmassa@aitek.it
mailto:bures@d3s.mff.cuni.cz
mailto:jukka.saarinen@nokia.com
mailto:jari.hannuksela@visidon.fi

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 3 of 119

© FitOpTiVis Consortium public

Table of Contents

1. DOCUMENT INFO .. 2

2. EXECUTIVE SUMMARY ... 10

3. INTRODUCTION ... 11

4. MODEL-DRIVEN ENGINEERING TECHNIQUES FOR ENERGY,
PERFORMANCE AND OTHER QUALITIES ... 12

4.1. The S3D modelling methodology for real-time video processing
 systems.. 13

4.2. Design space exploration for reconfigurability 16

4.3. The SAGE verification suite ... 19

4.4. Dynamic performance tracking of image-based applications
 using control theoretic approaches .. 20

4.4.1. MODELLING APPLICATIONS AS A MAX-PLUS LINEAR SYSTEM 20

4.4.2. CONTROL-THEORETIC APPROACH ... 22

4.4.3. MODELLING DYNAMISM AS A SWITCHED MAX-PLUS LINEAR
 SYSTEM .. 22

4.5 Scenario- and platform-aware design flow for image-based control
 systems .. 23

4.5.1 Scenario- and platform-aware design (SPADe) 24

4.5.1.1 SPADe inputs .. 25

4.5.1.2 Formal modelling: application and platform models 25

4.5.1.3 Analysis and design ... 25

4.5.1.4 Implementation and runtime reconfiguration mechanism 27

4.5.2 Evaluation: IMACS framework ... 28

4.5.2.1 Case study ... 28

4.5.2.2 Results and comparison .. 29

4.6 Modelling of real-time video processing systems with limited
 precision .. 29

4.7 Design time support for high level tool chains.......................... 30

4.8 High-level abstract component model and DSL 30

4.9 Runtime reconfiguration Implementation of Embedded systems
 .. 31

5. PROGRAMMING AND PARALLELIZATION SUPPORT 33

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 4 of 119

© FitOpTiVis Consortium public

5.1. Static resource allocation and runtime scheduling 33

5.2. Training WaldBoost detectors for FPGA 34

5.3. OpenMP for real-time video systems 37

5.4. Design time support for C/C++ compilers and OpenCV
 algorithmic libraries .. 37

5.5. TTA-based Co-Design Environment (TCE).............................. 38

5.5.1. SUPPORT FOR 64-BIT POINTERS AND INTEGERS 38

5.5.2. LOOP OPTIMIZATION SUPPORT ... 38

5.5.3. LOOP BUFFER AND INSTRUCTION REGISTER FILE SUPPORT . 41

5.6. BlockCopier: A programmable block transfer unit 44

5.7. Deterministic timing in distributed systems and latency control
 with Time Sensitive Networks (TSN) 45

5.8. Code generation for reconfigurable systems 49

6. ACCELERATION SUPPORT .. 51

6.1. OpenMP for HW accelerators .. 51

6.2. HW accelerators generated by the Xilinx SG for DSP
 and SDSoC system level compiler ... 52

6.3. The Multi-Dataflow Composer (MDC) tool:
 a dataflow-to-accelerator design suite 53

6.4. NEURAghe a flexible and parameterized CNN accelerator 55

6.5. TTA-Based customized soft core accelerators 57

6.5.1. TCE: AUTOEXPLORER (AEX) .. 60

6.6. Acceleration of individual algorithms in combination
 of FPGA and CPU ... 63

6.6.1. OBJECT DETECTION ON FPGA USING WALDBOOST
 ALGORITHM .. 63

6.6.2. HDR IMAGE ACQUISITION ... 66

6.7. HDR merging and de-ghosting .. 66

6.8. Tonemapping ... 68

6.9. Convolutional HW accelerator ... 70

6.10. Video-based Point Cloud Compression 71

6.11. Acceleration of face detector on GPU and DSP 73

7. DESIGN TIME SUPPORT FOR METHODOLOGIES AND TOOLS 75

7.1. Y2 extension of support for the ZynqBerry board TE0726 76

7.1.1. Y2 SUPPORT FOR DESIGNS WITH XILINX SG FOR DSP DATA
 STREAMING IPS FOR ZYNQBERRY MODULE 76

7.2. Y2 extension of support for Zynq Ultrascale+ module
 TE0820-4EV on TE0701 carrier with Full HD HDMI Video I/O 78

7.2.1. Y2 SUPPORT FOR DESIGNS WITH XILINX SG FOR DSP DATA
 STREAMING IPS FOR ZYNQ ULTRASCALE+ WITH VIDEO I/O ... 79

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 5 of 119

© FitOpTiVis Consortium public

7.2.2. Y2 ACCELERATION RESULTS ON ZYNQ ULTRASCALE+
 WITH VIDEO I/O. .. 83

7.2.3. Y2 ACCELERATION RESULTS ON ZYNQBERRY
 WITH VIDEO I/O. .. 83

7.3. Complete runtime reconfiguration of PL part of
 Zynq Ultrascale+ module TE0820-4EV on TE0701 carrier
 with Full HD HDMI Video I/O ... 84

8. CONCLUSIONS .. 86

9. REFERENCES .. 87

10. APPENDIX: FITOPTIVIS DESIGN TIME SUPPORT TOOLS 90

10.1. TTA-Based Co-design Environment (TCE) 92

10.2. HW/SW CO-DEsign of HEterogeneous Parallel dedicated
 SYstems (HEPSYCODE)... 95

10.3. Multi-Dataflow Composer (MDC) tool 101

10.4. The SAGE Verification Suite (SAGE-VS) 103

10.5. RIE – Re-configurable Implementation
 of Embedded systems .. 106

10.6. S3D – Single Source Design Framework............................... 108

10.7. Design Time Resource Configurator (DTRC) Technology 109

10.8. Design Time Resource Integrator of Model Composer IPs
 (DTRiMC) Technology. .. 112

10.9. IMACS (IMAge in the Closed-loop System) 118

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 6 of 119

© FitOpTiVis Consortium public

Table of Figures

Figure 1: TE Single Source System Design Framework (SD3). 14
Figure 2: Application view... 15
Figure 3: Example of Component interfaces. .. 15
Figure 4: S3D design flow. ... 16
Figure 5: HEPSYCODE ESL HW/SW co-design flow. .. 17
Figure 6: HEPSYCODE ESL HW/SW co-design flow. .. 18
Figure 7: Embedded multi-core platform with reconfiguration mechanism. 20
Figure 8: Synthetic SDF model. .. 21
Figure 9: Inter-arrival time. ... 23
Figure 10: SPADe design flow. ... 24
Figure 11: Multiprocessor System on Chip with two processor tiles and one
 memory tile. .. 25
Figure 12: NVIDIA Drive PX2 platform graph structure. .. 26
Figure 13: System mapping to MPSoC... 27
Figure 14: IMACS evaluation framework. (a) IBC system block diagram and the HiL
 simulator. (b) a snapshot of the HiL simulation environment in webots.
 (c) LKAS using single camera. (d) multi-camera LKAS; c1, c2, c3
 are the cameras. .. 28
Figure 15: Comparison between SPADe and pipelined (state-of-the-art) approaches;
 bc=best-case timing and wc=worst-case timing; SPADe is executed
 with a number of scenario sequences; yL is the lateral deviation
 of the LKAS system under study. ... 29
Figure 16: JSON produced by IP core and Chrome Tracing with loaded data for
 analysis. .. 34
Figure 17: Example of feature maps extracted from image - image scales in rows,
 channels in columns. .. 35
Figure 18: Example of detected license plates. .. 36
Figure 19: OpenMP-based reconfiguration methodology. ... 37
Figure 20: The two different loop optimization modes. Red labels indicate re-used
 code from LLVM and blue labels indicate separate code managed
 by TCE code generator. .. 39
Figure 21: High-level example of software pipelining. ... 40
Figure 22: Architecture of the block copier ASIP. ... 45
Figure 23: VLAN frame format. ... 46
Figure 24: Architecture of the Time-Aware traffic Shaper. .. 47
Figure 25: IEEE 802.1Qbv traffic scheduling and shaping. ... 47
Figure 26: Traffic scheduling and shaping along the TSN stream path. 48
Figure 27: Automatic code generation. ... 50
Figure 28: UML/MARTE model generated from QRML description. 50
Figure 29: HW accelerators with OpenMP code. .. 51
Figure 30: Maximum clock frequency of the synthesized processors. 58
Figure 31: Simplified view of the wide-SIMD TTA template. 59
Figure 32: Simplified TCE Exploration process of AutoExplorer. 60
Figure 33: Un-optimized architecture (left), final best possible architecture (right). 61
Figure 34: AEx2 result pruning between passes. The configurations marked in red
 can reach the targeted execution time with the targeted clock frequency... 62
Figure 35: Overview of the detection architecture - (top row) Image scale space
 generation, (middle row) feature channel calculation, (bottom row)
 classifier evaluation on each location. .. 64

file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166915
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166923
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166924
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166925
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166925
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166925
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166925
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166926
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166926
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166926
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166926
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166938
file:///C:/home/kadlec/7H_FITOPTIVIS/02_REPORTING_2020/2020_06_03_FitOptiVis_SVN/WorkPackage3/WorkInProgress/Deliverable3.2/737451-FitOpTiVis-Deliverable3.2_v1.0.docx%23_Toc42166939

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 7 of 119

© FitOpTiVis Consortium public

Figure 36: Evaluation of classifier - a decision tree loads features from feature maps
 and produces response which is aggregated in the total response.
 It either continues with the next tree or exits with a negative decision. 64
Figure 37: Overall schematics of HDR acquisition pipeline. The individual blocks
 create a dataflow pipeline, which is configured through AXI Lite interface
 from ARM CPU. .. 66
Figure 38: Input image sequence (top) and two certainty maps (similar to ghostmaps
 in related algorithms) used during ghost-free HDR merging. 67
Figure 39: Vivado Block design of ghostfree HDR IP core. ... 67
Figure 40: Resulting HDR tonemapped images with ghost-free merging disabled
 (left) and enabled (right). .. 68
Figure 41: Tonemapping IP core in Vivado. .. 69
Figure 42: The FPGA implementation of Durand tonemapping. 70
Figure 43: V-PCC encoding structure. .. 71
Figure 44: V-PCC decoding structure. ... 72
Figure 45: Power consumption measurement (mA) when running face detector forl
 (4096 × 2156) size frames with CPU implementation. X-axis shows time
 and y-axis shows current in the range between 0 and 1100 mA. 74
Figure 46: Power consumption measurement (mA) when running face detector for
 (4096 × 2156) size frames with GPU implementation. X-axis shows time
 and y-axis shows current in the range between 0 and 1100 mA. 75
Figure 47: WP3 Y2 Initial Zynq Ultrascale+ platform with two serial connected
 accelerators. .. 79
Figure 48: WP3 Y2 Initial Zynq Ultrascale+ platform with two serial connected
 accelerators. .. 80
Figure 49: Full HD edge-detection and matrix multiplication on two FP03x8
 accelerators. ... 83
Figure 50: Function of all HW data movers have to be terminated before stop
 of SW app. ... 85
Figure 51: Demonstration of platform supporting the PL reconfiguration in Prague
 on 5.3.2020. .. 86
Figure 52: FitOptiVis Design Support Tools. ... 90

Table of Tables

Table 1: Overview and Comparison of Model-driven engineering techniques. 13
Table 2: VLAN identification rules of user traffic types. ... 46
Table 3: VLAN identification rules of user traffic types. ... 49
Table 4: FPGA resource consumption for XC7Z020. .. 65
Table 5: FPGA resource consumption after HLS synthesis for XC7Z020. 67
Table 6: Resource consumption. .. 70
Table 7: Progress made in FitOptiVis in WP3 in Y1. ... 76
Table 8: HW resources used by the FP01x8 Accelerator with different data movers. . 78
Table 9: HW resources used by the FP01x8 Accelerators
 with different data movers. .. 82
Table 10: Use of WP3 tools and technologies by project partners (M24) 91

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 8 of 119

© FitOpTiVis Consortium public

Table of Acronyms

UML-MARTE UML Profile for Modelling and Analysis of Real-Time and
Embedded Systems

SDSoC Software Defined System in Chip (System level HW design flow).

HLS High Level Synthesis (Xilinx C/C++ to HW IP compiler).

ESL Electronic System Level

RIE Runtime reconfiguration Implementation of Embedded systems

QRML Quality and Resource Management Language

SAGE-VS SAGE Verification Suite is set of SW tools aimed to accomplish
different formal verification tasks at design time.

DSL Domain Specific Language

S3D Single-Source System Design Framework

MDA Model Driven Architecture

PIM, PDM, PSM Platform Independent/Description/Specific Model

NFR Non-Functional Requirements

J4CS Joule for C statements

DSE Design Space Exploration

D-HMPS Dedicate Heterogeneous/homogeneous Multi-Processing System

PSPs Property Specification Patterns

SDF Synchronous Data Flow

MPL Max Plus Linear graph (Serves for analysis of DSF graph)

IBC Image Based Control

WCET Worst Case Execution Time

SPADe Scenario and Platform Aware Design

HiL hardware-in-the-loop

CompSOC predictable multiprocessor system-on-chip platform

QoC Quality-of-Control

WC Worst case

FPS Frames per second

AXI4 Xilinx Interconnect standard

AXI4-Stream Xilinx Interconnect standard serving for data streaming

AXI4-Lite Xilinx Interconnect standard serving for access to registers

DMA Direct Memory Access

SG-DMA Scatter-Gather Direct Memory Access

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 9 of 119

© FitOpTiVis Consortium public

OpenMP Open Multi-Processing

SMP Symmetric Multi-Processing

OpenCV Open Computer Vision (C++ library of algorithms)

TTA Transport Triggered Architecture

TCE TTA-based Co-Design Environment

SIMD Single Instruction Multiple Data

LLVM Low-Level Virtual Machine compiler development infrastructure

VLIW Very large Instruction Word

IRF Instruction Register File

FPGA Field programmable Gate Array

SoC System on Chip

OpenCL Open standard defined by khronos group supported by multiple
vendors

TSN Time Sensitive Networks

gPTP generalized Precision Time Protocol

VID VLAN ID

PCP Priority Code Point

BMCA Best Master Clock Algorithm

DTRiMC Design Time Resource Integrator of Model Composer IPs
technology

MDC Multi-Dataflow Composer tool: a dataflow-to-accelerator design
suite

CNN Convolutional Neural Networks

NEURAghe Flexible and parameterized CNN accelerator

NeuDNN NEURAghe Deep Neural Network software stack

CSP Convolution-Specific Processor

LSU Load-Store Unit

AEx AutoExplorer is a design space exploration flow

TMO Tonemapping

YOLO Open source content analysis software

V-PCC Video-based Point Cloud Compression

CfP Call for Proposals

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 10 of 119

© FitOpTiVis Consortium public

2. Executive summary

Deliverable D3.2 (Design time, optimization, deployment and programming strategies
V2), focuses on concrete design flows, tools and design time support packages used,
developed and/or extended in the FitOptiVis project until end of project year 2. D3.2 is
an update of D3.1, adding contributions delivered by M24 related to tasks T3.1 (Model-
driven engineering techniques for energy, performance and other qualities) in Chapter
4, T3.2 (Programming and parallelization support) in Chapter 5, and T3.3 (Accelerator
support) in Chapter 6.

Y2 results which span over all three tasks (T3.1, T3.2 and T3.3) are described in
Chapter 7. These design time technologies are released in Y2 of the project in the
form of publicly accessible evaluation packages and documented in publicly accessible
application notes [7.12] and [7.13]. These released resources serve as concrete WP3
design-time resources for FitOptiVis project partners, and also serve as support
material which can be used by other developers outside of the project.

A major addition in D3.2 in comparison to D3.1 is Chapter 10 which summarizes all the
developed tools and design technologies, highlighting their differences, granularities
and use scenarios.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 11 of 119

© FitOpTiVis Consortium public

3. Introduction

This deliverable presents design methodologies, frameworks and design time support
packages developed and/or improved by WP3 partners. The deliverable integrates
results of tasks T3.1, T3.2 and T3.3 after the second year of the project (M24),
updating D3.1. The work of WP3 is organised in 3 tasks: T3.1, T3.2 and T3.3 of which
contributions are provided in this deliverable as follows.

Task 3.1 – In this document, we describe common approaches to the design time
resources covering model-driven engineering techniques for energy, performance, and
other qualities. These activities are mainly in Chapter 4. One of the core
developments in this Chapter is the RIE methodology, which supports runtime
reconfiguration of the software components described in the QRML modelling
language developed in WP2: it is possible to generate RIE code from the WP2 QRML
language and UML/MARTE models.

Task 3.2 – Contributions of partners related to task T3.2 are mainly included in
Chapter 5. It describes the techniques that have been added or are being added to
the design and programming tools developed in WP3 to improve their programming
and parallelization support. Activities of partners in Task 3.2 also include links to the
WP5.

Task 3.3 – Accelerator related contributions of partners are mainly included in Chapter
6. It describes design time resources related specifically to developing new HW
accelerators. It contains a link to WP5 (Devices) via its new hardware accelerator
designs developed using the WP3 design flows.

Chapter 7 is dedicated to design time methodologies and tools that have been
developed in Tasks 3.1 and 3.3, and have been released before M24 of the project in
the form of publicly accessible well-documented evaluation packages [7.12], [7.13].
These released resources serve as concrete WP3 output for FitOptiVis project
partners. The tools released in open source also serve other developers outside of the
project.

Chapter 10 of this D3.2 deliverable which contains a summary describing all the tools,
mapping them to a big picture related to their granularity and the software/hardware
orientation.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 12 of 119

© FitOpTiVis Consortium public

4. Model-driven engineering techniques for energy,
performance and other qualities

This section presents design and verification frameworks as well as techniques that
WP3 partners have developed during the second year. The first four sections present
design and verification frameworks while the other sections present specific
techniques. Activities of all partners in these areas also form an initial WP3 link to WP2
(component models, abstractions, virtualization and methods).

Project team included in D3.2 set of elaborated model-driven engineering techniques
used by partners as design time resource. Table 1 describes why they have been

chosen to be FitOptiVis model-driven techniques and what kind of features exists in
each of them, how they differ and complement each other.

Model-driven
engineering
technique

Cha
pter

Why chosen to be one of
FitOptiVis model-driven
techniques for the design
time resource

Specific features

FitOptiVis S3D
Modelling
Framework

4.1 Efficiently models real-time
video processing systems
with runtime re-
configuration capabilities.

FitOptiVis S3D framework
includes eclipse-based Papyrus
modelling and requirement
capture framework and
automatic generation of SW
and verification code.

Design Space
Exploration for
Re-
configurability

4.2 Model-driven Design Space
Exploration HW/SW co-
design methodology. Goal
is to identify suitable
“reconfiguration plans” for
different trade-offs

Set of prototypal SW tools to
support the methodology.
Algorithm implementations
providing results with different
accuracy (approximate
computing techniques)

SAGE
Verification
Suite

4.3 Automated Consistency
checking and Inconsistency
finding of requirements
Organization and storage of
requirements in an online
platform.
Automatic synthesis for goal
oriented "correct-by-
construction" policies from a
system model and an
objective.
Automatic test generation
for black-box reactive
systems starting from
requirements formalized in
a logical language.

SpecPro: library translating
requirements from natural
language to logical language.
ReqV: tool for requirements
management and consistency
formal verification.

HyDRA: a tool for synthesizing
an optimal and “correct-by-
construction” policy given a
model and tasks in logical
language.

ReqT: a tool for requirements-
based test suites generation.

Dynamic
performance
tracking
(control

4.4 Depending on the
application requirements,
the optimization algorithms
find the best configuration

It is based on Synchronous
Dataflow (SDF) graph which
can be analysed to answer
performance related questions

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 13 of 119

© FitOpTiVis Consortium public

theoretic
approaches)

(mapping, scheduling and
voltage/frequency setting).

such as the minimum
guaranteed throughput for a
given mapping to a platform.

Modelling with
limited
precision

4.5 This approach allows using
a reasonable dynamic
range while limiting the
data-path width, and thus
energy consumption.

Use of non-linear number
space.

Support for
High Level
Tool Chains

4.6 Design time development
methodology for fast
modelling and development
of algorithms in C/C++ code
executable on ARM with
real video I/O.
Performance of the HW
accelerator can be
estimated from these C/C++
models without complete
compilation to the HW

Compatibility with Xilinx High
Level Synthesis design Flow
(Vivado HLS) and Xilinx
SDSoC system level compiler.
It compiles user defined C/C++
from ARM to the programmable
Logic of the Zynq device.
Xilinx SDSoC requires board
support packages provided by
FitOptiVis WP3 partners.

High-level
abstract
component
model and
DSL

4.7 The specified High-level
abstract component model
and the specified domain
specific language (DSL)
serve as conceptual link of
work performed in the WP2
and in the WP3.

From the perspective of WP3,
the component model provides
the structure (component
architecture). Components are
hierarchically composable
(support for abstracting
composition of components as
another component).

Table 1: Overview and Comparison of Model-driven engineering techniques.

4.1. The S3D modelling methodology for real-time video
processing systems

The Single-Source System Design Framework, S3D [4.1], follows a component-

oriented approach and applies Model Driven Architecture (MDA) principles in the

development of HW/SW embedded systems to deal with the increasing complexity of

software development. It considers application components as units that can be

allocated either on the software part or on the hardware part of the system. S3D has

been developed by UC in several projects [4.2] and the main objective of the S3D

development in FitOptiVis is to adapt and improve the capacity of the methodology to

efficiently model real-time video processing systems with runtime re-configuration

capabilities. Additionally, the capability of the methodology to capture non-functional

requirements will also be evaluated and improved. S3D uses the UML/MARTE

standard and its main goal is to minimize the modeling effort as much as possible. In

order to facilitate capturing all the relevant information about the system for different

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 14 of 119

© FitOpTiVis Consortium public

purposes in a coherent, accessible and compressive way, the information is organized

in views.

Figure 1: TE Single Source System Design Framework (SD3).

Each view encloses all the required information about a particular aspect of the
system. The S3D ecosystem that is presented in Figure 1 includes different tools that

perform different design tasks such as verification, simulation, performance analysis,
scheduling analysis, etc. When the design satisfies all the functional and non-
functional constraints, the code to be deployed on the different computational nodes of
the distributed platform is automatically generated. The FitOptiVis S3D framework
includes several design and verification tools such as an eclipse-based (Papyrus)
modelling and requirement capture framework and automatic generation of SW and
verification code.

The proposed approach uses three global models: PIM (Platform Independent Model),
PDM (Platform Description Model) and PSM (Platform Specific Model). The PIM
specifies the application structure (system components and their relation), behaviour
and requirements. The PDM defines the structure and main performances of the
physical HW/SW platform in which the application will be implemented. The PSM
model defines the allocation of the application components in the platform HW/SW
resources.
The main view of the PIM is the Application View. This view defines the application
components and they relation. An example of Application View is presented in Figure 2

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 15 of 119

© FitOpTiVis Consortium public

Figure 2: Application view

The Application View uses generic components. In MARTE, these elements model
real time units (concurrent elements) or passive component (non-concurrent
elements). The external view of the component includes the services (functions) that
they provide and/or require. Thus, the required interface of a component lists all the
services that the component requires from other components. The provided interface
lists all the services that the component offers to other components. Figure 3 shows an

example of component that presents all the interface services. Every component has
at least an implementation (or behaviour) and a specific verification test case.

Figure 3: Example of Component interfaces.

During the last year, the framework has been extended with a tool that automatically
generate UML/MARTE models from QRML descriptions. For this purpose, QRML has

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 16 of 119

© FitOpTiVis Consortium public

been extended to support the service- oriented architectures that are typically
modelled in UML/MARTE. The QRML extension supports the definition of
provided/required interfaces as well as the definition of new datatypes for service
parameters.

The generated code is imported by the S3D framework and this integrates the WP2
QRML language in an UML/MARTE design flow. Next figure presents the S3D design
flow.

4.2. Design space exploration for reconfigurability

In Y2, UNIVAQ has extended the HEPSYCODE methodology to consider non-

functional requirements (NFR) related to energy consumption, by exploiting a high-

level (i.e., statement-level) energy performance metric able to provide information

about energy consumption of an embedded system and so useful for energy

consumption estimation approaches. This metric is used inside the HEPSYCODE

model-driven ESL HW/SW co-design methodology for the design of run-time

reconfigurable heterogeneous parallel dedicated systems. Accordingly, UNIVAQ has

also improved the set of prototypal SW tools supporting the methodology. Figure 5

shows the reference HEPSYCODE ESL HW/SW co-design flow more in details.

Figure 4 S3D design flow Figure 4: S3D design flow.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 17 of 119

© FitOpTiVis Consortium public

Figure 5: HEPSYCODE ESL HW/SW co-design flow.

The HEPSYCODE goal is to identify (at design-time and, in future, also at run-time)

suitable “reconfiguration plans” for different trade-offs (e.g., timing vs energy/power vs

accuracy) by considering a heterogeneous set of HW components with multiple

working points. Respect to the plan exposed in D3.1, UNIVAQ has improve an existing

system-level metric for timing performance [4.3] and, based on this one, defined an

innovative system-level metric for energy consumption.

The result of such an activity has been the definition of the following statement-level
energy consumption metric.

Definition: J4CS (Joule for C statements)

Let 𝑍 = {𝑧𝑖  |  𝑖 = 1, 2, ⋯ , 𝑛 } a benchmark set of n reference leaf C functions (i.e., no
other internal nested function calls), 𝐵 = {𝑏𝑖,𝑘 | 𝑖 = 1, 2, ⋯ , 𝑛 ⋀ 𝑘 = 1, 2, ⋯ , 𝑡 } a set

of t randomly generated inputs for each function zi, and 𝑃 = {𝑝𝑗  | 𝑗 = 1, 2, ⋯ , 𝑚 } a set

of m processing units (i.e., processors that are able to execute the considered
software functions). The J4CS metric is the ratio between the number of assembly
instructions executed by the target processor pj running the functions zi, and the
number of executed C statements multiplied by the average energy of an assembly

instruction execution �̅�′(𝑝𝑗), i.e.:

𝐽4𝐶𝑆(𝑝𝑗) = {�̅�′(𝑝𝑗) ⋅ 𝐼′̅(𝑝𝑗, 𝑧𝑖 , 𝑏𝑖,𝑘) = �̅�′(𝑝𝑗) ⋅
𝐼(𝑝𝑗 , 𝑧𝑖, 𝑏𝑖,𝑘)

𝐶𝑆(𝑧𝑖, 𝑏𝑖,𝑘)
 , ∀ 𝑧𝑖 ∈ 𝑍, 𝑏𝑖,𝑘 ∈ 𝐵 }

Where 𝐼(𝑝𝑗 , 𝑧𝑖 , 𝑏𝑖,𝑘) is the number of assembly instructions executed by the target

processor 𝑝𝑗 to execute the function 𝑧𝑖 with inputs 𝑏𝑖,𝑘, 𝐼′̅(𝑝𝑗, 𝑧𝑖, 𝑏𝑖,𝑘) is the mean

number of assembly instructions executed for each generic statement C belonging on
software function 𝑧𝑖 on the processor 𝑝𝑗 with inputs 𝑏𝑖,𝑘, and 𝐶𝑆(𝑧𝑖, 𝑏𝑖,𝑘) is the number

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 18 of 119

© FitOpTiVis Consortium public

of executed C statements for the function 𝑧𝑖 with inputs 𝑏𝑖,𝑘 evaluated with static host

profiling. The J4CS evaluation approach is shown in Figure 6.

Figure 6: HEPSYCODE ESL HW/SW co-design flow.

UNIVAQ has exploited a statistical characterization approach so providing the J4CS
metric useful to estimate, at an early-stage design phase, the energy consumption
related to the execution of SW on a target embedded processor, so characterizing the
processor itself. J4CS is suitable for very fast estimation, comparison and selection
activities. J4CS evaluation considers an assembly-level analysis. UNIVAQ exploited
also a framework to evaluate each parameter that contribute to the metric evaluation.
The obtained value can be assigned to each statement of a given C function and
exploited, with a host-based source-level profiling, to estimate the total amount of
energy consumed when the C function with specific inputs is executed on the target
embedded processor, as presented in the next point. Plans for Y3 mainly focus on the
extension of the metric to consider also HW implementations: To extend an existing
DSE approach [4.4] to consider also “energy consumption” as starting non-functional
requirements. From the energy point of view, the goal is to suggest to the designer
architecture/mapping solutions able to consume less than a given amount of energy
while still satisfy timing requirements.

UNIVAQ has extended the HEPSYCODE methodology to consider energy
requirement specifications, metrics (J4CS), and objective cost functions in the design
space exploration approach. UNIVAQ is applying it to some reference examples, also
w.r.t. image and video processing applications (e.g., Sobel or equivalent image/video
filtering applications). User energy requirements can be related to the possibility to find
system implementations based on a dedicate heterogeneous/homogeneous multi-
processing system (D-HMPS) that consumes as less energy as possible, or a D-
HMPS that consumes less energy than a given energy threshold, while considering
also other NFR (e.g., timing, cost, etc.). The considered energy metric is the J4CS,
while the design space exploration analyses different possible solutions by means of
an evolutionary algorithm that evaluates, at the same time, with a weighted sum
method, several objectives (i.e., cost) functions. Considering different processor
technologies, HEPSYCODE is able to find a HW/SW partitioning, to define a HW
architecture and to suggest a mapping able to satisfy the input energy requirements.
Finally, HEPSYCODE is able to the estimate the energy consumption by means of a
SystemC simulator that consider the results found by the evolutionary algorithm.
Examples and results will be presented in the next deliverable, while the whole
approach will be considered to be applied to one or more of the FitOptivis use cases.

Plans for Y3 mainly focus on the presentation of the results obtained by applying the
extended (i.e., energy-aware) HEPSYCODE, and the analysis of a further extension to

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 19 of 119

© FitOpTiVis Consortium public

consider also a set of alternative algorithm implementations providing results with
different accuracy (i.e., by means of approximate computing techniques). The goals
will be:

 To provide a classification of the existing approximated computing approaches
in order to define a system-level metric to evaluate the “approximation degree”
(i.e., the accuracy) of alternative implementations.

 To exploit such metric to drive the DSE to suggest to the designer
architecture/mapping solutions able to provide results with reduced accuracy in
order to help satisfying timing and energy/power constraints

4.3. The SAGE verification suite

The SAGE Verification Suite (SAGE-VS) is a set of SW tools aimed to accomplish

different formal verification tasks at design time. The main components of the SAGE-

VS are:

 SpecPro: a software library to translate requirements from natural language to
logical language.

 ReqV: a tool for requirements management and consistency formal verification.

 HyDRA: a tool aiming at synthesizing an optimal and “correct-by-construction”.
policy given a model and tasks in logical language.

 ATG: a tool for requirements-based test suites generation.

The key features of the SAGE-VS are

 Automated consistency checking of requirements expressed in natural
language (ReqV component).

 Automated inconsistency finding in case of inconsistent requirements (ReqV
component).

 Organization and storage of requirements in an online platform (ReqV
component).

 Automatic synthesis for goal oriented "correct-by-construction" policies from a
system model and an objective (HyDRA component).

The inputs are:

 Set of requirements in natural (controlled English) language, formulated as
Property Specification Patterns. (PSPs) for Linear Temporal Logic extended to
constrained numerical signals (ReqV component).

 Hybrid model of the system with safety limits (HyDRA component).

The outputs are:

 Consistency result (yes/no). In the case of inconsistency, the tool returns the
minimal set of requirements that causes the inconsistency (ReqV component)

 A yes/no answer on whether the system can be used to achieve the tested use
case. A yes answer comes with a correct by design plan to achieve the given
objective. The plan accounts for both the discrete and continuous limits of the
system so that the plan is valid and guaranteed to be executable and thus
constitute a proof that the system has the targeted capability.

Concerning the usage within FitOptiVis, the objective at M12 is to provide for each tool

some extensions according to the use-cases’ needs. In particular:

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 20 of 119

© FitOpTiVis Consortium public

 ReqV: extend the expressivity of input PSPs to allow the translation in a logic
language for hybrid systems and improve the usability of the GUI.

 HyDRA: define a more usable input language and improve the performance of
the planner in terms of execution time.

 ATG: release the first stable version.

4.4. Dynamic performance tracking of image-based
applications using control theoretic approaches

TUE is working on design-time optimization algorithms for imaging and video

applications with dynamically changing performance. The basic application setting is

shown in Figure 7. The image/video streams are processed on multi-core platforms

with some reconfiguration mechanism. The application uses the processed information

to meet some high-level requirements such as throughout and latency of the

information obtained from the image content. Depending on the application

requirements, the optimization algorithms finds the best configuration (e.g., mapping,

scheduling and voltage/frequency setting). The application requirement may change at

runtime (e.g. a user increasing the frame size of a requested video stream) and

depending on a changed requirement an existing configuration may be suboptimal or

the requirements might not be met. The developed algorithm finds the best

configuration for the dynamically changing requirements. Thus, the system tracks the

dynamically changing performance requirements by changing system reconfigurations.

Figure 7: Embedded multi-core platform with reconfiguration mechanism.

4.4.1. Modelling applications as a max-plus linear system

The performance aspects of a static image/video processing application can be

modelled as a Synchronous Dataflow (SDF) graph which can be analysed to answer

performance related questions such as the minimum guaranteed throughput for a

given mapping to a platform [4.14]. Temporal behaviour of an SDF graph can be

modelled as a max-plus linear (MPL) system which provides a means to efficiently

analyse SDF graphs. A MPL system has the following form:

𝑥(𝑘 + 1) = 𝐴⨂𝑥(𝑘) ⊕ 𝐵 ⊗ 𝑢(𝑘)

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 21 of 119

© FitOpTiVis Consortium public

𝑦(𝑘) = 𝐶⨂𝑥(𝑘) ⊕ 𝐷𝑢(𝑘)

where 𝑥(𝑘) captures the state-vector containing time-stamps of kth instance all the
events of interest such as production of processed output, generation of intermediate
data and so on; 𝑦(𝑘) captures the time-stamps of generation of output such as the kth
processed image; 𝑢(𝑘) specifies the time-stamps of when to apply the input signal
(e.g., changing voltage and frequency of a processor) to the system. The A, B, C and
D matrices capture the interplay between states, inputs and outputs and depend on
the specific application being modelled. The basic idea is to design 𝑢(𝑘) such that 𝑦(𝑘)
meets the application requirements. Since 𝑢(𝑘) can be adapted dynamically the
performance requirement can be tracked by regulating 𝑦(𝑘).

For illustration, let us consider a simplified image-assisted surgery scenario where
images are captured by a camera at a constant rate and they are processed on a 2-
core system-on-chip. The processed images are displayed at a device which is used
by a doctor to perform surgery. A synthetic SDF model of such an application is shown
below (Figure 8) where SRC is the model of the camera that produces images at a
constant rate and P, Q are tasks (modelled as actors) to process the image and
produce output images at time instances 𝑦(𝑘) at the display. The processing of the
images can be certain upscaling or downscaling depending on the required display
resolution (decided by the doctor). The P and Q actors are mapped to two different
processors of which the frequency can be controlled independently. 𝑢1(𝑘) and 𝑢2(𝑘)
are the time instances when the frequency of the processors is scaled up or down. The
system configurations thus consist of the frequency settings of the two processors.
The 𝑥𝑖(𝑘) are the production time instances of the intermediate signals.

Figure 8: Synthetic SDF model.

The overall timing of the production of output images, intermediate signals and input
signals can be modelled as a MPL system shown above. The performance
requirement of such a system can be modelled by the desired/reference rate of frame
updates at the display device. That is, the reference inter-arrival time ∆𝑟𝑒𝑓(𝑘) of frames

can be used to find the reference arrival time of the next frame,

𝑦𝑟𝑒𝑓(𝑘 + 1) = 𝑦(𝑘) + ∆𝑟𝑒𝑓(𝑘).

𝑢1(𝑘) and 𝑢2(𝑘) decide which processor should run at what frequency and when/if they
are to be changed. When one or both processors run at a low frequency, the inter-
arrival time grows and vice versa when they run on a higher frequency.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 22 of 119

© FitOpTiVis Consortium public

4.4.2. Control-theoretic approach

The proposed idea is to design 𝑢(𝑘) as a state-feedback controller in the following
form,

𝑢(𝑘) = 𝐾𝑖⨂𝑥(𝑘)

where 𝐾𝑖 is the feedback gain we design. That is, depending on the current state of
the system 𝑥(𝑘), we adapt the input to the system 𝑢(𝑘) by choosing the right 𝐾𝑖. For
each system configuration 𝑖 (i.e., for each frequency setting in the example), we design

a feedback gain 𝐾𝑖. All the signals in this framework are time-stamps. That is, we
control the time when some event should happen in order to achieve a given

performance requirement. The choice of 𝐾𝑖 can be optimized for different optimization
objectives such as minimizing error with respect to 𝑦𝑟𝑒𝑓(𝑘 + 1) or minimizing

energy/power. Overall, the closed-loop system behaviour is given by,

𝑥(𝑘 + 1) = (𝐴 ⊕ 𝐵 ⊗ 𝐾𝑖)𝑥(𝑘) = 𝐴𝑐𝑙
𝑖 𝑥(𝑘)

𝑦(𝑘) = (𝐶 ⊕ 𝐷 ⊗ 𝐾𝑖)𝑥(𝑘) = 𝐶𝑐𝑙
𝑖 𝑥(𝑘).

The feedback gain 𝐾𝑖 is designed in a way that 𝑦(𝑘) meets the system requirements.

4.4.3. Modelling dynamism as a switched max-plus linear
system

We consider the scenario when the application requirements change at runtime. In the
FitOptiVis context, this is particularly relevant. For example, in the case of the image-
assisted surgical scenario, the doctor may want different output frame sizes and/or
update rates depending on the stage of the surgery. This means that the reference

inter-arrival time ∆𝑟𝑒𝑓
𝑖 (𝑘) changes depending on the doctor’s requirement leading to a

different reference arrival time of the next frame,

𝑦𝑟𝑒𝑓
𝑖 (𝑘 + 1) = 𝑦(𝑘) + ∆𝑟𝑒𝑓

𝑖 (𝑘).

Control inputs 𝑢1(𝑘) and 𝑢2(𝑘) in our example adapt the processor frequency

according to the requirements by adapting the gains 𝐾𝑖. This means the closed-loop

system may switch between various (𝐴𝑐𝑙
𝑖 , 𝐶𝑐𝑙

𝑖). This is referred to as a switched max-

plus linear system. We show an initial result for the above synthetic example. The
actual inter-arrival time closely follows the reference one by the right design of gains.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 23 of 119

© FitOpTiVis Consortium public

Figure 9: Inter-arrival time.

Figure 9 shows tracking performance of the proposed approach for a static application

(where work-load variation is not modelled as different scenarios). The reference inter-
arrival time is shown in red which changes over time. E.g., a frame is desired to be
processed in every 3 time units from 0-4000 time units. From 4000 to 8000 time units,
the reference inter-arrival time is 5 time units. The control adapts the configuration to
track this dynamic requirement and the actual inter-arrival times are shown in blue
lines. Moreover, typical imaging/video applications nowadays exhibit data-dependent
workload variations (e.g. related to the image encoding or the number of features in an
image). The above framework can be used to model workload variations as scenarios.
The state-of-the-art approach considers static requirements (that do not change in
runtime) and a dynamic requirement is usually modelled with the worst-case resulting
in over-dimensioning of resources.

4.5 Scenario- and platform-aware design flow for image-
based control systems

In Y2, TUE has developed a scenario- and platform-aware design flow image-based
control loops as well as software support for application development for the same.
Image-based control (IBC) systems are increasingly being used in various domains
including healthcare and autonomous driving. The key challenge in IBC is to deal with
high computation demand while guaranteeing performance and safety requirements
such as stability. While modern industrial heterogeneous platforms, such as NVIDIA
Drive, offer the necessary compute power, application development on these platforms
with performance and safety guarantees is still challenging. Alternative time-
predictable platforms are not yet in widespread use.

A typical design flow for IBC systems consists of three distinct elements: (i) mapping
tasks onto platform resources; (ii) timing analysis, consisting of task-level worst-case
execution time (WCET) analysis and application-level analysis to obtain worst-case
performance bounds on aspects such as latency and throughput; (iii) controller design
using the obtained performance bounds, ensuring performance and safety. While such
a three-step design process is modular in nature, it usually leads to over-dimensioned
systems with sub-optimal performance, because task- and/or application-level timing
bounds are pessimistic.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 24 of 119

© FitOpTiVis Consortium public

TUE developed a scenario- and platform-aware design flow (SPADe) for IBC systems
that exploits frequently occurring workload scenarios to optimize performance. For
industrial platforms, where tight task-level WCET bounds are difficult to obtain,
frequently occurring task execution times are used instead of WCET estimates to
obtain tight application-level temporal bounds. During controller design, performance
optimization and guaranteed stability are achieved by identifying appropriate system
scenarios and by designing a switched controller that switches between those
scenarios. We illustrate the method considering a predictable multiprocessor system-
on-chip platform - CompSOC.

We validate the proposed method using hardware-in-the-loop (HiL) experiments with
an industrial heterogeneous multiprocessor platform - NVIDIA Drive PX2. We obtain
an improved control performance compared to state-of-the-art IBC design.

4.5.1 Scenario- and platform-aware design (SPADe)

The SPADe flow comprises the following steps as shown in Figure 10:

 identify, model and characterise the frequently occurring workload scenarios
that characterise the dynamic behaviour of the image processing in the control
loop;

 find optimal mappings for these scenarios for the given platform allocation;

 identify optimal system scenarios combining workload and mapping information
and taking into account constraints from the control domain, e.g. stability, and
from the embedded domain, e.g. camera frame rate;

 design a controller with high overall QoC and guaranteed stability for the
chosen system scenarios; and

 a runtime reconfiguration mechanism for implementation.

As already stated, we illustrate the SPADe design flow considering the predictability
and composibility properties of the CompSOC platform. In the following, we detail the
steps in the SPADe design flow.

Figure 10: SPADe design flow.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 25 of 119

© FitOpTiVis Consortium public

Figure 11: Multiprocessor System on Chip with two processor tiles and one memory tile.

4.5.1.1 SPADe inputs

The inputs to our design flow are details of the IBC application, other applications
sharing the platform, given platform allocation for the IBC application and camera
characteristics, e.g. fps. These should be compliant with the application and platform
models. Note that the details of the other applications sharing the platform are not
relevant for a composable platform such as CompSOC.

4.5.1.2 Formal modelling: application and platform models

A typical IBC application model is modelled as a Scenario-Aware Dataflow Graph
(SADFG) [4.14]. The SADFG of the sensing and processing algorithm receives the
camera image frames and detects the regions-of-interest (RoID) in the frames. The
detected regions-of-interest (RoI) can be processed in parallel on a multiprocessor
platform. The number of allocated processors for our application determines the
number of RoI processing (RoIP) actors in our model. Note that the sensor-to-actuator
delay and sampling period vary based on the mapping to the processors. After
processing the RoI, the data is merged and the controller state is computed by the RoI
merging (RoIM) task. The control algorithm (C) then computes the controller input and
feeds it to the actuation (A) task. This is explained later with examples.

Task-level WCET profiling is required to compute the WCETs on the CompSOC
platform. The platform is modelled as a platform graph as shown in Figure 11 for the

two platforms we considered.

4.5.1.3 Analysis and design

System mapping: We first describe the system mapping, i.e., binding and scheduling,
of our IBC application model to the platform. Figure 13 illustrates three workload

scenarios and their possible platform mapping. Each workload is associated with a
SADFG. Figure 13 (a), (c), and (e) model the data flow graphs for different workloads

and Figure 13 (b), (d) and (f) show their corresponding mappings on two or three

processor tiles. Optimal mapping for a workload scenario to a platform graph
generates binding-aware SDFG.

Having more processor tiles means that we can reduce sampling period h and sensor-

to-actuator delay τ of IBC system by parallel execution of the sensing tasks. A lower h
and τ are translated to a better performance of an IBC system.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 26 of 119

© FitOpTiVis Consortium public

System mapping refers to the mapping of application tasks (modelled as an SADF
graph) to the platform. An application can have multiple mapping options for a given
platform allocation. For example, in Figure 13 (c) and (e), the given platform allocation

is two and three processor tiles respectively (visible in the number of RoIP actors) for
the same workload (5 RoI).

Relation between dataflow and control design: The inverse throughput of the mapped
binding-aware SDFG for scenario sequence Si

ω gives the sensor-to-actuator delay τ,

i.e.

 𝜏𝑠𝑖
=

1

𝑡ℎ̅̅̅(𝑠𝑖
𝜔)

And sampling period

ℎ𝑠𝑖
= ⌈

𝜏𝑠𝑖

𝑓ℎ
⌉ 𝑓ℎ

where 𝑓ℎ is the camera frame arrival period.

Controller design: Once we obtain τsi

and hsi
for mapped workload scenario Si, they are

then used for the discrete-time controller implementation and for designing the
controller gains. See [4.14] for further details.

1 A scenario- and platform-aware design flow for image-based control systems, SajidMohamed, DipGoswami,

VishakNathan, RaghuRajappa, TwanBastena, Microprocessor and Microsystems, 2020.

Figure 12: NVIDIA Drive PX2 platform graph structure.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 27 of 119

© FitOpTiVis Consortium public

Optimal system-scenario identification: It is possible for multiple workload scenarios to
have the same sampling period due to implementation constraints like platform
allocation and camera frame rate. For example, for the workload scenario represented
in Figure 13 (a) with (hi, τi), the number of RoI, #RoI =2. However, even for the

workload scenario with #RoI =1 mapped to two processors, we would have the same
timing parameters (h1, τ1) since the tasks would have to execute sequentially on one
processor. Similarly, for the workload scenario in Figure 13 (c), we would have the

same timing parameters for #RoI 5 and 6.

A system scenario sk abstracts multiple workload scenarios si such that for hk = nfn for
some n > 0, (hk − fh) < hi ≤ hk and τi ≤ τk̇. Only system scenarios are then

considered for defining the control configuration and for platform implementation.

4.5.1.4 Implementation and runtime reconfiguration
mechanism

The optimal system scenarios are identified and their corresponding control and
mapping configurations are stored as a look-up table (LUT) in platform memory for
runtime implementation. During run-time, for every arriving input image frame, we
compute the workload (e.g. through an image pre-processing step) and choose the
correct system scenario associated with this workload from the LUT. Controller and
mapping configurations of the corresponding system scenario are loaded from the
LUT. A scheduler then reconfigures the mapping, the time-triggering of the actuation
task and the controller gain parameters based on the chosen system scenario. The
overhead cost for this reconfiguration has already been considered in our analysis
model as a time cost in the start of sensing task.

Figure 13: System mapping to MPSoC.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 28 of 119

© FitOpTiVis Consortium public

4.5.2 Evaluation: IMACS framework

IMACS [4.15] is an open-source framework for performance evaluation of IMAge in the
Closed-loop System. This framework allows for software-in-the-loop (SiL) and
Hardware-in-the-loop (HiL) testing and bugging IBC systems. We evaluated the
proposed SPADe framework on the IMACS framework. The approach being
developed and reported in Section 4.4 (on dynamic throughput tracking) will be
integrated into IMACS framework once the method gets further matured.

4.5.2.1 Case study

We considered a concrete case study of a multi-camera lane keeping assist system
(LKAS). The goal of the LKAS is to steer the vehicle autonomously to follow the centre
line of a lane. Multiple cameras are used since the field-of-view of a single camera is
not sufficient to detect the lanes when the vehicle has to make sharp turns, e.g., at a
T-junction. Figure 13 (c) and (d) show the two different scenarios in the LKAS system.

The first scenario 𝑠1 (see Figure 13 (c) occurs when the vehicle is navigating on a road

with no sharp turns. In scenario 𝑠1, only one camera 𝑐1 needs to be active. The second
scenario 𝑠2 (see Figure 13 (d) happens when the vehicle needs to take a sharp turn. In

this case, all three cameras 𝑐1, 𝑐2and 𝑐3 need to be active.
During runtime the scenarios are detected based on the following: i) when there is a

lane detected by camera 𝑐1and there is no request to make a turn, the LKAS executes
in scenario 𝑠1; ii) when there is no lane detected by camera 𝑐1or there is a request to

make a turn, the LKAS executes in scenario 𝑠2. Our multi-camera LKAS is sharing the

Figure 14: IMACS evaluation framework. (a) IBC system block diagram and the HiL simulator.
(b) a snapshot of the HiL simulation environment in webots. (c) LKAS using single camera. (d)

multi-camera LKAS; 𝑐1, 𝑐2, 𝑐3 are the cameras.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 29 of 119

© FitOpTiVis Consortium public

NVIDIA Drive PX2 platform with two other data-intensive applications - object detection
and tracking (ODT) and automatic emergency braking (AEB).

4.5.2.2 Results and comparison

We compare our SPADe approach with a state-of-the-art pipelined control approach.
For fairness in the comparison, we use the same control design technique - LQR with
integral action - explained in [4.16] for SPADe. Further, we consider the same given
platform allocation of two processors.

The results of the comparison between the pipelined controler with respect to the
SPADe approach are shown in Figure 15. The controller is supposed to bring the lateral

deviation 𝑦𝐿 to 0.03m as soon as possible. A shorter time to reach the reference, the
better the Quality-of-Control (QoC). Note that SPADe allows for parallelisation that
reduces both sampling period and sensor-to-actuator delay. However, pipelining only
reduces the sampling period. We observe that the QoC of the pipelined controller is
always in the range of QoC between the worst-case (wc) design and the SPADe
approach.

4.6 Modelling of real-time video processing systems with
limited precision

A limited precision approach will be applied to image / video processing pipeline. This
will be modelled and analysed prior to actual implementation. Application areas will
include CNN type processing and content analysis from a live video stream. The first

Figure 15: Comparison between SPADe and pipelined (state-of-the-art) approaches; bc=best-
case timing and wc=worst-case timing; SPADe is executed with a number of scenario

sequences; 𝑦𝐿 is the lateral deviation of the LKAS system under study.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 30 of 119

© FitOpTiVis Consortium public

iterations will be simulation models, which will later be implemented in FPGA hardware
and finally integrated to full custom ASIC along a RISC-V CPU core.

The key idea is to use non-linear number space. This approach allows using a
reasonable dynamic range while limiting the data-path width, and thus energy
consumption. Additional benefits include lower memory requirements and simplified
arithmetic operations (for given operations).

The usability of this approach will be studied primarily in the field of object detection,
and later a larger field of application domains will be looked into after that. The
purpose is to find domains where the loss of precision is not a significant problem, and
the benefits of the reduced precision processing outweigh the negative impacts. Also
conversions between the typical binary domain and this reduced precision domain will
need attention.

4.7 Design time support for high level tool chains

In Y2 UTIA developed support for high level modelling of IP blocks based on
integration of the Xilinx System generator for DSP 2018.2. Function of IPs can be
modelled in bit-exact and cycle accurate Matlab/Simulink model before automated
generation of the RTL code of the IP. The IP is integrated in Vivado based flow and
communicates via the AXI-stream data interfaces with automatically generated data
movers. SW API for these data movers is also automatically generated for the Debian
OS applications running on ARM A9 or A53. The automated generation of data movers
is implemented in a high level tool chain based on Xilinx SDSoC 2018.2 compiler with
design time support for the PetaLinux 2018.2 kernel, Debian “Stretch” operating
system. Released evaluation package provide support for Ethernet data exchange
based on the Arrowhead framework. See Chapters 7.1 – 7.3 of this deliverable for
details.

4.8 High-level abstract component model and DSL

CUNI has been acting in the work package as a bridge between WP2 and WP3 in
regard to component modelling. The concepts of the component model and the
corresponding domain specific language to capture components of the model in textual
format are described in detail in D2.1. In this section, we connect the component
model to model-driven design space optimization.

CUNI models devices and functions as components. Generally, we distinguish two
principal types of components – platform component (corresponds to a device or an
execution platform) and application component (corresponds to a function – typically a
data processing block). The main relation between these two types of components is
that an application component runs on a platform component.

Components further exhibit input and output ports that can be used to construct video
processing pipelines.

Components are hierarchically composable, which allows abstracting composition of
components as another component. In this sense a smart camera can be composed of
embedded board (a platform component) and software (application component).

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 31 of 119

© FitOpTiVis Consortium public

An important feature of components is that they are configurable (e.g. FPS, video
quality, etc.) and exhibit distinct qualities in each configuration (e.g. power
consumption).

When composing components together, relation between components and their
configuration parameters gets established (e.g. that two neighbouring components in
video pipeline have to operate on the same FPS or that a hardware component must
provide enough memory to the software component). This effectively limits the design
space of configurations.

From the perspective of WP3, the component model provides the structure (i.e. a
component architecture). The interpretation of the configuration parameters and their
relation and influence on component qualities is based on the models discussed above
in the section.

As such, the component model provides structural part of the reference architecture
that is specialized by use of corresponding modelling techniques to deal with particular
aspects of energy, performance and other qualities.

4.9 Runtime reconfiguration Implementation of Embedded
systems

RIE (Runtime reconfiguration Implementation of Embedded systems) is a component-
based C++ implementation methodology. It also provides software reconfiguration
capabilities for managing component implementations and system configurations at
runtime. The RIE methodology has five basic elements

 User-defined data types. Specific C++ classes implement these elements.

 Component interfaces. C++ classes with pure virtual functions are used to
model the required and provided interfaces.

 Components. RIE use C++ classes to implement components. These classes
derive from an important RIE element, the “RIEComponent” class. This class
accesses to all the application components and provides common services
such as component monitoring, runtime reconfiguration and set-point
modification. In RIE, a component is implemented with a base class and
several implementation classes. The base class identifies the component
required and provided services. This class derives from the “RIEComponent”
class and all the interface classes that model the provided services. The base
class does not include service implementations. The implementation classes
derive from the base class and provide different implementations such as CPU-
oriented code, OpenCL or HW accelerator implementation. For example, an
image-processing component, “ImgProc”, provides an “I_Image” interface while
the “Rgb2gray” component class defines a particular implementation of the
“ImgProc” base class.

class ImgProc: virtual public RIEComponent, virtual public I_Image { …
class Rgb2gray: public ImgProc, virtual public RIEComponent, virtual public I_Image

The interface “I_Image” provides a service that access to an image:

class I_Image { public: virtual void get_image(imageType &image)=0; …

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 32 of 119

© FitOpTiVis Consortium public

 Instances. In order to support hierarchical designs, the methodology defines a
class (RIEInstance) that allows instantiating child components in the parent
component. The instances are associated to base components in the C++
code. However, the RIE infrastructure can associate at runtime a particular
instance to any implementation class that derives from the base class.

 Required services. The C++ “RIEInterface” class defines the required
interfaces of a component. These required services are associated to the
instances that provide the services.

The methodology supports on-the-edge component implementations that are
implementation classes with remote interfaces. The remote interface is a particular
implementation of the interface that provide support for remote procedure calls and it is
independent of a particular component. This methodology facilities the use of
commonly use micro service frameworks such as Google grpc.

The RIE methodology supports runtime reconfiguration of the software components. In
order to modify the configuration set point, several qualities are monitored at runtime.
In the RIE-based methodology and WP2 abstract component model, a component
may have several set points that define different component implementations and
configurations. All the implementations of the basic component will share the same
provided/required interfaces and a common set of configuration parameters and
monitoring qualities. Each implementation or WP2 QRML alternative may have
particular configuration parameters or qualities. The implementations represent
different component mapping of the application into a physical platform (vertical
composition in the abstract model of WP2).

The component implementations could also use different algorithms for the same
behaviour in order to provide a different performance balance (e.g. reduce power
consumption while increase service latency).

The RIE methodology and implementation library were designed taking into account
the WP2 abstract models and the UML/MARTE design methodology. For this reason,
it is possible to generate RIE code from the WP2 QRML language and UML/MARTE
models. Some of these generators will be presented in a next section.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 33 of 119

© FitOpTiVis Consortium public

5. Programming and parallelization support

This chapter describes the techniques that have been added or are being added to the
design and programming tools to improve their programming and parallelization
support. Activities of all partners in this area also form a link to the WP4 programming
support developments.

5.1. Static resource allocation and runtime scheduling

BUT works on profiling of applications in design time and runtime planning:

 The main goal is to optimize execution of algorithms in multitasking/threading
environment

 Sequential execution of tasks, that can but do not have to run in parallel

 The main benefit being prevention of unnecessary context (and cache)
switching

During the algorithm development, the key part is profiling which can hint on resource
consumption during real execution of the algorithm. This is especially important for
algorithms with strong data dependency where resource consumption is interlocked
with the input and cannot be determined in advance. The only way is to actually run
the algorithm and gather profiling information and statistics. Examples to this are
detection of objects where the time required for analyzing an image is dependent on
the image content.

We focused on platforms combining FPGA and ARM CPU. Profiling on such platforms
is to some extent covered with tools from Xilinx - AXI Performance Monitor core
enables AXI system performance measurement for multiple slots (AXI4/AXI3/ AXI4-
Stream/AXI4-Lite). This core captures configurable real-time performance metrics for
throughput and latency for connected AXI interfaces. In addition, it logs the AXI
transactions, external system events and performs real-time profiling for software
applications. This is sufficient in many applications. A drawback is that AXI
transactions are logged for AXI3/AXI4 interfaces, for AXI-Stream only summary
statistics are gathered - data transfer, packet counts, etc., but there is no info on the
individual packets (length, timestamp, processing time) which could be beneficial in
analysis of complex algorithms. For this reason, we developed an IP core similar to the
AXI Performance Monitor which can log AXI-Stream transactions. Input interface
works in monitor mode and it can be connected to any existing AXI link.

Each log record is represented as 128 bit data. Timestamps are recorded with cycle-
precision in 48 bit value. Up to 16 devices can be monitored (4 bits). Each interface
can set 12 bits containing flags like image row start/end, specific value presence etc.
AXI3/AXI4 can log read/write sequences. Additionally there is a 64 bit block for
additional, user-defined values, like addresses, values etc. The output of the IP core is
32 bit AXI-Stream interface. Data is transferred to the CPU memory via DMA. A simple
application then reads the data and stores them in JSON format.

Original profiling user interface (described in D3.1) was not sufficient for display of
complex profiling information and it did not support filtering. We replaced the original
tool with Chrome Tracing from Chromium project which can handle large logs, and
supports zoom/pan, filtering, statistics, etc. Primary purpose of Chrome Tracing is
analysis if web applications but there are also e.g. Python and C++ bindings. And it
supports JSON import which we use for our purposes.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 34 of 119

© FitOpTiVis Consortium public

{
"traceEvents": [
{"args":{"name":"AxiStream0-
Image"},"cat":"__metadata","name":"thread_name","ph":"M","pid":1,"tid":1,"ts":0},
{"args":{"name":"AxiStream0-
Line"},"cat":"__metadata","name":"thread_name","ph":"M","pid":1,"tid":2,"ts":0},
{ "pid":1, "tid":1, "ts":87705, "ph":"B", "cat":"AXI-Stream0", "name":"Image", "args":{
"id":0 } },
{ "pid":1, "tid":2, "ts":87705, "ph":"B", "cat":"AXI-Stream0", "name":"Line0" },
{ "pid":1, "tid":2, "ts":328154, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":346867, "ph":"B", "cat":"AXI-Stream0", "name":"Line1" },
{ "pid":1, "tid":2, "ts":846867, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":946867, "ph":"B", "cat":"AXI-Stream0", "name":"Line2" },
{ "pid":1, "tid":2, "ts":1146867, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":1246867, "ph":"B", "cat":"AXI-Stream0", "name":"Line3" },
{ "pid":1, "tid":2, "ts":2228154, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":1, "ts":2228154,"ph":"E" }
],
}

Figure 16: JSON produced by IP core and Chrome Tracing with loaded data for analysis.

Currently the tool fully supports AXI-Stream profiling. Profiling of AXI4 is currently
under development. SW profiling (not developed yet) will be solved by direct writing to
dedicated memory space of the profiling IP core. We still need to handle situations with
a large number of records which could not sometimes fit to memory. Also DMA for
data transfer takes many resources and we will, in the future, develop more simple
DMA for this single purpose.

5.2. Training WaldBoost detectors for FPGA

As a support for BUT object detection architecture, we developed an open source
python package for training object detectors [5.2]. The package supports custom
image channel features, decision trees as weak classifiers and full integer pipeline in
training and inference of models. The parameters of the trained model are serialized
as Protocol Buffer binary files and so they can be easily transferred to the target
embedded system and uploaded to FPGA. The package is still in the development
stage and cannot be considered stable or suitable for production use.

WaldBoost training algorithm is a sequential algorithm which in each iteration adds one
weak classifier to the sequence of already selected weak classifiers (strong classifier).
And after each round, the detector is used to get new training samples from the
training set. So the active training set always represents “hard” samples that need to
be handled by the subsequent weak classifiers. Please refer to [5.1] for details on the
algorithm.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 35 of 119

© FitOpTiVis Consortium public

In the waldboost package, training samples are represented as (N,H,W,C) array of N
samples with spatial dimensions H,W and C channels. The samples are extracted from
a training set provided by the user - sequence of images with a list of object bounding
boxes.

After installation, the package is imported by:

import waldboost as wb

Then training parameters must be set up.

channel_opts = {
 "shrink": 2,
 "n_per_oct": 8,
 "smooth": 0,
 "channels": [wb.fpga.grad_hist_4_u1]
}
shape = (12,12,4)
model = wb.Model(shape, channel_opts)

In this example, the input image will be rescaled with 8 scales per octave, channels will
be computed by grad_hist_4_u1 function and shrinked by factor of 2. From these
maps, samples of shape (12,12,4) will be extracted. Users can freely change feature
extraction function and preprocessing parameters to achieve other behaviour. These
parameters are passed to the instance of wb.Model which is a class representing the
detection model.

Figure 17: Example of feature maps extracted from image - image scales in rows, channels in

columns.

The last thing before the training is dataset specification. The library does not provide
a mechanism for dataset representation, this was intentionally omitted to keep the
library as general as possible. The training function expects the user to provide an

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 36 of 119

© FitOpTiVis Consortium public

infinite generator yielding tuples of image (numpy.ndarray) and list of bounding boxes
(instances of wb.bbox.BoxList). The implementation of the generator is left for the
user. The template can be implemented with the following template:

 def training_data(self, ...):
 …
 while True:
 # read image, convert, resize, whatever
 # compose boxes
 yield image, boxes

The model is than trained by:

wb.fpga.train(model, training_data(), length=128, ...)

There are lots of other parameters to set up - learner behaviour, training sampler, etc.
The function wb.fpga.train implements a training algorithm supporting static memory
access scheduling and response quantization in weak classifiers which are important
for implementation in FPGA. Otherwise, users can use wb.train which implements the
unconstrained algorithm. After training, the model can be serialized to the binary file
by: model.save(“model.pb”) and loaded back as model=wb.load_model(“model.pb”).
The detection model can be applied to an image by:

boxes = model.detect(image)

In boxes, there is a list of wb.bbox.BoxList with locations of detected objects.

Figure 18: Example of detected license plates.

Within FitOptiVis we developed the support for FPGA in the wb.fpga module. We use
data from CAMEA to train license plate detectors which are then incorporated in the
FPGA object detector used in the license plate detection component within Traffic
Surveillance Use case (UC5).

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 37 of 119

© FitOpTiVis Consortium public

5.3. OpenMP for real-time video systems

UC is using the OpenMP standard programing paradigm for system implementation. In
this task, we are defining the basic infrastructure to support OpenMP programming in
the project platforms.

OpenMP (Open Multi-Processing) is a directive-based parallel programming language,
mainly oriented to Symmetric Multi-Processing (SMP) architectures with shared
memory. Traditionally, the OpenMP code was executed in a homogenous cluster of
multi/many cores with shared memory. However, the latest versions support code
offloading to other devices such as GPUs.

Figure 19: OpenMP-based reconfiguration methodology.

In this project, UC has extended the offloading capabilities of OpenMP (Version 5) with
a new feature: source code offloading. This new feature allows extracting the source
code of the OpenMP target regions. The OpenMP-based design methodology is
presented in Figure 18. During compilation, the target region code is extracted and the

OpenMP code is adapted to support runtime loading of functions that implements
these target regions. The target regions are implemented with implementation
platform-depended design flows. For example, for FPGA-based hardware accelerators
the target region code is adapted and synthetized with standard FPGA design
frameworks such as Xilinx SDSoC or Vitis. In this process, the performances of the
platform-specific implementations are evaluated (static performance analysis). This
information is used to define different system configurations. During execution, a
system configuration management could select the best target region implementation
taking into account the performance analysis results.
.

5.4. Design time support for C/C++ compilers and

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 38 of 119

© FitOpTiVis Consortium public

OpenCV algorithmic libraries

In Y2 UTIA extended design time support for C/C++ compilers and OpenCV
algorithmic libraries suitable for development/debug/execution on the 32 bit dual-core
ARM A9 systems and on the 64 bit quad-core ARM A53 UltraScale+ systems. UTIA
Y2 extensions include SW and HW version of OpenCV algorithms for object detection
from Full HD colour video input. See Chapters 7.1 – 7.3 for details.

5.5. TTA-based Co-Design Environment (TCE)

This section presents developments and activities done in the context of a co-design
environment for customized Transport-Triggered Architectures called TCE. The
produced processor cores can be realized as soft cores in FPGAs or integrated to new
SoCs implemented as ASICs. TCE has been further developed in various aspects,
which are described in the following subsections as well as in Section 6.5.

5.5.1. Support for 64-bit pointers and integers

Current versions of TCE support only 32-bit pointers and arithmetics. Wider datapaths
are, however, possible with SIMD instructions, but the SIMD vectors may currently
also not contain 64-bit elements. The implementation of the 64-bit support is
underway. This adds a new target, “tcele64” to the compiler. The compiler
automatically selects this mode when it notices that the compiling is performed to a 64-
bit TTA architecture.

When compiling code for the tcele64 target, all pointers are 64-bit long and 64-bit
integer arithmetics are supported. 64-bit TTAs must contain 64-bit versions of all the
basic integer and memory operations, and the general purpose registers must be 64
bits long. The 64-bit instructions have the same base name as corresponding 32-bit
instructions, but add a postfix “64”. For example, the 64-bit add instruction is named
“add64”.

5.5.2. Loop optimization support

Computer programs spend most of their time executing loops. Therefore, optimizing
loops will have a large impact in the overall performance of executing a program.

The compiler of TCE has now two modes that optimize loops. The first mode is a loop
scheduling mode (developed during the first project year of FitOptiVis), and the second
mode is a new software pipelining mode, of which development started in year 2.
Figure 20 shows the last phases of the TCE compiler and the differences between

these two loop optimization modes.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 39 of 119

© FitOpTiVis Consortium public

Figure 20: The two different loop optimization modes. Red labels indicate re-used code from
LLVM and blue labels indicate separate code managed by TCE code generator.

The loop scheduling mode is part of the instruction scheduling phase of the TCE
compiler. The instruction scheduler organizes the instructions into such order, that the
original program semantics is preserved, but the hardware can execute the code in as
efficiently as possible.

Statically scheduled architectures such as VLIW and TTA processors execute the
code in exactly the order specified by the compiler, so quality of the instruction
scheduler has a big impact on the performance. On exposed datapath architectures
such as TTA, the instruction scheduler can also perform various low-level
optimizations which can further increase performance and save energy.

Loop scheduling mode is a special mode of operation in the instruction scheduler, that
is used for scheduling code in inner loops. A loop scheduler typically interleaves
multiple iterations of a loop, converting it to a “software pipeline”. This allows the
performance of the loop to be considerably increased without unrolling the loop.

The basic idea of software pipelining is described in Figure 21. First, an initialization

code called prologue is executed. It initiates the execution of the first iteration(s) of the
loop. The loop body (also known as the kernel or the steady state of the loop) contains
parts of code for multiple interleaved iterations of the original loop, so that each original
instruction of the loop is there exactly once, but in a different order and for a different
iteration than the original non-pipelined loop. After the body has finished executing,
most of the original iterations have fully finished, but the very last ones are not. In
order to finish the last iterations, a code block called epilogue is executed.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 40 of 119

© FitOpTiVis Consortium public

Figure 21: High-level example of software pipelining.

Figure 21 presents high-level Example of software pipelining with loop with 3 phases:

load, calc and store. In this example three iterations of the loop are overlapped, so the
prologue contains the beginning of two iterations and epilogue contains the end of two
iterations.

Besides software pipelining the loop scheduling mode in the TCE compiler can also
perform aggressive loop-specific optimizations which take advantage of the TTA
features; It can perform software bypassing over loop edges, which in some cases
may even totally eliminate all register writes inside small loops, when all generated
values are directly bypassed to instructions which use it. The final result which is
generated by the last iteration can then be written to a register in the epilogue only
once.

Another loop-specific optimization the TCE compiler can perform is loop-invariant
operand sharing, which means that immediate values or register-based values which
do not change inside the loop may have to be read only once, in the prologue. The
combination of these optimizations may allow creating code without any register reads
or writes for small loops. However, the bigger body the loop has, the less effect these
optimizations have.

The software pipelining in the TCE loop scheduling implementation currently has a
limitation that it can currently overlap code from only two successive loop iterations.
This can often limit the performance improvement achieved from it, as this means that
speedups from over 2 can never be achieved from the loop scheduler over an
optimized non-pipelined version of the loop, and the critical path of the loop easily
dominates the cycle count, especially if the loop contains small amount of long latency
operations.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 41 of 119

© FitOpTiVis Consortium public

This software pipelining limitation is a result of register allocation. The register
allocation phase is done before the loop scheduler and chooses registers in a fashion
that can limit the loop scheduler. For example, the register allocator creates output
dependencies, that reduce register pressure when not software pipelining, but
prevents iteration overlapping when trying to software pipeline.

The other loop optimization mode, the software pipelining mode, is created to solve
this issue. In this mode, the software pipelining will be done before register allocation.
The used software pipelining implementation will just use as many registers as needed
and therefore will not be limited to overlapping only 2 iterations. However, this mode
currently has other limitations. Because of implementational reasons, TTA specific
advantages are not yet utilized. Loop-invariant operand sharing and software
bypassing over loop edges are not done in this software pipelining mode in the current
status.

Furthermore, as the software pipelining mode is a work in progress in the early stages,
it currently only can optimize a limited set of loops. For example, the amount of
iterations has to be fixed and not all amount of iterations create a correct result. The
implementation still has to be improved in year 3 of the FitOptiVis project to output
correct code for all loops.

An example of a loop that can be pipelined in the software pipelining mode at this point

is:

int sum = 0;

#define N 3

char dstBuf[N];

char dstBuf2[N];

for (int i = 0; i < N; i++) {

 sum+= dstBuf[i] * dstBuf2[i];

}

5.5.3. Loop buffer and instruction register file support

The TCE toolset supports multiple compiler-assisted architecture features for

optimizing instruction fetch in loops. One is a simple loop buffer which has two

interfaces: 1) for-loop buffer, where before entering a loop the compiler generates an

instruction which specifies how many times the loop is executed and how many

instructions it contains, and 2) while-loop buffer, where only the loop instruction count

is specified, and there is a separate command for breaking out from the loop. The loop

scheduler of the TCE compiler can utilize these instructions if the processor has any of

these instructions and the processor is specified to have a loop buffer. The for loop

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 42 of 119

© FitOpTiVis Consortium public

buffer may also allow removal of the loop counter update and comparison instructions

from the code, reducing also the data path power consumption and leaving more

space for other instructions in small processors. These loop buffers only work for

loops, which do not have any control, such as if-statements inside them, and they do

not support multiple nested loop levels.

Another mechanism for optimizing instruction fetches in loops is the Instruction

Register File (IRF). The IRF is more flexible than the loop buffer, allowing for example

if-statements and nested loops. The IRF is like compiler-assisted cache which can

contain a single block of code, called IRF block. However, inside the IRF block there

can be jumps to any location inside the IRF block, and also jumps which jump outside

from the IRF block. Practically the only limitation the IRF has is that there may not be

jumps which jump into the middle of an IRF block from outside the IRF block. This also

means that a function calls cannot be positioned into the middle of IRF block, as the

return from a function is a jump. So when there is a function call, a new IRF block

starts after the function call.

The compiler analyses the control flow of the program and partitions the code into

these IRF blocks which can fit into the IRF and contains backwards jumps inside the

same IRF block. These backwards jumps are then converted into special IRF jump,

which tells the processor to stop fetching instructions from the instruction memory and

execute them from the IRF instead. These jumps also use the index of the instruction

as the jump target, instead of memory address of the instruction. If the execution flows

outside the specified IRF block size, execution resumes from the main instruction

memory. If there is a normal jump, execution resumes from the main instruction

memory. The beginning of a IRF block is specified by special instruction, which also

contains the length of the block. When this special instruction is encountered when

fetching instructions from the main memory, the following instructions will be stored to

IRF the while executing them. When a block of instructions does not contain any

backwards jumps, if would be executed only once, it is not put into the IRF, but it is

executed directly from the instruction memory like there was no IRF.

Here are some code examples of which can or cannot be put to the loop buffer or the

IRF:

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 43 of 119

© FitOpTiVis Consortium public

// This whole first for loop can go to one IRF block,

// if the IRF is big enough.

// This loop count not be handled by the loop buffer

// due to the control inside.

for (int i = 0; i < N; i++) {

 if (A[i] % 1) {

 A[i] += 5;

 } else {

 A[i] -= 5;

 }

}

// the function call would cause an IRF block split,

// so that this loop cannot not be put to the IRF.

// it cannot be put into loop buffer either.

for (int i = 0; i < N; i++) {

 printf(“%d ”, A[0]);

}

// this whole loop can go to one IRF block, if there is enough space,

// as nested loop are allowed in the IRF.

// this whole loop could be put to the loop buffer due to the nesting.

for (int i = 0; i < N; i++) {

 // The loop buffer could only contain this inner loop.

 for (int j = 0; j < M; j++) {

 B[i*M + j] = A[i] * C[j];

 }

}

// this can be put to the IRF and while-loop buffer,

// but not into for-loop buffer, as the iteration count is not known

// before entering the loop.

// in case of an IRF, this could reside in the same IRF block

// as the code before or after this.

while (*a != 0) {

 a++;

}

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 44 of 119

© FitOpTiVis Consortium public

5.6. BlockCopier: A programmable block transfer unit

Perhaps the most common bottleneck in FPGA execution is the available memory
bandwidth. While the peak processing power of FPGAs is very large compared to, for
example, a high-end CPU, the memory bandwidth is often similar. Furthermore, the
memory models required for conventional, hardware-controlled caches are difficult to
implement on FPGAs.

Explicitly-controlled caches, where the data is selected and transferred to the cache by
software, does not require such memory models, and ensures that the cached data is
always relevant to the task at hand. It also eliminates cache misses, and thus
decreases delay and throughput variance. This can help the application meet real-time
constraints.

A simple approach for an explicitly controlled cache uses a portion of memory local to
the accelerator, where the required memory can be transferred for the duration of the
computation. Once the required data is present, the processor can access it within a
more constrained time window, since cache misses are not possible. This can simplify
the processor implementation, especially for statically scheduled processors.

The data transfer to and from the accelerator is usually handled by a direct memory
access (DMA) controller. Most platforms, including the most common FPGA SoC
chips, provide a DMA controller, but the interface and capabilities between platforms
may vary.

For portability between platforms, we have developed a programmable block copier
component, implemented as a TTA processor with a custom function unit capable of
AXI burst transfers. The architecture for the TTA can be seen in Figure 22. With minimal

changes the same design would work on any AXI-based platform, and with a redesign
of the custom function unit, other interconnect architectures could be supported as
well.

Supporting high-level programming models like OpenCL can significantly ease the
programming effort of TTAs, especially during processor and platform design space
exploration. Abstracting data transfers between the host processor and the accelerator
and internally between TTA accelerators removes some of the burden from the user,
especially when the accelerators use local memories instead of or alongside caches.
This could remove the need for long latency accesses to system-level memory.

Integrating the block copier with the OpenCL runtime developed in WP4 is therefore an
important step in ensuring ease of use of the accelerator platform. The primary target
for improvement is the signaling behavior. While the current version supports
rudimentary signaling – it can postpone the execution of a DMA transfer based on
signals and broadcast a signal of its own once a transfer is completed – it currently
relies on the host processor executing the OpenCL runtime to propagate those signals
to the other devices.

Better handling of signals and moving the management of event waitlists onto the
devices would remove the event polling and propagation tasks from the host
processor, freeing it to perform useful computations, e.g. executing its own
computational kernels.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 45 of 119

© FitOpTiVis Consortium public

Figure 22: Architecture of the block copier ASIP.

5.7. Deterministic timing in distributed systems and
latency control with Time Sensitive Networks (TSN)

Time Sensitive Networks is a set of IEEE 802.1 and IEEE 802.3 technologies providing
convergence of time-critical and less critical traffics over bridged Ethernet networks.
The latency control, or more specifically, bounded and deterministic latency
guarantees are achieved thanks to the end-to-end isolation of the highest traffic
priorities from the lower ones. To this end, stringent timely coordination is required
between all the stations participating on the data stream propagation.

The different user traffics are classified in four different traffic types by the IEEE
802.1Q VLAN switching logic. Each priority is queued and scheduled according to the
IEEE 802.1Qbv Time-Aware traffic Shaper mechanism. The generalized Precision
Time Protocol (IEEE 802.1AS, gPTP) allows the required coordination among the
stations participating in the data stream forwarding. Furthermore, distributed real-time
applications usually require time synchronization for the talker and listener stations, not
only in the specific TSN logic but also in the application layer. This way, deterministic
delivery between sending and receiving sockets is assured.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 46 of 119

© FitOpTiVis Consortium public

The VLAN module is an FPGA based logic providing deterministic switching capability.
Incoming data streams are identified by their specific Ethernet, IP or TCP/UDP header
values. The following table presents the possible combinations in the prevalence order
as they are processed:

Priority Header Match Events

 F1 F2 F3

8 Destination MAC

7 Destination MAC DSCP

6 Destination IPv4 address

5 Destination IPv4 address IPv4 Protocol TCP/UDP dest. port

4 Destination IPv4 address IPv4 Protocol TCP/UDP source port

3 IPv4 protocol

2 TCP/UDP source port

1 TCP/UDP dest. port

Table 2: VLAN identification rules of user traffic types.

The different traffic types are encapsulated in VLAN Ethernet frames. The figure below
shows the different header fields. A VLAN tag is given by an unique VLAN ID (VID)
and the Priority code point (PCP), which determines the scheduling and shaping policy
applied on the TAS module.

Figure 23: VLAN frame format.

The time-aware traffic shaper performs a priority-based queuing. Each queue is
released by a time-aware gate, according to the configuration associated to the gate
control list. Each gate control list entry provides a gate configuration, indicating which
queues are released or not as well as the time interval.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 47 of 119

© FitOpTiVis Consortium public

Figure 24: Architecture of the Time-Aware traffic Shaper.

The following figure depicts a possible traffic scheduling and shaping along the time.
Usually, guard bands are required to avoid the interference of frames transmitted in
previous time intervals. In the first interval, traffic with P3, P1 and P0 intervals are
scheduled. In the third interval P3 is transferred without any disturbance and is suitable
for deterministic communication. The second and fourth intervals are for guard bands,
and the duration is given by the Ethernet maximum transfer unit (MTU), 1500 bytes.

Figure 25: IEEE 802.1Qbv traffic scheduling and shaping.

Guard bands can be minimized if the TAS and the MAC layers cooperate to provide
TSN the ability to pre-empt lower priority traffics. IEEE 802.1Qbu in the TAS module
and IEEE 802.3br in MAC layer are currently under development. On one hand, the
IEEE 802.1Qbu standard defines mechanism to classify traffic priorities in express or
preemptable categories. On the other hand, the IEEE 802.3br describes improvements
on the Medium Access Layer to enable the frame pre-emption mechanism.

However, the end-to-end determinism can only be achieved if traffic scheduling and
shaping is timely aligned along the path, can be seen in the picture below. Moreover, a
time shift should be provided to consider the message propagation delay. This is
provided to each station by means of the base time configuration parameter (bt0, bt1,
bt2).

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 48 of 119

© FitOpTiVis Consortium public

Figure 26: Traffic scheduling and shaping along the TSN stream path.

The generalized Precision Time Protocol (IEEE 802.1AS, gPTP) is key to accomplish
fault-tolerant coordination between the stations participating on the data stream
forwarding. For this reason, every TSN station should perform the time
synchronization. gPTP messages are forwarded through the highest priority queue and
require little network bandwidth and processing overhead. Time synchronization is
achieved through three major functionalities:

 Peer delay mechanism. This service monitors the capability of remote nodes

attached to each active interface of a given time-aware station, as performs
periodical measurements of the network path delay between each peer node.
Besides, nearest-neighbour frequency offset is computed enables better
synchronization accuracy.

 Best Master Clock Algorithm (BMCA). This mechanism elects the network
time reference or grandMaster and announces its attributes to active remote
peers. This functionality provides fast convergence and switch-over of the time
reference.

 Transport of the time synchronization messages. Each participating node
propagates synchronization information to remote peer, after accumulating self-
computed information such as residence time, frequency rate ratio between
local and grandMaster clocks or the link delay with the previous hop.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 49 of 119

© FitOpTiVis Consortium public

5.8. Code generation for reconfigurable systems

From the WP2 QRML description, it is possible to generate a C++ system
implementation. The generator produces C++ code that uses the RIE (Runtime
reconfiguration Implementation of Embedded systems) library that was presented in
section 4.7. The generator creates a C++ implementation template in which
components are implemented as classes that make use of the RIE library to provide
runtime reconfiguration and monitoring capabilities.

The generator produces C++ code with component class definitions. It also
implements the component connections but the service implementations are derived to
the system designers. In order to clarify the code generator features, next table
presents the main transformations that are required to generate C++ code from a
QRML system description.

QRML element Generated code

Interface C++ class with all its services declared as pure virtual methods in
the component base class. The component implementations will
implement the service functionalities.

Monitor C++ class with all events defined as methods. The
implementation of these methods depends on the tracer
infrastructure (e.g: lttng implementation).

Component C++ class deriving from RIE Component (to inherit runtime
functions) and from provided interfaces. In case of component
implementation, they also derive from the base component.
Provided services are declared in the base class and
implemented in the derived classes. Instead, required interfaces
are declared as instances of the interface in the component class.
Qualities and parameters are declared as variables in the class.

System C++ class that includes system component instances and the
connections among provided and required interfaces. It
corresponds to the root component.

Channels QRML channels are implemented with specific interfaces that
provide stream-data read services.

Qualities and
parameters

The qualities and parameters are implemented in component
class members.

Table 3: VLAN identification rules of user traffic types.

Next figure presents an example of code generation from the QRML language. The
“linkComponent” function is also automatically generated. The function assigns
components to instances and connects required and provided services.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 50 of 119

© FitOpTiVis Consortium public

UC has also developed an UML/MARTE generator that transform QRML descriptions
into UML/MARTE models. Next figure presents an example of transformation from
QRML to UML/MARTE models.

Figure 27: Automatic code generation.

QRML model UML/MARTE model

Figure 28: UML/MARTE model generated from QRML description.

a) QRML description

b) RIE-based C++ code

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 51 of 119

© FitOpTiVis Consortium public

6. Acceleration support

This chapter describes HW accelerator-oriented design flows and programming
techniques that are being developed on task 3.3. The first part presents tools that
generate HW accelerators from high-level programs (OpeMP, C++ and data flow
descriptions) or for specific architectures (TTA-based soft processor). The second part
presents HW generators that are oriented to particular applications as well as specific
acceleration techniques.

6.1. OpenMP for HW accelerators

Two approaches have been used to implement HW accelerators with OpenMP. The
first approach directly modifies the OpenMP code to support FPGA synthesis. For
Xilinx SDSoC design flow, the OpenMP and the SDSoC oriented code cannot be in the
same file because the Xilinx synthesis tools do not support the OpenMP directives.
Next figure presents the code of both files. The second approach uses an automatic
code extraction tool to offload the OpenMP target region code.

The HW accelerators (target devices) are controlled by the system processors (hosts)
that require their services to execute specific functions. The accelerators normally
have a private memory and limited access to the processor main memory. Therefore
the processors have to transfer data from/to the program memory space to the
accelerator memory before/after accelerator execution (copy-in/copy-out model). This
protocol is explicitly implemented in OpenCL and it is implicit in OpenMP.

Figure 29: HW accelerators with OpenMP code.

FPGA-based accelerator normally implements additional communication models. For
example, SDSoC from Xilinx provides direct access to the software memory space
from the accelerator or data streams. The shared memory model normally has an
important disadvantage: the latency to the external non-cacheable memory in which
the shared data are stored, is typically higher than it is for the CPU. One way to

a) OpenMP Code

b) Xilinx SDSoC code

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 52 of 119

© FitOpTiVis Consortium public

minimize the low performance of the shared variables is to access memory in a
sequential way. For this reason, hardware accelerator design tools (e.g. SDSoC)
recommend using shared variables with sequential access based on DMA (Direct
Memory Access). The OpenMP accelerator strategy the UC is developing in FitOptiVis
try to minimize these overheads.

6.2. HW accelerators generated by the Xilinx SG for DSP
and SDSoC system level compiler

In Y2 UTIA updated design time support serving for design time integration of

 IP blocks with streaming data interfaces. Blocks are generated in Xilinx SG for
DSP Matlab/Simulink toolbox. See section 10.8 of this deliverable “Design
Time Resource Integrator of Model Composer IPs (DTRiMC) technology”.

 HW data-movers connecting the Xilinx SG for DSP IP blocks to Arm A9 and
A53 on Zynq and Zynq Ultrascale+ devices. These data movers are generated
by Xilinx SDSoC 2018.2 system level compiler.

 IP blocks for C/C++ compilers and OpenCV algorithmic libraries suitable for
automated compilation to HW accelerator by the Xilinx SDSoC 2018.2 system
level compiler and by the Xilinx HLS design flow.

In Y2 UTIA developed these versions of accelerators generated in Xilinx System
generator for DSP:

 fp01x8_capabilities capabilities= 10, 20, 30 or 40

 fp03x8_capabilities capabilities= 10, 20, 30 or 40
for

 Zynq 7000 family of devices

 Zynq Ultrascale+ family of devices.

HW description and implementation details of these run-time reprogrammable
accelerators are described in D5.2.

SW description and design time use of these of these run-time reprogrammable
accelerators are described in D4.2 and D4.3.

The accelerators are compiled from the ARM SW functions executable on the 32 bit
dual-core ARM A9 systems or from the SW functions executable on the 64 bit quad-
core ARM A53 in case of Zynq UltraScale+ systems.

In M24, the supported HW accelerators include:

 Edge detection accelerator based on Sobel filter in SW and in HW

 Canny edge detector in HW

 Motion detection accelerator based on two Sobel filters in SW and in HW

 Lucas Kande Dense Optical Flow accelerator in SW and in HW

 Object tracking demo (tracking of colour and position of four balls)

The updated Design Time Resources released by UTIA before M24 [7.12], [7.13]
export HW design into C++ dynamic libraries. These libraries represent the HW for SW
applications. The libraries are dynamically linked to C/C++ user-space applications for
Debian OS running on the ARM processor.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 53 of 119

© FitOpTiVis Consortium public

 PC cross-compiler can be used for compilation of the top application in free
Xilinx SDK 2018.2 Eclipse-based framework. Remote debug of the application
on the target device is also possible.
There is no need for SDSoC license for this compilation.

 Embedded g++ compiler can be used for compilation of the C/C++ application
directly on the embedded device.
There is no need for SDSoC license for this compilation.

Design time resources introduced in this section are listed in section 10.8 of this
deliverable as the “Design Time Resource Integrator of Model Composer IPs
(DTRiMC) technology”. Details of the technology are are described in Chapters 7.1 –
7.3 of this deliverable.

6.3. The Multi-Dataflow Composer (MDC) tool: a dataflow-
to-accelerator design suite

The Multi-Dataflow Composer (MDC) is a software tool, or rather a suite of different
design features, for the automatic generation and management of coarse-grained
reconfigurable systems and accelerators based on the dataflow Model of Computation.
MDC main purpose is supporting software developers/embedded system engineers
and/or hardware architects/embedded system engineers in defining flexible and
performance-aware coarse-grained reconfigurable substrates, which can be
embedded into FPGA-based hardware accelerators. The key features of this tool are:

 the ability to combine different high-level dataflow specifications, describing a
set of functionalities, into a single accelerator, exploiting coarse-grained
reconfigurable technologies and capable of accelerating all the provided
functionalities

 automatic resource minimization

 transparent (to the user) reconfiguration management

The MDC features are:

 Baseline MDC Core – performing dataflow-to-hardware composition, by means
of data-path merging techniques.

 Structural Profiler – performing the design space exploration of the
implementable multi-functional systems, which can be derived from the input
dataflow specifications set, to determine the optimal coarse-grained
reconfigurable substrate according to the given input constraints.

 Dynamic Power Manager – performing, at the dataflow level, the logic
partitioning of the involved resources to implement at the hardware level
power- and clock-gating strategies and, in turn, to save both static and dynamic
power consumption.

 Co-Processor Generator – performing the complete dataflow-to-hardware
customization of a ready-to-use Xilinx compliant multi-functional accelerator IP.
Starting from the input dataflow specifications set, such an accelerator can be
either loosely coupled or tightly coupled, according to the user needs, and also
its drivers are derived.

The inputs are:

 high level models (dataflow) of functionalities to be accelerated - XDF, Cal

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 54 of 119

© FitOpTiVis Consortium public

 HDL description of the components (HDL Components Library, HCL)
corresponding to the dataflow actors, manually or automatically generated -
Verilog, VHDL

 hardware communication protocol between components - XML

And finally, the outputs are:

 (baseline functionality) HDL description corresponding to the multi-functional
dataflow model - Verilog, VHDL

 (optional) multi-functional model resulting from the combination of the input
applications models - XDF, Cal

 (optional) Xilinx IP wrapper logic, scripts and drivers - XML, Verilog, Tcl, C

MDC is available open source on GitHub, with a BSL 3-clause licence. Here in after
the MDC useful links are provided in [6.8]:

MDC, has been used, within the Water Supply use case, to generate accelerators for
image classification (WP6 activities) and, contemporarily, it has been connected to the
AIPHS monitoring infrastructure (WP4 activities). With respect to the former activity,
a cooperation with AITEK has been established. In particular, AITEK in the last project
phase, will assess and compare the new accelerators with traditional implementation,
providing relevant feedback to UNICA and UNISS for future improvements of MDC
tool.

In particular, as a possible first example, state of the art algorithms for image
classification are being used, which can be implemented thanks to FPGA-based
accelerators obtained using MDC. AITEK provided such algorithms as Convolutional
Neural Networks (CNNs) in ONNX format, which has been firstly translated into the
corresponding C source code thanks to the ONNX2C flow, which is part of the
NeuDNN software stack (see Section 6.4). Such C source code has been used for
implementing the CNNs: the source code coming from the ONNX2C flow has been
used as input point for the Vivado HLS tool, in order to derive the HCL required by
MDC. So that, the CNNs are going to be described as dataflow models according to
the initial ONNX structure and taking as HCL the one generated by Vivado HLS from
the C source code corresponding to the same ONNX description. Such activities are
currently ongoing and are expected to be completed in June 2020. On the top of this
setup, several versions of the CNNs will be derived and combined together by MDC,
enabling multi-functional CNN hardware accelerators capable of playing with the
different CNN versions.

We are considering as a possible metric for evaluating the different accelerators the
execution time of CNN algorithms, processing images with different resolutions. To
have a complete benchmarking, different processors will be tested collecting different
execution times to be compared with the execution time achieved thanks to the
accelerator.

UNICA and UNISS enhanced availability of the MDC tool, which is now provided with

 a starting pack for easy and quick testing;

 extended documentation and open source diffusion;

 tutorials to getting familiar with MDC features and application fields;

 internal and external assessment has been planned, set-up and continued also
during the latest 12 months of the project

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 55 of 119

© FitOpTiVis Consortium public

o regarding internal assessment, UNIVAQ and AITEK are playing a
central role: besides its usage within the Water Supply use case, MDC
has been lately (M18) assigned to some UNIVAQ students to carry out
their projects within the “Embedded Systems” course of the Laurea
Degree in “Telecommunication Engineering”;

o regarding external assessment, MDC is used in other regional [6.9] and
EU projects [6.10].

In Y2, we worked on extensions of MDC to:

 support accelerators monitoring with AIPHS
o a proof of concept has already be developed and the achieved, results

are about to be submitted to a scientific journal,
o automation of the whole accelerator deployment plus monitoring is still

currently ongoing

 start the development for supporting the ALMAIF front-end. In this regard,
plans are there, but the activity will start at completion of the integration with
AIPHS.

In Y3, we expect to receive the feedback of the industrial evaluation carried out by
AITEK within the assessment of UC1.

6.4. NEURAghe a flexible and parameterized CNN
accelerator

NEURAghe is a hardware/software solution for the acceleration of Convolutional
Neural Networks (CNNs) on Xilinx Zynq Systems on Chip (SoCs). In particular, it
exploits both the hard-core ARM processors and a Convolution-Specific Processor
(CSP) deployed on the configurable logic. As a result, the ARM processors are in
charge of supervising the acceleration and of executing the hard-to-accelerate parts of
the computational graph, while the accelerator takes care of the bulk of CNN workload
and can be controlled by software at a very fine granularity.

The acceleration hardware is supported by a software stack, NEURAghe Deep Neural
Network software stack (NeuDNN). NeuDNN allows the user to develop and reuse
CNNs to be accelerated with the NEURAghe solution. It runs on top of Linux OS in
order to favour system integration and it is basically constituted by a configurable
C/C++ library, providing APIs to the user in order to seamlessly execute the CNN with
or without acceleration, and by drivers (ARM-side) plus a resident runtime (CSP-side),
the former sending commands to the latter that properly executes them on the
acceleration logic. Besides this, some extensions of the NeuDNN software stack are
ongoing in order to provide automated conversion from ONNX (NN widely used
formalism) to C with NEURAghe API calls, and to provide configuration of a C template
with NEURAghe APIs starting from a darknet (NN state of the art framework) high level
network configuration.

NEURAghe also offers several configuration points at design time, making it extremely
flexible. Indeed, it is possible to configure:

 Data precision for input/output pixels, biases and weights (16 or 8 bits),
providing a compromise between accuracy and performance;

 Baseline CNN hardware acceleration core size (sum-of-product units matrix
size);

 Number of acceleration clusters (each cluster is independent from each other
and can have its own baseline CNN hardware acceleration core size);

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 56 of 119

© FitOpTiVis Consortium public

 Memory size of each cluster.

The inputs are:

 CNN host code or ONNX NN specification or darknet network configuration

 Target Xilinx Zynq SoC (among Z-7045, Z-7020, Z-7007s)

The outputs are:

 Zynq-based CNN hardware/software acceleration engine

 CNN host code with NEURAghe API calls (possibility of offloading computation
to the acceleration engine)

According to the perspective adoptions in the FitOptiVis use-cases, NEURAghe and
NeuDNN will be refined in particular to provide:

 model-based optimization of the scheduling of CNN actors on available
processing elements (Task 3.1).

 implementation of dynamically

 variable precision computing in convolution cores, thus realizing different set
points for the CNN accelerator (Task 3.2).

NEURAghe, constituting a CNN accelerator provided with the NeuDNN software stack,
will be also part of the model-based working technology supporting the FitOptiVis
design platform (Task 3.3).

State of the art algorithms for image classification are under evaluation on the
NEURAghe platform. AITEK provided such algorithms as CNNs in ONNX format,
which has been firstly translated into the corresponding C source code thanks to the
ONNX2C flow, which is part of the NeuDNN software stack. Such C source code has
been used for implementing the CNNs through the NEURAghe platform. The source
code coming from the ONNX2C flow has been automatically populated with proper
function calls to configure and manage the processing offloading on the NEURAghe
CNN accelerator. In this activity UNICA and AITEK provide respectively the target
platform and the applications. The implementation of the accelerators, with the support
of both UNICA and AITEK, has been carried out by UNISS, which is assessing the
ONNX2C flow. At UNISS the accelerators are currently under evaluation, and the next
stage will be the comparison with AITEK proprietary implementations. Assessment at
UNISS is planned to be completed in June 2020.

The application provided by Aitek consists of three different Neural Networks that
detect moving targets and distinguish between persons and animals. This is a
requirement specifically elicitated in Use case 1. In the first scenario it is needed to
detect possible human intruders and limit false alarms caused by animals entering the
same restricted area.

All the three provided networks process 128x128 RGB images as input, providing
detection and classification as output. They differ for the implemented architectures
(i.e. VGG, Inception and MobileNet architectures). Moreover, they can achieve
different levels of accuracy; they are characterized by different complexities and
require a specific amount of computational resources.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 57 of 119

© FitOpTiVis Consortium public

6.5. TTA-Based customized soft core accelerators

Transport-triggered architectures (TTA) are a promising avenue in the field of soft
processors. Compared with a traditional operation-triggered architecture, TTA has a
simpler implementation, leading to lower logic requirements and higher frequency.
Furthermore, the instruction encoding describes explicit parallelism without requiring
complex decoding logic.

However, the processor design toolset for TTA-based co-processors, TCE, was
primarily targeting ASIC implementations. FPGA architectures are more constrained in
their logic, memory and routing resources. While the fine-grained logic components
and their associated registers can theoretically implement any digital logic circuit,
specifying the logic in such a way that it maps to the special-purpose blocks leads to
significantly better synthesis results, both in terms of area and frequency.

These special-purpose blocks vary in complexity, from the ripple-carry logic or
multiplexers associated with the look-up tables of the fine-grained logic to the pipelined
multiply accumulate blocks with internal feedforward paths. The memory is similarly
constrained: the high-density hardened memory blocks in modern FPGAs feature at
most two bidirectional ports, and while the read port count of the smaller memories can
be higher, they are limited to a single write port. This makes the implementation of
complex memory components, particularly those required for dynamic caches, difficult
on FPGAs.

We set out to optimize the individual components of our TTA implementation for FPGA
devices. First, the interconnection network was examined. A complex interconnection
network can be the largest individual component in a TTA processor, and it may affect
the critical path within any function unit as their logic can be moved across the
registers to the interconnect or vice versa. Therefore, its efficient implementation is
paramount to a high-performance TTA design. The default implementation did not map
efficiently on to FPGA hardware.

For the FPGA optimization, the input socket side of the interconnect, originally
implemented with an AND-OR network performing what is essentially a multiplexing
operation, was replaced with an explicit switch-case structure in the RTL code. In
addition to mapping better to the dedicated multiplexing logic of the FPGA device, the
decode process needs to examine the source fields of a single bus, rather than the
source fields of every bus a given input socket is connected to. This reduces the
number of inputs to the logic function required to determine the control signals and,
subsequently, the number of logic elements required to implement it.

The load-store unit (LSU) optimization was somewhat more straightforward. For scalar
LSUs, the logic implementation had nothing specifically designed for FPGAs.
However, lock signals are an issue on FPGAs, as they have a high fan-out, essentially
enabling or disabling every function unit pipeline register. Therefore, fixed-latency
LSUs are a better fit for FPGAs. This also discourages us from using dynamic caches,
opting for scratchpads memory instead. For vector LSUs with a wide external bus, the
bottleneck was found to be the word select from the wide read word to the scalar-width
output. This can be alleviated by separating the scalar data output to its own port and
increasing the architectural latency of scalar loads. Another approach allows us to get
completely rid of the word select multiplexer. This can be achieved by having 2
separate different-sized LSUs connected to the same address space. We tested this

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 58 of 119

© FitOpTiVis Consortium public

by arbitrating the second port of the dual-port block ram between external AXI access
and TTA’s scalar LSU. Area improvement was significant with this approach.

The optimizations have been integrated to the TCE toolchain and can mostly be
enabled without modifications to the processor architecture. Some recommendations,
primarily those concerning LSUs, may require architectural changes. While the
changes were aimed primarily for FPGA implementations of TTA processors –
especially the modifications to the interconnect implementation – may also aid ASIC
synthesis tools to reach better results.

The FPGA-centric optimizations were evaluated through synthesis on TTA processors
with and without each optimization to determine the individual effects of the changes.
The biggest difference was found to be from the interconnection network optimizations,
where the network itself required up to 54 % less logic to implement with the
optimizations than without. Taking all the optimizations into account, the logic
utilization of the entire core was reduced by up to 30 %.

Figure 30: Maximum clock frequency of the synthesized processors.

Vector function units are an easy way to exploit the data level parallelism on programs.
To this end, we evaluated the scalability of TTAs to high SIMD widths. The most
important function units to vectorize are the load-store unit and ALU. The ALU can
utilize FPGA’s hardened DSP blocks in parallel to implement efficient MUL and MADD
operations.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 59 of 119

© FitOpTiVis Consortium public

Overall, SIMD processors share a challenge of complex inter-lane connectivity which
is needed when passing data between the vector lanes using so called “shuffle
operations”. To minimize the impact of a complex shuffle network required by a fully
dynamic shuffle unit (runtime defined vector indices for the lane data), we implemented
a few preselected static shuffle patterns based on the needs of the program, which
matches the idea of a reduced programmability layer on top of the very dynamic FPGA
fabric. Communication between scalar and vector busses was implemented with
broadcast and element extraction function units.

By the end of project year 2 we managed to show that the TTA-SIMD approach can
quite easily scale up to 1024-bit SIMD lanes with over 100 MHz clock frequency on a
small and cheap FPGA (Zynq 7020 SoC of the PYNQ board). Figure 30 shows the

clock frequency trend with different lane widths up to 1 kbit vector width.

A performance comparison against the ARM hard processor system with NEON
instruction set integrated on the same SoC showed that we can reach up to 2.4x
speedup in some workloads, overcoming the 650 MHz clock frequency advantage of
the ARM core with additional data level parallelism. The benchmarking was done using
OpenCL vector datatypes, so we simultaneously demonstrated the easy OpenCL
programmability of SIMD-TTA processors in our platform.

Figure 31: Simplified view of the wide-SIMD TTA template.

In order to evaluate the scalability of the TTA SIMD template to larger FPGAs and to
demonstrate a real-life scenario, we presented a case study with application-specific
optimizations targeting CNN inference.

Multicore scalability of the TTA-SIMD approach was initially demonstrated on a Zynq
UltraScale+ board which could fit 14 customized cores reaching up to 48.5 GOPS real
application performance while running a face-detection neural network.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 60 of 119

© FitOpTiVis Consortium public

6.5.1. TCE: AutoExplorer (AEx)

The design space explorer tool is a part of the TCE framework. Its purpose is to run
various exploration algorithms defined as plugin modules to find best possible
architecture configurations for a given application. All exploration results are stored in
a database as configurations in terms of processor architectures and its cost (clock
cycle count, area, power). Each result is verified using framework compilation and
simulation tools.

Figure 32: Simplified TCE Exploration process of AutoExplorer.

At the beginning of the exploration the application and the requirements are given by
the processor designer. Usually starting point is some architecture configuration that
can be compiled and simulated. The configuration architecture is later modified by
merging or pruning its components producing multiple different designs that meet the
requirements or improve the performance. A specific estimator algorithm is used to
select best configuration that meets the requirements. The exploration is finished until
there are no better configuration that can be generated.

AutoExplorer (later AEx) is a design space exploration flow of which goal is to
generate application specific processors by analyzing the application automatically.
Processor designer can specify multiple design restrictions given as parameters.
Several different algorithm stages are performed to produce several possible
architecture component combinations by pruning and merging them and return them
as configuration ids. AEx drives multiple exploration plugins in a sequence, and picks
best possible configuration from each stage based on estimation information and uses
configuration id as an input for the next plugin stage. The advantage of the automated
exploration is that it can evaluate several hundreds of different designs before finding
optimal solution. This allows automated rapid prototyping of different architectures for
specific application set.

First, the algorithm creates huge processor architecture with all possible operations
found from the TCE hardware database. For each operation depending on a given
parameter one or more function units are created. The register files are set to the huge
enough size to avoid register spilling. The purpose of this stage is to create starting
design exploration point, where pruning and merging of components can begin.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 61 of 119

© FitOpTiVis Consortium public

In the next stage, the application is compiled for the architecture generated previously
and simulated. From the compiled application we can analyze which operation are
being used and prune the function units and register files of certain width which are not
used. This simple trick greatly reduces the compilation and simulation times for further
exploration stages. We can reduce operations even further by analyzing simulation
results and prune function units for operations of which execution times are under
certain threshold. Several operations such as multiplication, of which usage might be
below the given threshold are given higher priority, so they are not removed declining
the results.

After unused components are pruned, we create a VLIW-like connected architecture,
where each function unit input and output ports are connected to the register files. This
results in a huge interconnection network which will be reduced in the later stages by
merging function units, buses and ports. Also the dummy unconnected bus is created
to provide the slot for long immediates transfers.

Figure 33: Un-optimized architecture (left), final best possible architecture (right).

Figure 33 depicts a part of the huge VLIW-like architecture where the components are

not yet pruned and merged and the final desired result of the auto-exploration.

The next stage is optional and it simply splits the register files into two parts.

Several function units might not be used simultaneously and can be merged together.
The algorithm produces the covariance matrix for the function unit executions from the
previous simulation results and merges the function unit pair with lowest covariance.
The compilation and simulation process is repeated until all function units are merged
into one. The AEx’s job is to estimate the best amount of merged function units and to
pass the configuration id to the next exploration plugin.

To further reduce the architecture, the buses and register file ports are also merged
based on the same covariance matrix calculation algorithm each after another. The
exploration stage ends until there is one bus left and register files with one write and
read port. AEx here again estimates the best combination of buses and register files
ports. After this the merging is done and the architecture looks much simplified than at
the beginning of exploration.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 62 of 119

© FitOpTiVis Consortium public

At the beginning we set register file sizes huge enough to avoid register spilling. At this
stage the size is reduced and simulated until it does not affect the performance
significantly.

To inflate the instruction word size even further we split long immediate bus over all
buses in the architecture. This is the final stage where the best possible architecture
for the application is generated and can be further optimized manually by designer.

The processor architecture can be then fed into the platform integrator tools to
generate it into the hardware description language and generate program image for
FPGA verification tools like Vivado.

AEx2: User Inputs Only the Target Frequency and Target Execution Time

The next generation of AEx we call simply AEx2 has been under development in year
2 of FitOptiVis. The overall goal for the new algorithm is to simplify the usage so that
the end user simply defines the desired target frequency and execution time
parameters to efficiently prune design space configurations those cycle count does not
fit. At each pipeline pass only suitable configurations are left and the ones with the
minimal resource usage are picked for the next pass (phase) or selected as the final
architecture presented to the designer. If at some point of the pass pipeline there is no
single suitable configuration that can deliver the targeted execution time with the given
target clock frequency, AEx2 backtracks to the previous pass and picks configuration
with more hardware resources. It can fall back through multiple passes until a suitable
configuration is selected, or report of an error saying that there are no single fitted
configuration could be found that suits the designer’s input parameters. This process is
illustrated in Figure 34.

This heuristic slightly increases the design space, but it gets rid of “magic threshold
numbers” in AEx, which were hand-picked based on empirical observations, and used
in several algorithmic passes to prune configurations that do not fit the cycle count.

Figure 34: AEx2 result pruning between passes. The configurations marked in red can reach

the targeted execution time with the targeted clock frequency.

AEx2: SIMD processor generation with LLVM autovectorization

The autogeneration of efficient SIMD architectures is now implemented utilizing
LLVM’s autovectorization support. LLVM’s offers two autovectorizers, one that

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 63 of 119

© FitOpTiVis Consortium public

operates on loops and the SLP vectorizer which works on basic block level. Both focus
on different optimizations and use different techniques. Loop vectorizer widens
instructions inside the loops and handles multiple consecutive iterations
simultaneously. SLP vectorizer simply merges several scalar operations it finds inside
a basic block into a vector operation. If the vector operations are found from in
generated LLVM IR code, then during the operation pruning pass these operations are
added to the generated architecture and their particular sized register files. Initial tests
show around 20% improvement in execution time for certain CHStone tests using
vector architectures.

AEx2: “I/O-Skeleton” Starting Point Architectures

To support different memory interfaces, the exploration can be started using a
predefined architecture “skeleton” containing only some function units with specific
operations, delays and address spaces. The skeleton approach is useful when
integrating the produced core to a predefined system bus or memory hierarchy: In that
case it can contain mainly the load-store units used to access the addresses through
the buses. While creating the initial huge architecture, other function units for
operations are simply added to this predefined architecture, without adding existing
operations found in predefined units. The predefined function units are kept untouched
during FunctionUnitMergePass, while other units can be merged based on their
parallel usage.

AEx2: Miscellaneous Improvements

 During the VLIW-connectivity pass, additional connections from each function
unit to the boolean register files and immediate unit are now made. That should
help the compiler optimization and minimizes the use of temporal registers.

 The significantly long compilation time of the first pass has been reduced.
Compiling huge architecture with thousands of function units took too much
time and memory. Instead of adding N-multiple function units for each
operation, only a single unit is added. Then after the operation pruning pass,
when used operations are known the needed N-1 function units are added.

6.6. Acceleration of individual algorithms in combination
of FPGA and CPU

6.6.1. Object detection on FPGA using Waldboost
algorithm

We developed an IP Core for object detection in video based on Aggregated Channel
Features (the particular variant of the algorithm is WaldBoost with decision trees over
aggregated channel features). The models for the IP core can be trained with the
WaldBoost package described above. This hardware design is an evolution of the
older version exploiting LBP features (described in D3.1, [6.2]). The new version is
completely redesigned (though it shares some aspects of the old version) and it offers
better detection performance, speed and lower memory requirements (actually the
memory footprint of one model is about 16x lower). This enables the use of multiple
models within one device (e.g. different detection window sizes, multiple object

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 64 of 119

© FitOpTiVis Consortium public

classes, etc.) which makes the new design more flexible and applicable to different
tasks.

Figure 35: Overview of the detection architecture - (top row) Image scale space generation,

(middle row) feature channel calculation, (bottom row) classifier evaluation on each location.

Overview of the detection architecture - (top row) Image scale space generation,
(middle row) feature channel calculation, (bottom row) classifier evaluation on each
location.

Figure 36: Evaluation of classifier - a decision tree loads features from feature maps and

produces response which is aggregated in the total response. It either continues with the next
tree or exits with a negative decision.

In principle, the IP core is a micro programmable engine for evaluation of soft cascade
classifiers. A classifier is evaluated on all positions of the input image. The classifier
uses image features calculated from the input image (not the original pixel values), it
supports generic convolution kernels of size 3x3 and HoG-like features (edge
response in 4 directions). The feature maps can be optionally pooled by factor of 2 or 4

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 65 of 119

© FitOpTiVis Consortium public

using max or avg pooling. The features are calculated on-demand and cached in
BRAM.

Evaluation of classifier - a decision tree loads features from feature maps and
produces response which is aggregated in the total response. It either continues with
the next tree or exits with a negative decision.

Multiscale detection is solved by combination of image scaling (by factor of 2) and
multiple detectors with different object sizes. In practice we use 4 classifiers detecting
the same object type but in 4 different scales (1, 0.84, 0.7 and 0.59). This approach
dramatically reduces memory requirements since it requires 4 classifiers (low memory
footprint) and saves 3 image scales with high footprint. A great advantage of the new
design is static memory access planning which allows for parallel evaluation of multiple
features (multiple locations in image). As a result, we can linearly increase
performance of the engine with only a minor impact on memory requirements. The
static memory access planning is solved in design time during training of the detection
model (in WaldBoost package).

The flexibility of the design allows to find tradeoffs in speed, accuracy, resources (logic
and memory) for the particular application (there are around 30 parameters configuring
the design apart from the model).

 Configuration LUT REG BRAM Zynq XC7Z020

LBP HD 60 fps 2x10K 2x8K 2x40 40%

ACF HD 60 fps 4K 5K 48 10%

ACF FullHD 60 fps 11K 10K 54 22%

Table 4: FPGA resource consumption for XC7Z020.

The detector speed is not fixed but it depends on the input data (rejecting background
positions is almost instant but verifying location with object requires the whole classifier
sequence to be evaluated). In order to monitor the state of the device, we implemented
gathering of statistical information from the IP Core - processing time, waiting time,
pipeline load, etc. We use this runtime information for comparison with theoretical
predictions. And based on this runtime data, we can check the device behavior in
different conditions (lighting, weather, etc.).

We use Axi Stream Video as an input interface for image data. Depending on the
parameters, it can handle up to 4K video. For output (detection coordinates, object
likelihood, scale index adn statistical data) we use Axi Stream. Engine configuration is
managed by Axi Lite memory mapped interface and the configuration is managed by
CPU.

The design is written in VHDL and the control library in C. We target the design and
test it on Xilinx Zynq platform, but we do not use any platform-dependent libraries and

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 66 of 119

© FitOpTiVis Consortium public

it can be used with other Xilinx or Intel FPGAs, or it can be synthesized as ASIC (we
did not test these possibilities though)

6.6.2. HDR image acquisition

The HDR image acquisition is composed from three main blocks: image capturing,
HDR merging and tone mapping (see Figure 37. The image capturing part is driving the

exposure time and is grabbing the images from sensor. HDR merging processes
multiple images (in our architecture three) into the HDR. The tone-mapping block is
compressing the high dynamic range into standard, 8-bit image while preserving the
details from HDR.

Figure 37: Overall schematics of HDR acquisition pipeline. The individual blocks create a

dataflow pipeline, which is configured through AXI Lite interface from ARM CPU.

6.7. HDR merging and de-ghosting

This block implements a ghost-free HDR merging on the configurable number of
images. The algorithm is based on the similar principle as the algorithm presented in
paper [6.3], while it achieves visually much better results. We implemented the HDR
acquisition pipeline for SoC Xilinx Zynq, but we also have a reference implementation
running on CPU and GPU based platforms, including SoC Nvidia Tegra. The software
version supports merging on grayscale, Bayer mask, and RGB data. The FPGA IP
core supports grayscale and Bayer mask only, but we plan to extend it. However,
according to new insights, it is convenient to merge HDR in Bayer mask and perform
deBayer afterward, e.g. as a part of tonemapping. This approach could save almost ⅓
of FPGA resources. The IP cores contain two subcores, certainty map (ghostmap)
creation and merging block.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 67 of 119

© FitOpTiVis Consortium public

Figure 38: Input image sequence (top) and two certainty maps (similar to ghostmaps in related
algorithms) used during ghost-free HDR merging.

The output of IP block consists of AXI Video stream with pixels of wider bit depth, by
default in the representation of 12.8 bits - 12 fixed point bits and 8 fractional. This block
is written in HLS and thus provides an easy change of configuration, input image
number and format and also data representation (which depends on previous
parameters and desired HDR bit depth).

 LUT Registers Brams 18k DSP

Ghost Detection 3532 3339 4 4

Merging 1650 3636 10 16

Total 5182 6975 14 20

Available 53200 106400 140 220

Utilization [%] 9.8 6.6 10.0 9.1

Table 5: FPGA resource consumption after HLS synthesis for XC7Z020.

Figure 39: Vivado Block design of ghostfree HDR IP core.

Interfaces:
 LDRPixelsIn - HDR merging block expects multiple AXI Video streams,

according to configuration. Input data format is one 8-bit value per pixel with
either grayscale or Bayer representation. The streams have to pass

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 68 of 119

© FitOpTiVis Consortium public

simultaneously; therefore they are concatenated into one stream. Overall width
for three images is (23:0), where in (7:0) are the least exposed pixels, (15:8)
the middle exposed (reference) pixels and (23:16) the most exposed pixels.

 HDRPixelsOut - Axi Video stream with HDR pixels in format 12.8 (20 bits).
 Enable_ghostfree - set ‘1’ to enable ghost-free feature, ‘0’ to disable.
 AXI Lite (to be done) - Merging block is configured from software. Every

change in exposure times results in software modification of constants used by
the HW blocks. It is convenient to calculate these constants by software, since
it saves a big amount of FPGA resources. The necessary parameters include
the exposure ratio between exposures and the pre-calculated values of the
gauss function used in the ghost-free algorithm.

In current design, parameters are “hardwired” and the block expects images with
exposure ratio of 4, which is equivalent to 2EV (for example 1, 4 and 16ms). During
the following months, we are going to work on the block parametrization, we can
enable the full adjustment of the ghost-free merging block.

Figure 40: Resulting HDR tonemapped images with ghost-free merging disabled (left) and
enabled (right).

6.8. Tonemapping

BUT implemented Durand TMO [6.4], which is based on bilateral filtering and also
several basic TMOs, linear, logarithmic and exponential. The TMO block is written in
HLS, enabling an easy change of parameters, including the bilateral filter kernel size.
We implemented the HDR acquisition pipeline for SoC Xilinx Zynq. We also have a
reference implementation running on CPU and also port for GPU based platforms and
SoC Nvidia Tegra. The schematics of the TMO is shown on Figure 41. The input image

is separated into base and detail layers, where the base layer is compressed and
again added back to the detail layer. The histogram is obtained from the base layer in
order to tune the base layer scaling factor and other parameters over time.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 69 of 119

© FitOpTiVis Consortium public

Figure 41: Tonemapping IP core in Vivado.

Interfaces:

 hdr_s_axis - AXI Video Stream standard is used for input and output data
interface. While the input is the grayscale image with Bayer mask with 32bits
per pixel,

 hdr_m_axis - the output of TMO is 8bit RGB image.
 hdr_conf_axi_lite - AXI Lite interface is used for grabbing the image histogram

and other statistical data, which are used for passing back the software
adjusted tonemapping properties (e.g. min/max values, scale coefficients for
histogram balancing).

 temporal_conf_axi_lite - AXI Lite interface is used for configuration of temporal
part of the algorithm

 width and height constants - size of the input image

Within FitOptiVis, we plan to involve the temporal coefficient filter, which will enable the
smoother brightness adaptation - without this smoothing, the resulting image might
suffer from flickering, e.g. from light sources powered from PWM power sources or by
AC power. We experimented with several software implementations of temporal
TMOs. We incorporated temporal attributes into software implementation of the
Durand algorithm and we evaluated two possible temporal extensions of this algorithm.
The first one is temporal filtering of the base layer with values of base layer from
previous frames similarly to [6.5]. This approach requires one additional DMA for
buffering of previous values which consumes a large amount of resources. Second
possible extension is temporal filtering of global parameters (maximum and minimum
values of luminance in the frame). Our implementation is based on filtering using IIR
filter. This approach is also very efficient for FPGA implementation because additional
DMA is not necessary. AXI4 Lite interface is sufficient because the data rate is low (3
fixed-point values for one frame - maximum minimum and average) and values can be
computed in the ARM CPU.

We also converted the algorithms to fixed point arithmetic which is natural for FPGA.
As a consequence, the resource consumption decreased by 35%, while it allowed the
bilateral filter to extend the convolution kernel from 7x7 to 9x9 pixels.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 70 of 119

© FitOpTiVis Consortium public

 LUT Registers Brams 18k DSP

Floating Point 29314 21883 51 71

Fixed Point 19707 2570 45 41

Table 6: Resource consumption.

Figure 42: The FPGA implementation of Durand tonemapping.

6.9. Convolutional HW accelerator

This accelerator core will perform convolutional filtering on image data. The approach
will use limited precision number space with high dynamic range (compared to the
number of bits used). The details will be derived from the modelling task 3.1, after a
suitable parameter space has been found, based on simulations.

The core will be compatible with CNN based image / video content analysis, and
initially it is planned to be integrated with YOLO open source content analysis
software. Description of the YOLO can be found in [6.12].

Especially CNN like algorithms will benefit from the reduced precision approach, but
the system can be used for other convolutional operations also. Main concern is the
precision required. For some applications this approach will be sufficient, while others
will suffer from the quality degradation. This means that any user adopting the
methods developed here must be aware of this trade-off.

Using a hardware approach also allows performing several operations in parallel. This
will be especially valuable in case of neural network running several convolutional
kernels over the same input image. In hardware, especially with limited prevision,
several of these convolution kernels can be run in parallel. This will reduce the number
of memory accesses to retrieve the image / video data for the kernel, thus improving
energy efficiency.

The accelerator core will be implemented in FPGA for prototyping and testing and then
in silicon for performance evaluation. It is expected that the silicon version may be
scaled down, as the amount of memories and / or bandwidth issues may impose
restrictions. On the other hand the FPGA prototype can be scaled to match the silicon
device, to provide a reference point between the two implementations.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 71 of 119

© FitOpTiVis Consortium public

6.10. Video-based Point Cloud Compression

During the last two years Nokia has worked on the development of Video-based Point
Cloud Compression (V-PCC) as main part of Virtual Reality use case. This use case
has been utilised and tested in MPEG standardisation forum. The upcoming MPEG
standard for video-based point cloud compression is built around 2D video encoding
technology. The standard video coding technology can be utilised with existing
hardware mobile phone solutions and distribution infrastructure, i.e. existing hardware
video encoders and decoders, available on any modern mobile handset, can carry the
bulk of the processing operations.

The Test Model video-based point cloud compression (V-PCC) is project that was
started after the Call for Proposals (CfP) for Point Cloud Coding in MPEG [6.6], [6.7].
The core encoding and decoding process for V-PCC were inherited from the solution
that demonstrated the highest compression efficiency among all proponents as was
agreed during the MPEG 119 meeting in Macau.

We will describe shortly the main architecture structures and essential technical blocks
used in V-PCC model. The description of the encoding strategies is also provided. The
block structure shown in Figure 43 is used for encoding while for decoding the block

structure in Figure 44 is used instead.

Figure 43: V-PCC encoding structure.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 72 of 119

© FitOpTiVis Consortium public

Figure 44: V-PCC decoding structure.

At the encoding stage input point, cloud frame is processed in the following manner.

First, the volumetric 3d data must be represented as a set of 3d projections in different
components. At the separation, stage image is decomposed into far and near
components for geometry and corresponding attributes components, in addition, an
occupancy map 2d image is created to indicate parts of an image that shall be used.
The 2d projection is composed of independent patches based on geometry
characteristics of the input point cloud frame.

Patch generation method, patch packing strategies and padding methods are out of
the scope of the standard. Nokia has been studied their implementations in the best
practices. After the patches have been generated and 2d frames for video encoding
were created the occupancy map, geometry information, attribute information and the
auxiliary information may be compressed.

The reconstructed geometry information may be smoothed outside the encoding loop
as a post processing step. Additional smoothing parameters that were used for the
smoothing process may be transferred as supplemental information for the decoding
process. At the end of the process, the separate bit streams are multiplexed into the
output compressed binary file.

Decoding process starts form demultiplexing of the input compressed the binary file
into geometry, attribute, occupancy map and auxiliary information streams. The
auxiliary information stream is entropy coded and the detailed description of coding
methods for auxiliary information compression is provided in WP6.

Occupancy map is compressed using video compression and must be upscaled to the
nominal resolution. The nearest neighbour method is applied for upscaling. Geometry
stream is decoded and in combination with occupancy map and auxiliary information,
smoothing may apply to reconstruct point cloud geometry information.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 73 of 119

© FitOpTiVis Consortium public

Based on the decoded attribute video stream and reconstructed information for
smoothed geometry if present, occupancy map and auxiliary information the attributes
of the point cloud can be reconstructed. After attribute reconstruction stage additional
attribute smoothing method is used for point cloud refinement.

In WP3 tasks 3.1-3.3 Nokia has been profiling of algorithms in design time from
system performance point of view. The main goal is to optimize execution of
algorithms in the point cloud system environment. This means the identification of
sequential and parallel execution of tasks in different design phases. In this way, the
main benefit is to understand the main computational challenges when implementing
V-PCC system and standard.

Nokia has been focused on acceleration of individual algorithms in combination of
GPU and CPU. This has been done in image processing in the latest GPU generations
from ARM (Mali) and Qualcomm (Adreno). The algorithms have been covered
rendering, decoding reconstruction and filtering operations as discussed before in V-
PCC architecture description.

Also, some special challenges as bottlenecks exist in the synchronisation and
buffering of the parallel video streams have been studied in very detail HW and SW
levels. A particular problem is the handling of decoded video outputs on Android
devices. Here, FitOptiVis will improve over the existing standard with an efficient and
effective synchronisation solution, enabling V-PCC real-time decoding and playback
on modern Android handsets.

Based on the results of WP3 tasks Nokia can provide the analysis for profiling and
optimization, implementation recommendations, and performance understanding in the
V-PCC system and algorithm levels. As the results of these research studies Nokia’s
V-PCC demo source code is available for other partners [6.12]

Our experiments have shown that most modern mobile handsets are capable of
achieving real-time decoding of at least 25 frames per second as well as real-time AR
rendering. Thus, proving the general claim of real-time capability of V-PCC system.

6.11. Acceleration of face detector on GPU and DSP

The implementation of the face detector is based on RetinaFace project [6.13] which
has achieved state-of-the art performance in benchmarks [6.14]. RetinaFace is a
single stage detector. This architecture means that object localization and classifying
are both conducted on each inference cycle. This branch of CNN object detectors has
been growing rapidly over the last couple years. The system relies on usage of
predefined anchor boxes that are used for bounding box placement in the decoding
phase where detections are mapped into an image plane. The minimum dimension
requirements for a detection is approximately 30 x 40 and maximum is around 1000 x
1000 in pixel width and height.

CNN algorithms are often computationally expensive and the most power consuming
parts in applications. To meet this challenge, it is nowadays common to integrate
several different computing devices in a single chip each accelerating specific
algorithms. Designing, implementing, and tuning new algorithms for ISPs has
remained a high-cost exercise. Therefore, a more general purpose solution such as

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 74 of 119

© FitOpTiVis Consortium public

mobile graphics processing units (GPUs) and digital signal processors (DSP) that
handle image and video processing tasks is desired.

In this work, scalability of the solution using mobile GPUs and DSPs helps to achieve
improved energy efficiency and low power dissipation which is needed when dealing
with battery powered devices. In our experiments, we have evaluated the detector
implementations on a mobile development board. The optimization act here is a
balancing one between model complexity and inference optimization. Inference can be
optimized using quantization method, which means dropping the accuracy and
specificity of used variables by using smaller variable sizes.

The results were measured on the Qualcomm’s Snapdragon 855 mobile platform. The
CPU in this platform is Kryo 485 CPU, Octa-core CPU with clock speed up to 2.84
GHz and the GPU is an Adreno 640. The DSP is Qualcomm Hexagon™ 690
Processor with Hexagon Vector eXtensions (HVX) and Hexagon Tensor Accelerator.

The measured computation time for the CPU implementation was 1020 ms with the
image size 4096x2156. Using the GPU implementation, the processing time was
293ms. Power consumption was measured as the total system power on the platform.
We used the National Instruments NI 4065 measurement device for measuring the
electric current. First, the baseline system current without the algorithm running was
measured in order to determine the actual power consumption of the algorithm. The
baseline current was 207mA. Next, we measured electric current of the CPU and GPU
versions of the algorithm using image resolution 4096x2156. Results are shown in
Figure 45 and Figure 46. The measured average electric current for CPU implementation

was 294mA and for GPU implementation it was 241mA. Thus, energy efficiency is
much better with the GPU implementation.

Figure 45: Power consumption measurement (mA) when running face detector forl (4096 ×
2156) size frames with CPU implementation. X-axis shows time and y-axis shows current in the

range between 0 and 1100 mA.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 75 of 119

© FitOpTiVis Consortium public

Figure 46: Power consumption measurement (mA) when running face detector for (4096 ×
2156) size frames with GPU implementation. X-axis shows time and y-axis shows current in

the range between 0 and 1100 mA.

We will continue GPU/DSP/CPU inference optimization of native implementation,
embedded and real-time (video) detection implementation. Also re-training the detector
with GPU/DSP supported operations and training heavier models is considered.

7. Design Time Support for Methodologies and
Tools

This chapter describes design time support for methodologies and tools released in Y2
by FitOptiVis WP3 partners and to general public use before M24 of the project (end of
April 2020) in [7.12] and [7.13]. These released Y2 design time resources are also
summarised in section 10.8 as “Design Time Resource Integrator of Model Composer
IPs (DTRiMC) Technology” These activities have been developed in T3.1, T3.2 and
T3.3.

In Y1, project released support for Xilinx Zynq systems with these specific features:

 ZynqBerry system presents small, low cost system with design time support
being developed in FitOptiVis [7.1]. It has the RaspBerry form factor and works
with the (28nm) Xilinx 32bit Zynq device with small programmable logic area.

 Medium size 16nm 64bit Zynq UltraScale system with design time support
being developed in the FitOptiVis [7.2]. It is re-using the carrier board and the
Full HD video I/O FMC card used in the Almarvi project.

 Large 16nm 64bit Zynq UltraScale system with design time support being
developed in the FitOptiVis [7.3]. It is re-using the video Full HD video I/O FMC
card used in the Almarvi project. The carrier has the Mini ITX form factor.

Table 6 summarizes the progress made by the FitOptiVis partners in the WP3 from M1

to M12.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 76 of 119

© FitOpTiVis Consortium public

 ALMARVI - end of project:

 FitOptiVis – Y1:
 Zynq 7000 family (28nm)

 Stand-alone only

 + Zynq Ultrasscale+ 16nm
+ Small: ZynqBerry 28nm

 + PetaLinux OS
+ Debian FS support

 ALMARVI limitations: FitOptiVis progress:
 Limiting PL size of Zynq
 no VCU, no GPU
 no USB support
 no Ethernet board 2 board

communication framework

 + Large PL of Ultrascale+
 + VCU, + GPU,
 + USB
 + Ethernet board 2 board

 communication based on
 Arrowhead Framework

Table 7: Progress made in FitOptiVis in WP3 in Y1.

The FitOptiVis Y1 design time resources have been described in D3.1.

The technology developed in Y1 is summarized in section 10.7 of this D3.2 deliverable
as the “Design Time Resource Configurator (DTRC) technology” [7.1], [7.2], [7.3].

In Y2, WP3 partners developed, documented and released for public use the second
release of the design time resource support for a family of Xilinx Zynq and Zynq
Ultrascale+ systems. See [7.12] and [7.13]. This is summary of the new features
developed in Y2:

 Support for designs with Xilinx SG for DSP data streaming IPs for Zynq

 Support for designs with Xilinx SG for DSP data streaming IPs for Zynq
Ultrascale+

 Geneation of data movers for external IP blocks based on SDSoC 2018.2

 Export of generated Vivado/SDSoC HW sub-systems as shared C++ SW
library API

 SW developer can program „main“ applications without SDSoC 2018.2
compiler license with the standard g++ compiler and „make“.

 Swap of complete programmable logic during run-time, while Debian OS based
application continues to run

7.1. Y2 extension of support for the ZynqBerry board
TE0726

The Y2 design time support is based on Xilinx Vivado-HLS 2018.2, Vivado SDSoC
2018.2 and Petalinux 2018.2. In Y2, we have added support for designs with Xilinx SG
for DSP HW IPs with data streaming interfaces.

7.1.1. Y2 support for designs with Xilinx SG for DSP data
streaming IPs for ZynqBerry module

Xilinx SG for DSP with data streaming IP can be designed and modelled in Matlab and
Simulink ver. 2018a. The IPs are exported as RTL blocks for Xilinx Vivado 2018.2 and
become part of the initial HW platform for the SDSoC compiler. The technology

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 77 of 119

© FitOpTiVis Consortium public

supporting this export is summarized in section 10.8 as “Design Time Resource
Integrator of Model Composer IPs (DTRiMC) Technology” [7.12], [7.13].

The Y1 design time resource HW platform for the ZynqBerry board [7.1] was in Y2
extended with one 8xSIMD run-time reprogrammable single precision HW accelerator
FP01x8 [7.12] The accelerators is run-time reprogrammable and the provided SW
demo performs single precision matrix by matrix multiplication C[64,64] = A[64,64] *
B[64,64] as an application example. See D5.2 for internal details of the accelerator and
D4.2 and d4.3 for SW API details and descriptions.

The Y2 design time resource provides for the SW designer set of precompiled shared
libraries representing the HW platforms for Zynq 7000 (ZynqBerry) TE0726 with Single
8xSIMD FP01 Accelerator without support for floating point division operation:

 libfp01x8_v26x1_dma_hw.so

 libfp01x8_v26x1_sg_malloc_hw.so

 libfp01x8_v26x1_hw.so

 libfp01x8_v26x1_zc_sg_hw.so

The libraries represent different data movers used for connection of the 8xSIMD run-
time reprogrammable single precision HW accelerator FP01x8 in these HW
configurations:

 libfp01x8_v26x1_hw.so is using Zero Copy HW data movers. It is not using
the DMA IP cores. The data movers are realised as C++ function compiled to
HW by the SDSoC 2018.2 compiler. The HW supported data transfer requires
data to be present in “sd_alloc” memory (continuous physical section reserved
in the DDR3). Start of the data transfer is no blocking. The end of data transfer
is tested by pooling. The SW overhead needed to start this data transfer is
minimal.

 libfp01x8_v26x1_dma_hw.so is using DMA HW data movers. The HW
supported data transfers require data to be present in “sd_alloc” memory
(continuous physical section reserved in the DDR3). Start of the data transfer is
no blocking. The end of data transfer is tested by pooling. The SW overhead
needed to start this data transfer is larger in comparison to the Zero Copy data
mover.

 libfp01x8_v26x1_sg_malloc_hw.so is using combination of Zero Copy HW
data mover and DMA SG HW data mover with interrupt. The HW supported
data allocated by “sd_alloc” memory (continuous physical section reserved in
the DDR3). Start of the data transfer is no blocking. The end of data transfer is
tested by interrupts. The SW overhead needed to start this data transfer is
larger in comparison to the DMA data mover. Data can be allocated in the
standard Linux user-space memory, allocated by the standard Linux “malloc”
function. This is the only HW implementation capable to work directly with
standard “malloc” allocated linux data.

o If “malloc” data allocation is used, the overhead of this SG DMA is really
large.

o If “sd_alloc” data allocation is used (continuous physical section
reserved in the DDR3), the overhead of this SG DMA is larger in
comparison to DMA based HW support, but much shorter in comparison
to the case of data allocation based on standard “malloc”.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 78 of 119

© FitOpTiVis Consortium public

 libfp01x8_v26x1_zc_sg_hw.so is using DMA SG data mover with “sd_alloc”
allocated data and interrupts. Start of the data transfer is no blocking. The end
of data transfer is based on interrupt. The SG FMA is using the advanced
coherent port of the Zynq device. There is no need to flush the Zynq cache
before accessing of data.

Device: 7z010clg225-1 lut reg bram dsp

Available (100%) 12462 15376 60 80

One FP01X8_v26_40 Accelerator

fp03x8_v26x2_dma_hw 70,81% 43,68% 69,17% 40,00%

fp03x8_v26x2_hw 66,19% 39,06% 63,33% 40,00%

fp03x8_v26x2_sg_malloc_hw 84,39% 55,68% 77,50% 40,00%

fp03x8_v26x2_zc_sg_hw 82,55% 53,89% 75,00% 40,00%

Table 8: HW resources used by the FP01x8 Accelerator with different data movers.

7.2. Y2 extension of support for Zynq Ultrascale+ module
TE0820-4EV on TE0701 carrier with Full HD HDMI
Video I/O

The Y2 design time support extensions have been based again on Xilinx Vivado-HLS
2018.2, Vivado SDSoC 2018.2 and Petalinux 2018.2. Figure 46 presents illustrative

example of an initial HW design for Zynq Ultrascale+ used for the Y2 design time
resource generation. Figure 47 presents illustrative example of the final HW platform for

Zynq Ultrascale+ used for the Y2 design time resource generation.

The released HW design has fixed HW with selected set of auto-generated data
movers. The HW design is represented to SW if form of shared (.so) library with unified
API. SW designer can link the shared library to the SW application written in C/C++
and compiled by standard gcc compiler and “make”.

The “fixed” PL hardware remains run-time programmable by change of the firmware of
the integrated 8xSIMD HW accelerators. SW designer does not need the SDSoC
compiler license for compilation of the SW application.

In Y2, we have added additional support on top of the Y1 designs serving for
integration of multiple Xilinx SG for DSP IPs with data streaming interfaces. In addition,
we now support configurations with two HW accelerators connected in serial chain or
connected in parallel, to demonstrate the basic scalability.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 79 of 119

© FitOpTiVis Consortium public

7.2.1. Y2 support for designs with Xilinx SG for DSP data
streaming IPs for Zynq Ultrascale+ with Video I/O

The design time resource HW platform for the Zynq Ultrascale+ with Video I/O was
extended with two 8xSIMD run-time reprogrammable single precision HW accelerators
FP02x8 [7.13].

The technology supporting this export of accelerators is summarized in section 10.8 of
this D3.2 deliverable as “Design Time Resource Integrator of Model Composer IPs
(DTRiMC) Technology” [7.12], [7.13].

Figure 47: WP3 Y2 Initial Zynq Ultrascale+ platform with two serial connected accelerators.

The accelerators are run-time reprogrammable and the provided SW demo performs
two single precision matrix by matrix multiplications C(64,64) = A(64,64) * B(64,64) as
an application example.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 80 of 119

© FitOpTiVis Consortium public

We also provide application example with parallel computation of video processing
algorithm (Sobel filter edge detection on Full HD video) working in parallel with matric
multiplication on two 8xSIMD HW accelerators.

See D5.2 for internal details of the Accelerator and D4.2 and d4.3 for SW API details
and descriptions. The Y2 design time resource provides for the SW designer set of
precompiled shared libraries representing the HW platform.

Figure 48: WP3 Y2 Initial Zynq Ultrascale+ platform with two serial connected accelerators.

These released shared libraries represent different data movers used for connection of
the two 8xSIMD run-time reprogrammable single precision HW accelerators FP02x8 in
these HW configurations:

 Two 8xSIMD FP03 Accelerators, serial connect, no or only SW video
processing:

o libfp03x8_v26x2_dma_hw.so
o libfp03x8_v26x2_sg_malloc_hw.so
o libfp03x8_v26x2_hw.so
o libfp03x8_v26x2_zc_sg_hw.so
o libfp03x8_v26x2_sg_hw.so

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 81 of 119

© FitOpTiVis Consortium public

 Two 8xSIMD FP Accelerators, parallel connect, no or only SW video
processing:

o libfp03x8_v26x2p_dma_hw.so
o libfp03x8_v26x2p_sg_malloc_hw.so
o libfp03x8_v26x2p_hw.so
o libfp03x8_v26x2p_zc_sg_hw.so
o fp03x8_v26x2p_sg_hw.so

 Two 8xSIMD FP Accelerators, serial connect, HW video processing (sobel)
o libsobel_dma_v26x2p_hw.so

The released systems exported for the SW programmers have these properties:

 libfp02x8_v26x2_hw.so is working with two serial connected accelerators. It is
using Zero Copy HW data movers. It is not using the DMA IP cores. The data
movers are realised as C++ functions compiled to HW by the SDSoC 2018.2
compiler. The HW supported data transfers require data to be present in
“sd_alloc” memory (continuous physical section reserved in the DDR3). Starts
of the data transfers are no blocking. The end of data transfers are tested by
pooling. The SW overhead needed to start this type of data transfer is minimal.
It works with two Zero Copy HW IPs.

 libfp02x8_v26x2_dma_hw.so is working with two serial connected
accelerators. It is using DMA HW data movers. The HW supported data
transfers require data to be present in “sd_alloc” memory (continuous physical
section reserved in the DDR3). Start of the data transfer is no blocking. The
end of data transfer is tested by pooling. The SW overhead needed to start
this data transfer is larger in comparison to the Zero Copy data mover. It works
with two DMA HW IPs.

 libfp02x8_v26x2_sg_hw.so is working with two serial connected accelerators.
The HW supported data transfer requires data to be present in “sd_alloc”
memory (continuous physical section reserved in the DDR3). Start of the data
transfer is no blocking. The end of data transfer is tested by pooling. The SW
overhead needed to start this data transfer is larger in comparison to the DMA
data mover. It works with two SG DMA HW IPs.

 libfp02x8_v26x2_sg_malloc_hw.so is working with two serial connected
accelerators. It is using DMA SG data mover with “malloc” allocated data and
interrupts. Data can be allocated in the standard Linux user-space memory,
allocated by the standard Linux “malloc” function. Start of the data transfer is
no blocking. The end of data transfer is based on interrupt. The SG FMA is
using the advanced coherent port of the Zynq device. There is no need to flush
the Zynq cache before accessing of data. This is the only HW implementation
capable to work directly with standard “malloc” allocated linuc data.

o If “malloc” data allocation is used, the overhead of this SG DMA is really
large.

o If “sd_alloc” data allocation is used (continuous physical section
reserved in the DDR3), the overhead of this SG DMA is larger in
comparison to DMA based HW support, but much shorter in comparison
to the case of data allocation based on standard “malloc”.

It works with two SG DMA HW IPs.

 libfp02x8_v26x2_zc_sg_hw.so is working with two serial connected
accelerators. It is using one Zero copy data mover and one DMA SG data
mover with interrupt. It requires “sd_alloc” allocated data. The end of data
transfer is based on interrupt.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 82 of 119

© FitOpTiVis Consortium public

 libfp02x8_v26x2_hw.so is working with two parallel connected accelerators. It
works with four zero copy data movers implemented in HW.

 libfp02x8_v26x2_dma_hw.so is working with two parallel connected
accelerators. It works with four DMA HW IPs.

 libfp02x8_v26x2_sg_hw.so is working with two parallel connected
accelerators. It works with four SG DMA HW IPs with interrupts and data are
allocated by “sd_alloc” or “malloc”.

 libfp02x8_v26x2_sg_malloc_hw.so is working with two parallel connected
accelerators. It works with four SG DMA HW IPs with interrupts and data can
be allocated by “malloc” or “sd_alloc”.

 libsobel_sw_v26x2_hw.so computes in SW the sobel-filter edge detection
video processing algorithm in Full HD. It computes in parallel two floating point
matrix multiplications on two serial connected accelerators. It works with two
Zero Copy HW IPs.

 libsobel_dma_v26x2p_hw.so performs HW accelerated sobel-filter edge
detection video processing algorithm in Full HD. It computes in parallel two
floating point matrix multiplications on two serial connected accelerators. It
works with two DMA HW IPs.

 libsobel_sg_v26x2_hw.so It computes in parallel two floating point matrix
multiplications on two serial connected accelerators. It works with two SG DMA
HW IPs

Device: xczu4evsfvc784-1 lut reg bram dsp

Available (100%) 41322 48499 128 728

Two serial connected FP03X8
 fp03x8_v26x2_dma_hw 48,08% 28,13% 75,39% 9,07%

fp03x8_v26x2_hw 47,04% 27,61% 73,83% 9,07%

fp03x8_v26x2_sg_hw 53,69% 33,81% 89,06% 9,07%

fp03x8_v26x2_sg_malloc_hw 53,69% 33,81% 89,06% 9,07%

fp03x8_v26x2_zc_sg 50,70% 30,90% 82,03% 9,07%

Two parallel connected FP03X8
 fp03x8_v26x2p_dma_hw 55,00% 34,00% 89,45% 9,07%

fp03x8_v26x2p_hw 53,66% 33,46% 87,89% 9,07%

fp03x8_v26x2p_sg_hw 60,29% 38,30% 98,05% 9,07%

fp03x8_v26x2p_sg_malloc_hw 60,29% 38,30% 98,05% 9,07%

fp03x8_v26x2p_zc_sg 59,28% 37,70% 97,29% 9,07%

Two serial con. FP03X8 and Sobel filter
 sobel_dma_v26x2_hw 53,86% 33,20% 87,11% 9,07%

sobel_sg_v26x2_hw 58,07% 36,72% 94,53% 9,07%

sobel_sw_v26x2_hw 47,04% 27,61% 73,83% 9,07%

Table 9: HW resources used by the FP01x8 Accelerators with different data movers.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 83 of 119

© FitOpTiVis Consortium public

7.2.2. Y2 acceleration results on Zynq Ultrascale+ with
video I/O.

The two run-time reprogrammable HW accelerators FP03x8 with released provided
SW demo performs two single precision matrix by matrix multiplications
C(64,64) = A(64,64) * B(64,64) as an application example. The two 8xSIMD HW
accelerators running in HW with 240 MHz clock accelerate the SW computation
compiled by g++ with -O3 optimisation for single core of Arm A53 (1.2 GHz) 5x.

7.2.3. Y2 acceleration results on ZynqBerry with video I/O.

Single run-time reprogrammable HW accelerator FP01x8 with released SW demo
performs one single precision matrix by matrix multiplication
C(64,64) = A(64,64) * B(64,64) as an application example. The 8xSIMD HW
accelerator running ZynqBerry HW with 115 MHz clock accelerates the SW
computation compiled by g++ with -O3 optimisation for single core of Arm A9 (650
MHz) 2.5x.

Figure 49: Full HD edge-detection and matrix multiplication on two FP03x8 accelerators.

Figure 49 demonstrates processing of the full HD HDMI 60 FPS video by HW

accelerated Sobel filter performing edge detection and in parallel computation of two
single precision floating point matrix multiplications in two serial connected FP03x8
HW accelerators.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 84 of 119

© FitOpTiVis Consortium public

The Edge detection is accelerated 20x by the fixed SDSoC HW accelerator and the
matrix multiplications are accelerated 5x by the two run-tome reconfigurable 8xSIMD
accelerators FP03x8.

7.3. Complete runtime reconfiguration of PL part of Zynq
Ultrascale+ module TE0820-4EV on TE0701 carrier
with Full HD HDMI Video I/O

In Y2 WP3 released design time support package enabling to perform complete
reconfiguration of PL part of Zynq Ultrascale+ module TE0820-4EV on TE0701 carrier
with Full HD HDMI Video I/O. This Y2 design time support extensions have been
based again on Xilinx Vivado-HLS 2018.2, Vivado SDSoC 2018.2 and Petalinux
2018.2.

Requirements for HW/SW

 Standard HW/SW design for the HW supported by the WP3 Y1 design time
resources for Zynq Ultrascale+ module TE0820-4EV on TE0701 carrier with
Full HD HDMI Video I/O.

 Debian OS with installed UTIA GUI for run-time reconfiguration support

 SW user application capable to start and stop the Video FNA engines.

 SW user application without command-line input. Ascii output to console is OK.

The realised design time support includes all necessary elements needed for stop of
the data traffic in the Video DMA engines as well as in the Full HD Video Input and
Output connections.

Petalinux executes two applications.

 The GUI based on Quick Time serving for the user control of reconfiguration

 The actual SW application dealing with video processing and PL logic
accelerators.

If we decide to stop the SW application, the GUI application on Debian Desktop, the
Petalinux 2018.2 kernel, the Debian file system and its services like the Ethernet
support continue to run.

The GUI first sends signal to the running SW application to stop. The application has
to stop all DMA and VDMA and terminates. Then the GUI waits for user input
(selection of new SW-only or SW with HW support application). The PL logic is
reprogrammed internally in the device with new bitstream. This process is controlled
by the GUI application.

Finally the GUI starts the new selected application SW. This new application re-starts
all DMA and VDMA units and reconnects to the HDMI I/O. This design time resource
enables fast evaluations of different HW accelerated versions of algorithms.

The limitation of the framework is the temporary loss of control over the PL logic and
all its I/O pins and the need to support automatic reconnection of the broken Full HD
HDMI I/O digital video data paths.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 85 of 119

© FitOpTiVis Consortium public

Figure 50: Function of all HW data movers have to be terminated before stop of SW app.

Platform supporting the PL reconfiguration was presented to project partners during
the FiOptiVis F2F meeting 3-5.3 2020 in UTIA, Prague, Czech Republic. In March
2020 (M22), the HW reconfigurable platform includes:

 Edge detection accelerator based on Sobel filter in SW and in HW

 Canny edge detector in HW

 Motion detection accelerator based on two Sobel filters in SW and in HW

 Lucas Kande Dense Optical Flow accelerator in SW and in HW

 Object tracking demo (tracking of colour and position of four balls)

Figure 51 presents the demonstrated addition of a new HW-accelerated Colour Ball

Tracking Demo into the set of HW supported SW applications with supported
reconfiguration in the run-time.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 86 of 119

© FitOpTiVis Consortium public

Figure 51: Demonstration of platform supporting the PL reconfiguration in Prague on
5.3.2020.

8. Conclusions

This deliverable describes the status of design time methodologies, frameworks and
strategies developed by FitOptiVis project partners in M24 of the project. It collects the
results achieved in tasks T3.1 “Model-driven engineering techniques for energy
performance and other qualities” in Chapter 4, T3.2 “Programming and parallelization
support” in Chapter 5, and T3.3 “Accelerator support” in Chapter 6.

We value progress made in Y2 in TTA-Based Co-design Environment (TCE) (see
Sections 5.5 and 6.5 and table describing the tool in Section 10.1 in the appendix).
TCE provides an open application-specific instruction-set toolset. It can be used to
design and program customized processors based on the energy efficient Transport
Triggered Architecture (TTA). The toolset provides a complete re-targetable co-design
flow from high-level language programs down to synthesizable processor RTL and
parallel program binaries. TCE supports any HW synthesizer, i.e. Vivado or Synopsis
tools and it is not restricted to single technology vendor. Processor customization
points include the register files, function units, supported operations, and the
interconnection network. In Y2, several FitOptiVis partners have tested the TCE
technology provided by TUT (CUNI, UTIA).

Another important design time resource development made in Y2 is the RIE
methodology and C++ library for component-based implementation of embedded
systems. RIE supports runtime reconfiguration of the software components described
in the QRML modelling language developed in WP2. It is possible to generate RIE
code from the WP2 QRML language and UML/MARTE models from the S3D – Single
Source Design Framework. The library classes are used to implement components
and monitors. Additionally, the library also simplifies component deployment in the
cloud and edge. See Sections 4.1, 5.8 and Sections 10.5, 10.6 in the appendix.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 87 of 119

© FitOpTiVis Consortium public

As an additional project outcome to this deliverable, we have released re-usable
design time methodologies and tools released in the form of publicly accessible
evaluation packages and documented in publicly accessible detailed application notes,
tools or design methodologies [7.12], [7.13]. This support material goes in some cases
already beyond the “standard” university evaluation boards, tools and design flows.
Some of the tools provide design time support for commercial modules and evaluation
boards and have potential to be considered as an initial stage of commercial tools or
commercial HW IP blocks.

In Y3 we will continue work on additional contributions to open source repositories for
various tools and technologies forming the design time resources. Description of status
of these tools and technologies in M24 is appended to this D3.2 deliverable in an
easily readable form as an Appendix in Chapter 10.

9. References

[4.1] F Herrera, J Medina, E Villar, Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach. Handbook of
Hardware/Software Codesign, 141-185. 2017.

[4.2] Wasif Afzal et al, The MegaM@Rt2 ECSEL Project: MegaModelling at
Runtime – Scalable Model-Based Framework for Continuous Development
and Runtime Validation of Complex Systems, DSD 2017.

[4.3] V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice,
“CC4CS: an Off-the-Shelf Unifying Statement-Level Performance Metric for
HW/SW Technologies”, In Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering (ICPE '18), ACM, New York, NY,
USA, 2018, pp. 119-122.

[4.4] L. Pomante. “HW/SW Co-Design of Dedicated Heterogeneous Parallel
Systems: an Extended Design Space Exploration Approach”. IET Computers
& Digital Techniques, Institution of Engineering and Technology, 2013, Vol. 7,
Iss. 6, pp. 246–254.

[4.5] https://sphinxcontrib-needs.readthedocs.io/en/latest/ - Sphinx Needs
Requirements, Bug, Test Case suite.

[4.6] https://www.ibm.com/us-en/marketplace/rational-doors - IBM Rational DOORS
tool for requirements management.

[4.7] https://confluence.atlassian.com/jirakb/using-jira-for-requirements-
management-193300521.html - Using JIRA for requirements management.

[4.8] Haugen, Ø., Wąsowski, A. and Czarnecki, K., 2013, August. CVL: common
variability language. In Proceedings of the 17th International Software Product
Line Conference (pp. 277-277). ACM.

[4.9] Haugen, Ø. and Øgård, O., 2014, September. BVR–better variability results.
In International Conference on System Analysis and Modeling (pp. 1-15).
Springer, Cham.

[4.10] https://www.tensorflow.org/ - Google TensorFlow Deep Learning framework.
[4.11] http://torch.ch/ - Torch Deep Learning framework.
[4.12] https://github.com/jcjohnson/densecap - DenseCap image recognition

description Deep Learning network.
[4.13] https://github.com/CMU-Perceptual-Computing-Lab/openpose

CMU OpenPose network for recognition of human pose and gestures.
[4.14] Sander Stuijk, Marc Geilen, Bart D. Theelen, Twan Basten: Scenario-aware

dataflow: Modeling, analysis and implementation of dynamic applications.

javascript:void(0)
javascript:void(0)
https://sphinxcontrib-needs.readthedocs.io/en/latest/
https://www.ibm.com/us-en/marketplace/rational-doors
https://confluence.atlassian.com/jirakb/using-jira-for-requirements-management-193300521.html
https://confluence.atlassian.com/jirakb/using-jira-for-requirements-management-193300521.html
https://www.tensorflow.org/
http://torch.ch/
https://github.com/jcjohnson/densecap
https://github.com/CMU-Perceptual-Computing-Lab/openpose

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 88 of 119

© FitOpTiVis Consortium public

ICSAMOS 2011: 404-411
[4.15] IMACS is an open-source framework for performance evaluation of IMAge in

the Closed-loop System: www.es.ele.tue.nl/ecs/imacs
[4.16] Róbinson Medina Sánchez, Juan Valencia, Sander Stuijk, Dip Goswami,

Twan Basten: Designing a Controller with Image-based Pipelined Sensing and
Additive Uncertainties. TCPS 3(3): 33:1-33:26 (2019)

[5.1] J. Sochman and J. Matas, "WaldBoost - learning for time constrained
sequential detection," 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp.
150-156 vol. 2.

[5.2] Python package for training object detectors:
https://github.com/RomanJuranek/waldboost

[6.1] Dollár, Piotr, et al. "Fast feature pyramids for object detection." IEEE trans-
actions on pattern analysis and machine intelligence 36.8 (2014): 1532-1545.

[6.2] P. Musil, R. Juránek, M. Musil and P. Zemčík, "Cascaded Stripe Memory
Engines for Multi-Scale Object Detection in FPGA," in IEEE Transactions on
Circuits and Systems for Video Technology. doi:
10.1109/TCSVT.2018.2886476

[6.3] Nosko, S., Musil, M., Zemcik, P. et al.,” Color HDR video processing
architecture for smart camera”, Journal of Real-Time Image Proc (2018).
https://doi.org/10.1007/s11554-018-0810-z

[6.4] Durand, Frédo, and Julie Dorsey. "Interactive tone mapping." Rendering
Techniques 2000. Springer, Vienna, 2000. 219-230.

[6.5] Ozan Aydin, T.; Stefanoski, N.; Croci, S.; et al.: Temporally Coherent Local
Tone Mapping of HDR Video. vol. 33. 11 2014: pp. 1–13.

[6.6] PCC Test Model Category 2v0, ISO/IEC JTC1/SC29/WG11 N17248, Macau,
China, October 2017.

[6.7] S. Shwartz, P. Chou, I Shinharoy, D. Flynn Common test conditions for point
cloud compression. ISO/IEC JTC1/SC29/WG11 N17766, Ljubljana, SI, July
2018.

[6.8] The Multi-Dataflow Composer (MDC) tool: a dataflow-to-accelerator design
suite.
Get MDC link https://github.com/mdc-suite/mdc
Documentation link https://github.com/mdc-suite/mdc/wiki
Video Lecture link https://youtu.be/_cyYFJCDR3U
Tutorials link https://github.com/mdc-suite/mdc/wiki/MDC-Tutorial

[6.9] Italian project using MDC http://www.cluster-prossimo.it/progetti-partner/
[6.10] EU project using MDC https://www.cerbero-h2020.eu/
[6.11] Joseph Redmon, Ali Farhadi.: YOLOv3: An Incremental Improvement.

Technical report. Cornel university. https://arxiv.org/abs/1804.02767
[6.12] V-PCC demo source code: https://github.com/nokiatech/vpcc
[6.13] RetinaFace project: https://arxiv.org/abs/1905.00641
[6.14] RetinaFace benchmarks:

http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html
[7.1] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time

Resources for the ZynqBerry Board TE0726-03M with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2

[7.2] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time
Resources for Zynq Ultrascale+ TE0820-03-4EV-1E with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 89 of 119

© FitOpTiVis Consortium public

[7.3] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time
Resources for Zynq Ultrascale+ TE0808-04-15EG-1EE with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2

[7.4] Lukas Kohout, Jiri Kadlec, Zdenek Pohl: “Video Input/Output IP Cores for
TE0820 SoM with TE0701 Carrier and and Avnet HDMI Input/Output FMC
Module”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=te0820-hio-ho

[7.5] Trenz Electronic, "TE0726 TRM," [Online].
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-
DDR3L-and-SDSoC-Voucher?c=350

[7.6] Documents for Arrowhead Framework
Available:https://forge.soa4d.org/docman/?group_id=58

[7.7] Trenz Electronic, "MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2
GByte DDR4 SDRAM, 4x5cm", [Online].
https://shop.trenz-electronic.de/en/TE0820-03-04EV-1EA-MPSoC-Module-
with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm

[7.8] Trenz Electronic, "UltraSOM+ MPSoC Module with Zynq UltraScale+
XCZU15EG-1FFVC900E, 4 GB DDR4", [Online].
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-MPSoC-
Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4?c=450

[7.9] Trenz Electronic, “”=UltraITX+ Baseboard for Trenz Electronic TE080X
UltraSOM+” [Online].
https://shop.trenz-electronic.de/en/TEBF0808-04-UltraITX-Baseboard-for-
Trenz-Electronic-TE080X-UltraSOM?c=261

[7.10] Trenz Electronic, “Carrier Board for Trenz Electronic 7 Series” [Online].
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-
Electronic-7-Series?c=261

[7.11] Lukas Kohout, Jiri Kadlec, Zdenek Pohl: Video Input/Output IP Cores for Xilinx
ZCU102 with Avnet HDMI Input/Output FMC Module , Application note and
Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=zcu102-hio

[7.12] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: FP01x8 Accelerator on TE0726-03M
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-
te0726_fp01x8_short.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8

[7.13] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: Two serial connected evaluation
versions of FP03x8 accelerators for TE0820-03-4EV-1E module on TE0701-
06 carrier board
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-
te0820_fp03x8x2s.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 90 of 119

© FitOpTiVis Consortium public

10. Appendix: FitOptiVis Design Time Support
Tools

The tools developed in WP3 for design time support for new co-processors, hardware
accelerators and SoCs each serve their own specific design spaces and purposes.
This appendix summarizes all the tools developed in the project along with their key
features, inputs and outputs, as well as intended users.

Figure 52: FitOptiVis Design Support Tools.

In order to put the tools to a big picture, an interesting way to visualize them is to map
them by their two main characteristics: The granularity and their software/hardware-
orientation. When dealing with the accelerator or “SoC component” development tools,
the “flexibility” or “the programmability” of the accelerators the tool produces is also an
interesting aspect since it affects the reuse of the produced components. The overall
view is shown in Figure 52. Table 10 present status of usage of WP3 tools by project

partners in M24. The use of WP3 tools and technology in FitOptiVis demonstrators will
be reported in the deliverable D3.3.

The tools can be categorized according to their granularity: whether they are used
assisting the design of the whole system of a chip or a single component (an
accelerator or an “IP block”) inside the system. Further, some of the system design
tools are more software oriented, some focus on hardware, some on both.
For the accelerator design tools, an interesting characteristic is the flexibility of the
designed components in the scale of single function hardware accelerators to fully
compiler programmable co-processors that can support any C/C++/OpenCL C

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 91 of 119

© FitOpTiVis Consortium public

program from high-level languages. E.g. MDC can generate CGRAs that support
multiple functions whereas the programmability of TCE-generated accelerators varies
from single function to fully compiler programmable.

Detailed descriptions of the tools listed in Table 10 are shown in the following

subsections 10.1 – 10.9.

Table 10: Use of WP3 tools and technologies by project partners (M24)

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 92 of 119

© FitOpTiVis Consortium public

10.1. TTA-Based Co-design Environment (TCE)

Tool/Technology in a Nutshell

An open application-specific instruction-set toolset. It

can be used to design and program customized

processors based on the energy efficient Transport

Triggered Architecture (TTA). The toolset provides a

complete re-targetable co-design flow from high-level

language programs down to synthesizable processor

RTL (VHDL and Verilog back-ends supported) and

parallel program binaries. Processor customization

points include the register files, function units,

supported operations, and the interconnection

network.

Key Features –
FitOptiVis Starting Point

TCE has been developed and maintained in various

research projects since 2002.

Some of the key features at the start of FitOptiVis:

 Complete runtime re-targetable tool flow from

source code down to customized processor and

its target-specific binaries

 LLVM-based compiler at version LLVM 5.0

 Component library based RTL generation to

VHDL and Verilog

 Manual processor customization tool steps that

can be invoked from the command line to assist in

processor design

TRL level @ 2018 – 6/7 for the previous features, 2/3
for the new

Intended Users

 Designers of hardware accelerators who could

benefit from the flexibility of a software

programmed customized co-processor instead

 Developers of FPGA soft IP who benefit from the

easier way to describe the control using software

instead of FSMs

 Target at the end of FitOptiVis: Software

engineers with no hardware skills that need to

develop accelerators: co-processors generated

totally automated from software sources with

minimal target-specific pragmas etc.

Benefits for the User

 Software programmable, yet very energy efficient

accelerators

 No “vendor lock-in” of commercial tools since

output is targetable to and efficient on different

FPGAs and ASIC technologies

Tool/Technolo Inputs C (some C++ supported), OpenCL C

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 93 of 119

© FitOpTiVis Consortium public

gy
Requirements

 HDL description of special function units

Outputs

 RTL (VHDL or Verilog) along with

integration/project files for different flows, one of

which is AlmaIF which is an IP wrapper

developed in ALMARVI project and further

developed in FitOptiVis

 Architecture description file that drives the

different target-specific tools

 Program binaries produced from the re-targetable

compiler

Target Any ASIC or FPGA technology

Dependencies

 HW synthesizer, i.e. Vivado or Synopsis tools.

 Multiple open source libraries available with

liberal licenses (LLVM, wxWidgets, Boost

libraries, editline)

Tool/Technolo
gy Block

Diagram(s)

TCE Design
Flow

Co-processors
in AlmaIF IP

interface

Example 1:
Custom DSP for

Binaural Speaker Localization
Custom DSP targeted to hearing aid devices with

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 94 of 119

© FitOpTiVis Consortium public

support for advanced algorithms. 32 x int32 SIMD
(1024b) datapath. Synthesized on 28 nm FDSOI. 12
mW at 50 MHz, 1V. 2-split SIMD RF, 1 write port
each. Only 10.5% of total power thanks to software
bypassing and DRE. Published in 2016 IEEE
International Conference on Electronics, Circuits and
Systems (ICECS).

Example 2:
A 5.3 pJ/op Approximate TTA

VLIW Tailored for Machine
Learning

Minimum energy point 0.35 V near threshold
operating voltage for ultra low power execution.
Features for approximate computing. Detect errors in
computation, replace with safe values. Manufactured
on 28 nm FDSOI. About 320 µW (incl. memories) on
ML workloads. Published in Elsevier Microelectronics
Journal 61 (2017) 106–113.

Example 3:
LordCore: High Performance

Low Power Wide-SIMD Floating
Point SDR Multicore

32-element FP16
SIMD FUs. Quite
generic design,
only a few special

instructions.
OpenCL C

programmed.
Quad core: 28 nm
FDSOI power
analysis: 280 mW
at 900 MHz, 237
GFLOPS (846
GFLOPS / W).
Approx. 18%
datapath energy

savings through the TTA programming model. Three
orders of magnitude more power efficient than
GPU designs. Closer to fixed function HW power
efficiency scale. Published in IEEE TVLSI in 2019.

FitOptiVis Technological
Advances

Expected additions:

 AEx: Fully automated co-processor

exploration. This allows using TCE as an HLS

engine which produces re-programmable IPs

as an output.

 Improved FPGA efficiency on the end results

for more beneficial soft core use.

 More extensive OpenCL support and ONNX

input for AI.

 Compiler improvements, enable programming

also CGRAs with TCE compiler.

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 95 of 119

© FitOpTiVis Consortium public

TRL level of the new planned features @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

Already
Planned Use

Virtual Reality Use Case:

 To produce compiler programmable co-

processors for FPGA acceleration of low

latency high resolution frame streaming

compression using texture compression

algorithms

Potential
Foreseen Links

Multi-source Streaming:

 Programmable wide-SIMD FPGA soft cores

Autonomous Exploration:

 Custom wide-SIMD multicore DSP for

eventual ASIC implementation and custom

SoC integration

Open-Source http://openasip.org

Licence Type https://opensource.org/licenses/MIT

Commercial license N/A

10.2. HW/SW CO-DEsign of HEterogeneous Parallel
dedicated SYstems (HEPSYCODE)

Name
HW/SW CO-DEsign of HEterogeneous Parallel dedicated
SYstems (HEPSYCODE)

Tool in a Nutshell

HEPSYCODE is a prototypal toolchain that aims to
support the design of embedded applications. It is based
on a System-Level methodology for HW/SW Co-Design of
Heterogeneous Parallel Dedicated Systems.
HEPSYCODE uses Eclipse MDE technologies, a
customized SystemC simulator and an evolutionary
genetic algorithm for HW/SW partitioning, architecture
definition and mapping activities, all integrated into an
automatic framework that drives the designer from the
specification to the implementation.

Key Features –
FitOptiVis Starting Point

HEPSYCODE toolchain drives the designer from an
Electronic System-Level (ESL) behavioral model, with
related NF requirements, including real-time and mixed-
criticality ones, to the final HW/SW implementation,
considering specific HW technologies, scheduling policies
and Inter-Process Communication (IPC) mechanisms. It
has been adopted and extended within several European
project (i.e., EMC² - Embedded Multi-Core systems for
Mixed Criticality applications in dynamic and changeable

http://openasip.org/
https://opensource.org/licenses/MIT

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 96 of 119

© FitOpTiVis Consortium public

real-time environments, https://www.artemis-emc2.eu/;
MegaM@Rt2 - MegaModelling at Runtime,
https://megamart2-ecsel.eu/; AQUAS - Aggregated
Quality Assurance for Systems, https://aquas-project.eu/),
while it will be improved during FitOptiVis.
Features at the start of the project:

 HEPSYCODE defines a behavioral modeling

language, named HML (Hepsy Modeling Language),

based on the Communicating Sequential Processes

(CSP) Model of Computation (MoC) and SystemC. By

means of HML it is possible to define the System

Behaviour Specification (SBS), composed by the

System Behavior Model (SBM), a set of Non

Functional Constraints (NFC) and a set of Reference

Inputs (RI) to be used for simulation-based activities.

The SBM is a CSP-based executable model of the

system behavior that explicitly defines also a model of

communication among processes (PS) using

unidirectional point-to-point blocking channels (CH) for

data exchange.

 Designers select basic HW components available to

build the final HW platform based on the selected

Target Template Architecture (TTA). The final HW

platform is composed of several basic HW

components. These components are collected into a

Technologies Library (TL). TL can be considered as a

generic “database” that provides the characterization

of the available processor technologies.

 HEPSYCODE evaluates and estimates some system

metrics that exploits as much information as possible

about the system by analysing the SBM, while

considering the available basic HW components (i.e.,

timing performance, cost, energy/power, area).

 Finally, HEPSYCODE reference co-design flow

reaches the DSE step. Starting mainly from

Application Model and Platform Model, it includes two

iterative activities: (1) “Search Methods”, that consider

HW/SW partitioning, architecture definition and

mapping using a genetic algorithm that allows to

explore the design space looking for feasible

architecture/mapping items suitable to satisfy imposed

constraints; (2) “Timing Co-Simulation”, that considers

suggested mapping/architecture items to actually

check for timing constraints satisfaction.

Intended Users

 Embedded systems engineers and designers

 Software developers

 Hardware architects

https://www.artemis-emc2.eu/
https://megamart2-ecsel.eu/
https://aquas-project.eu/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 97 of 119

© FitOpTiVis Consortium public

 EDA industries

Benefits for the User

 Reduce design productivity gap: focus on system-level

requirements and get suggestions from the framework

about possible implementations able to satisfy them.

 Reduce time to market: compare embedded systems

designers experience-based intuitions with the ones

proposed by the framework to avoid costly early-stage

errors.

 Find the best design metrics trade-off: define

designers’ custom library of basic HW components

and let the framework propose how to use them.

Tool
Requirements

Inputs

 High-level application models (HML - CSP)

 UML models represents system behaviour

 HW basic components in terms of processors,

memories and communication links – XML

 Input F/NF requirements and constraints

 Test-benches

 SystemC behaviour implementation

Outputs

 HW/SW final architecture:

o HW/SW CSP process partition on a

Heterogeneous multi-processor embedded

system composed by different HW

components that fulfil architectural constraints,

and the mapping between CSP processes and

HW components, able to satisfy input

constraints.

o Logical and physical links allocation and

mapping that fulfil input constraints

Target

 COTS (i.e., Common-Off-The-Shelf) General-Purpose

Processors (GPP, e.g., ARM, MIPS, MicroBlaze, Nios

II, etc.);

 COTS domain-oriented processors (e.g., DSP, Digital

Signal Processor; GPU, Graphical Processing Unit;

etc.);

 Custom domain-oriented processors (ASIP,

Application Specific Instruction-set Processor);

 COTS Single-Purpose Processors (SPP, e.g., AES

coder, JPEG coder, UART/SPI/I2C Controller, etc.);

 Custom Single-Purpose Processor (SPP, i.e., the

actual ad-hoc developed digital HW components)

Dependen
cies

 EMF technologies

 SystemC Library

 Embedded Linux Distributions (Petalinux, Gaisler

Buildroot)

 HW synthesizer, i.e. Vivado

 (optional) High Level Synthesis tool to generate the

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 98 of 119

© FitOpTiVis Consortium public

HDL Components

Tool Block
Diagram(s)

HEPSYCO
DE Design

Flow

Results

Example:
FIR Variable TAP8 filter

(FIR8)
FIR Variable TAP16 filter

(FIR16)
Greatest Common Divisor

(GCD)

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 99 of 119

© FitOpTiVis Consortium public

Fir-Fir-GCD is a synthetic application that takes in input
two values (triggered by Stimulus), makes two filtering
actions (FIR8 and FIR16) and then makes the greatest
common divisor (GCD) and displays the result.
Figure at the top shows the data flow model associated to
the application.
Figure at the center is the FIR-FIR-GCD HML model,
where the application is composed of eight processes and
twelve channels. Two more processes (Stimulus and
Display) and three more channels are then used to
describe and connect the testbench (represented by 2
input channel i1 and i72 and 1 output channel o1).
Finally, it is possible to realize the System Behavioral
Model (SBM), represented by the CSP shown in Figure at
the bottom, that provides a schematic view of FirFirGCD
system, composed of eight processes and twelve
channels. Two more processes and three more channels
are then used to describe and connect (input signals) the
test-bench (output signal).
Stimuli are numerical and random values that represent

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 100 of 119

© FitOpTiVis Consortium public

the system input. This data are sent to two distinct blocks:
Fir8 and Fir16. These blocks represent two FIR filters
(Finite Impulse Response). The outputs of the filtering
operations are then transferred to a GCD block, which
evaluates the maximum common divisor of the two
values. The FIR blocks computation is divided into two
parts: one performs a certain number of multiplications
using coefficients (FIR evaluation), while the other part
performs shifting operations (FIR shifting).

FitOptiVis Technological
Advances

Expected additions:

 DSE able to consider power/energy constraints at

system level

 Monitoring support based on AIPHS in order to

validate the methodology

 Possible runtime adaptive design points based on

DSL specifications

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

 Under Evaluation

Potential
Foreseen

Links

Open-Source
Git repository: https://bitbucket.org/vittorianomuttillo87/tool-
hepsycode/src/master/
Official website: http://www.hepsycode.com

Licence Type GPL2

Commercial license N/A

https://bitbucket.org/vittorianomuttillo87/tool-hepsycode/src/master/
https://bitbucket.org/vittorianomuttillo87/tool-hepsycode/src/master/
http://www.hepsycode.com/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 101 of 119

© FitOpTiVis Consortium public

10.3. Multi-Dataflow Composer (MDC) tool

Name Multi-Dataflow Composer (MDC) tool

Tool/Technology in a
Nutshell

MDC tool is an automated dataflow-to-hardware tool for
the generation and system integration of Coarse-Grained
Reconfigurable datapath/accelerators

Key Features –
FitOptiVis Starting Point

MDC tool is the primary outcome of a Sardinian Regional
project concluded in 2012 (http://sites.unica.it/rpct/). Along
the years, and throughout its adoption within the
CERBERO H2020 project (https://cerbero-h2020.eu) it has
been extended to its actual definition.
Features at the start of FitOptiVis:

 composition of different high-level abstract functional

specification to be implemented on a single accelerator

(implementable both on ASIC and FPGA), based on

coarse-grained reconfigurable technologies

 automatic resource minimization

 automatic reconfiguration management

TRL level @ 2018 – 3/4

Intended Users

 Software developers/embedded system engineers with

little to no knowledge of the hardware

 Hardware architects/embedded system engineers

requesting for additional features (e.g. power

optimization)

Benefits for the User

 design automation from high level models (dataflows,

i.e. xdf files) to hardware

 handling of complex and time consuming design

issues, such as topology exploration or power

optimization

 easy system integration within Xilinx platforms

Tool/Technolo
gy

Requirements

Inputs

 high level models (dataflow) of functionalities to be

implemented - XDF, Cal

 HDL description of the components (HDL Components

Library, HCL) corresponding to the dataflow actors,

manually or automatically generated - Verilog, VHDL

 hardware communication protocol between

components - XML

Outputs

 (baseline) HDL description corresponding to the multi-

functional model - Verilog, VHDL

 (optional) multi-functional model resulting from the

combination of the input applications models - XDF,

Cal

 (optional) Xilinx IP wrapper logic, scripts and drivers -

XML, Verilog, Tcl, C

http://sites.unica.it/rpct/
https://www.cerbero-h2020.eu/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 102 of 119

© FitOpTiVis Consortium public

Target
 ASIC (baseline, profiling, and power management)

 FPGA (baseline, power management, accelerator

deployment)

Depende
ncies

 HW synthesizer, i.e. Vivado.

 (optional) High Level Synthesis tool to generate the

HDL Components Library, i.e. Vivado HLS or CAPH.

....

Tool/Technolo
gy Block

Diagram(s)

MDC
Baseline

Flow

MDC
Accelerat

or

Example:
FIR Variable TAP filter

Example: Given 2 input dataflows (2-tap and a 3-tap FIR
filters). Output: accelerator capable of switching among the
filters. Four switching elements are inserted automatically
to manage reconfiguration (configuration pattern size: 4
bits). APIs for filter delegation are provided.

FitOptiVis Technological
Advances

Expected additions:

 Multi-Level monitoring support based on AIPHS 2.0

 OpenCL APIs extension

TRL level @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

Water Supply Use Case:

 build, manage and monitor application specific HW

accelerators

Potential
Foreseen

Links

Open-Source
Git access to be provided soon, executable and tutorials
already available: http://sites.unica.it/rpct/download/

Licence Type https://opensource.org/licenses/BSD-3-Clause

Commercial license N/A

http://sites.unica.it/rpct/download/
https://opensource.org/licenses/BSD-3-Clause

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 103 of 119

© FitOpTiVis Consortium public

10.4. The SAGE Verification Suite (SAGE-VS)

Name The SAGE Verification Suite (SAGE-VS)

Tool in a Nutshell
The SAGE Verification Suite (SAGE-VS) is a set of SW
tools aimed to accomplish different formal verification
tasks at design time.

Key Features –
FitOptiVis Starting Point

The SAGE-VS has been designed and developed (from
TRL 0/1) in the context of the CERBERO H2020 project
(https://cerbero-h2020.eu.
At the start of FitOptiVis, it was composed of the following
tools:

 ReqV: a tool for formal consistency checking of

requirements.

 Hydra: a domain-independent tool for Goal-

Oriented control of Cyber-Physical Systems.
TRL level @ 2018 – 3/4

Intended Users

 [ReqV] Requirements engineers without any prior

knowledge related to formal methods.

 [ReqV] Software developers without any

knowledge of formal methods and logical

languages.

 [ReqV] System engineers interested to formally

verify a model w.r.t. some properties.

 [Hydra] System engineer interested in generating

controllers from a system model.

 [ReqT] Software developers without any knowledge

of formal methods and logical languages.

Benefits for the User

 [ReqV] Automated consistency checking of a set of

requirements written in controlled natural language.

 [ReqV] No prior knowledge related to specification

languages is required to input the requirements

(GUI support).

 [ReqV] Human-readable feedback in the case of

inconsistent requirements.

 [ReqV] Domain and application independent.

 [Hydra] Domain independent through the use of

high level models of the system.

 [Hydra] No prior knowledge of the inner working of

planning algorithms.

 [ReqT] Automated testing of the implemented

system with respect to the requirements formalized

and verified in ReqV.

Tool
Requirements

[ReqV]

Inputs

Set of requirements in natural (controlled English)
language, formulated as Property Specification Patterns
for Linear Temporal Logic (LTL) extended to constrained
numerical signals

Outputs Consistency result (yes/no). In the case of inconsistency,

https://www.cerbero-h2020.eu/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 104 of 119

© FitOpTiVis Consortium public

the tool returns the minimalset of requirements that causes
the inconsistency.

Tool
Requirements

[ReqT]

Input
A set of requirements formalized and verified with ReqV
and the system to test.

Output
A list of tests (i.e., sequences of inputs and outputs
assignments) executed on the system under test (SUT)
and their corresponding evaluation (passed/failed).

Tool
Requirements

[Hydra]

Inputs

Requires a hybrid model of the system:

 definition of the state of a system

 definitions of the system’s capabilities

o available discrete actions and their effect on

the system and its environment

o operating limits of the controller

 safety limits

Specification of a target problem: initial state, goal state of
the system and invariants that should hold.

Outputs

A yes/no answer on whether the system can be used to
achieve the tested use case.
A yes answer comes with a correct by design plan to
achieve the given objective. The plan accounts for both the
discrete and continuous limits of the system so that the
plan is valid and guaranteed to be executable and thus
constitute a proof that the system has the targeted
capability.

Examples

[ReqV] A requirement engineer has to start the
requirements definition of a new system. She opens the
browser, logs in into ReqV and create a new project. In the
project, she starts adding requirements one by one, with
the support of the GUI. When she has finished, she
presses the verification button, and finds out that the
specification is inconsistent. Therefore, she run the
inconsistency explanation task, and after few minutes
ReqV returns a list of few requirements that are conflicting.
The engineer inspects those requirements and fix the
problem. She runs again the verification button and this
time ReqV reports that everything is ok. One month later, a
client asks for the introduction of a new feature. The
requirements engineer enter in ReqV again and insert the
new requirements. Running the verification task, she finds
out that one of such requirements conflicts with an old one.
She returns to the client and discuss the issue. They
decide to modify the old requirements so to be compliant
with the new ones. The requirements engineer update the
requirements in ReqV accordingly, and this time the
verification process returns a positive answer.

[Hydra]: Let us consider a robotic manipulator. The mobile
manipulator must be operated in a constrained

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 105 of 119

© FitOpTiVis Consortium public

environment in order to move objects into target locations.
The system engineer has a specification of the controller
which include the discrete actions (e.g. release object,
scan environment) and limits of the system and of its
controller (e.g. joint limits, maximal acceleration).Based on
this model, the system engineer can test whether the
currently designed system is capable of fulfilling a
particular use case where Hydra will autonomously explore
the set of possible high-level and low-level controls to
achieve the target task. This would allow to verify that the
system design is adapted to the targeted use case and
catch modeling errors early in the design process. Once
the de-sign process is finished, Hydra can also be used as
a goal-oriented controller to exploit the system.

[ReqT]: After the system has been implemented, the
software engineer wants to check if the implemented
system is compliant with the requirements defined at the
beginning of the design process. Firstly, the user exports
the formalized and verified requirements from ReqV and
save them in a text file. Secondly, the user writes a small
wrapper to let ReqT interact with the system (also called
System Under Test, or SUT for short). Therefore, the user
starts ReqT on her/his desktop, and a simple GUI appears
in which the user can select the requirement file, the SUT
wrapper and set few more options. Once the user finished,
she/he presses the run button and ReqT starts to generate
and executed some tests on the SUT. At the end of the
process a report appears, showing the executed tests and
their status. The user discovered that few tests fails, so
she/he double clicks on them to see the details of the
execution. Hence, the user returns to the system source
code and checks the faulty behaviours. She/he finds a bug
and fix it, then she repeats the test execution. This time all
tests are successful, so the users can finally deploy the
system.

FitOptiVis Technological
Advances

Expected additions:

 ReqV: extend the expressivity of input PSPs to

allow the translation in a logic language for hybrid

systems and improve the usability of the GUI.

TRL level @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

Water Supply Use Case:

 build, manage and monitor application specific HW

accelerators

Potential
Foreseen

Links

Open-Source
https://gitlab.sagelab.it/sage/ReqV
https://gitlab.sagelab.it/sage/ReqT

https://gitlab.sagelab.it/sage/ReqV
https://gitlab.sagelab.it/sage/ReqT

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 106 of 119

© FitOpTiVis Consortium public

Licence Type LGPL

Commercial license N/A

10.5. RIE – Re-configurable Implementation of Embedded
systems

Name
RIE – Re-configurable Implementation of Embedded
systems

Tool in a Nutshell

Methodology and C++ library for component-based
implementation of embedded systems. The library classes
are used to implement components and monitors. RIE
provides support for runtime re-configuration of software
components. In the RIE methodology, a component could
have several implementations that are selected at runtime.
Additionally, the library also simplifies component
deployment in the cloud and edge.

Key Features –
FitOptiVis Starting Point

The library development has been started in FitOptiVis.
Therefore it is a complete FitoptiVis result.

Intended Users
 Component-based embedded system developers that

require software component reconfiguration at

runtime.

Benefits for the User

 Simplify and standardize component-based

development.

 Integrate software reconfiguration

 Provide a common framework to access different

monitoring strategies. By default, the library supports

lttng monitors on linux but it could be adapted to other

methodologies. Currently, we are working with UAQ to

support hardware monitors. We plan to support CUNI

monitors.

Tool
Requirements

Inputs A system description that uses RIE-based component.

Outputs
 A system implementation that can be reconfigurable

and traced at runtime.

Target Networked embedded systems.

Depende
ncies

 C++11 compiler. For edge computing, protocol buffer

and grpc. For linux event monitoring, lttng.

....

Tool Block
Diagram(s)

MDC
Baseline

Flow

MDC
Accelerat

or

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 107 of 119

© FitOpTiVis Consortium public

Example:
FIR Variable TAP filter

FitOptiVis Technological
Advances

 Simplify component-based development

 Support data-flow and service-oriented

architectures.

 Provide software re-configuration capability

 Support different types of monitor implementation.

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

 RIE is used to implement the autonomous

exploration use case.

Potential
Foreseen

Links
TBD. Available 1Q-2020

Open-Source Yes

Licence Type GPL after publication

Commercial license Yes

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 108 of 119

© FitOpTiVis Consortium public

10.6. S3D – Single Source Design Framework

Name S3D – Single Source Design Framework

Tool/Technology in a Nutshell
UML/MARTE based framework that provides model
capture, performance analysis and SW code
synthesis.

Key Features –
FitOptiVis Starting Point

The S3D framework is mainly oriented to service
architecture (SOA). The framework has been extended
in FitOptiVis to efficiently support video/image
processing application with software-reconfiguration
capabilities.

Intended Users
 HW/SW system development

 Embedded system application designers

Benefits for the User

 Use an UML standard for software development

 Performance analysis integration (VIPPE)

 Automatic software synthesis (essyn) that support

different MoCs (model of computations).

Tool
Requirements

Inputs UML/MARTE models

Outputs

 Performance estimation of different

implementations

 C++ implementation templates

Target Edge and cloud computing

Dependencies Eclipse, Papyrus, llvm.

....

Tool Block
Diagram(s)

MDC Baseline
Flow

MDC
Accelerator

Example:
FIR Variable TAP filter

FitOptiVis Technological
Advances

Example:
 Performance estimation

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 109 of 119

© FitOpTiVis Consortium public

Use within
FitOptiVis

Demonstrato
rs

Already
Planned Use

 Use in Autonomous Exploration use case

Potential
Foreseen Links

Open-Source Yes. Visit http://umlmarte.teisa.unican.es/

Licence Type Free for research

Commercial license Contact villar@teisa.unican.es

10.7. Design Time Resource Configurator (DTRC)
Technology

Name Design Time Resource Configurator (DTRC) technology

Technology in a Nutshell

DTRC technology is design-time resource for configuration and
system integration of FitOptiVis design time resources for Zynq
and Zynq Ultrascale+ systems with Debian OS and HW
accelerators which can be generated from C/C++ by Xilinx
SDSoC system level compiler.

Key Features –
FitOptiVis Starting Point

DRTC technology extends the board-support bring-up scripts
provided by company Trenz Electronic https://www.trenz-
electronic.de/ for Zynq and Zynq Ultrascale+. See
http://sp.utia.cz/index.php?ids=projects/almarvi
ECSEL JU project ALMARVI. Features at the start of FitOptiVis:

 Support for Xilinx SDSoC 2015.4 standalone Zynq modules

without OS with Python 1300 Video sensor or Full HD HDMI

Video I/O.

TRL level @ 2017 – 4/5.

Intended Users

 Software developers/embedded system engineers with
little to no knowledge of the hardware

 Hardware architects/embedded system engineers
requesting configuration of the Debian OS and support for
HW accelerator design flow which can be generated from
C/C++ by Xilinx SDSoC system level compiler.

Benefits for the User
 design automation of configuration of Debian OS with

SDSoC support

 integration of Full HD video input and Video output

Tool/Technolo
gy

Requirements

Inputs

 HW module description files from Trenz Electronic
https://www.trenz-electronic.de/

 Petalinux configuration files

 SW C/C++ functions and main programs for the SDSoC
compiler.

Outputs

 Board support package describing HW for Petalinux OS
kernel, Debian OS file system and for the SDSoC compiler.

 Configured and compiled Xilinx Petalinux kernel with
installed and compiled Xilinx SDSoC support drivers for the

https://www.trenz-electronic.de/
https://www.trenz-electronic.de/
http://sp.utia.cz/index.php?ids=projects/almarvi
https://www.trenz-electronic.de/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 110 of 119

© FitOpTiVis Consortium public

DMA and Scatter Gather (SG) DMA data transfers to/from
HW accelerators.

 Configured and compiled Debian OS file system in form of
SD card image with two partitions:

 FAT32 Win7/Win10 compatible partition for file transport

 Configured and populated Debian file system partition

 Configured support for X11 Desk top GUI on separate Full
HD Display

 Configured SW projects for the SDSoC compiler. Project can
be executed with actual video I/O in SW on ARM. Projects
can be compiled by SDSoC compiler and then executed in
HW with ARM SW support and video I/O.

 Support for Arrowhead framework 4.0 compatible C/C++
SW clients.

Targets

 Module with Xilinx Zynq 7010 in Raspberry Pi Form Faktor
ZynqBerry PCB TE0726-03M
https://shop.trenz-electronic.de/en/TE0726-03M-
ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-
Form-Faktor?c=350

 MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2
GByte DDR4 SDRAM
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-
MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-
GByte-DDR4-SDRAM-4-x-5-cm
Carrier Board for Trenz Electronic 7 Series
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-
Board-for-Trenz-Electronic-7-Series?c=261

 UltraSOM+ MPSoC Module with Zynq UltraScale+
XCZU15EG-1FFVC900E, 4 GB DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-
UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-
1FFVC900E-4-GB-DDR4

 UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+
https://shop.trenz-electronic.de/en/TEBF0808-04A-
UltraITX-Baseboard-for-Trenz-Electronic-TE080X-
UltraSOM?c=261

Depende
ncies

 Xilinx Vivado HLS High Level Synthesis tool version 2018.2

 Xilinx SDSoC system level compiler version 2018.2

 Xilinx Petalinux version 2018.2

Open
source

 Debian “Stretch” repositories for 32bit ARM A9 and 64 bit
ARM A53

 Ubuntu 16.04 LTE is needed for the automated
configuration of Xilinx Petalinux kernel and for generation
of Debian file system.

Tool/Technolo
gy

DTRC
Baseline

Flow

 On Win7/Win10/Ubuntu 16.04: Compile HW and export hdf
file.

 On Ubuntu 16.04: Configure and compile Petalinux and
Debian.

https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 111 of 119

© FitOpTiVis Consortium public

 On Win7/Win10/Ubuntu 16.04: Compile in SDSoC 2018.2
HW accelerators from C/C++ functions to HW. Run on
supported boards.

DTRC
Packages

and
Applicati

on
notes

[7.1] Design Time and Run Time Resources for the
ZynqBerry Board TE0726-03M with SDSoC 2018.2
Support

[7.2] Design Time and Run Time Resources for Zynq
Ultrascale+ TE0820-03-4EV-1E with SDSoC 2018.2
Support

[7.3] Design Time and Run Time Resources for Zynq
Ultrascale+ TE0808-04-15EG-1EE with SDSoC 2018.2
Support

TRL level @ 8.2019 – 5/6

FitOptiVis Technological
Advances

Expected additions:
Support for runtime reconfiguration of complete programmable
logic part of the device with Quick-time GUI
TRL level @ 2019 – 3/4, @ 2020 – 4/5, @ 2021 – 5/6

Use within FitOptiVis
DRTC technology and boards are evaluated by 8 FitOptiVis
partners (6x ZynqBerry board, 2x Zynq Ultrascale+ board):
UNIVAQ, UNICA,VISIDON, CUNI, TUT, UWB, UTU and UTIA

Use within
FitOptiVis

Demonstrato
rs

Potential
Foreseen

Links

Robotic Use Case:
Build HW accelerators on the ZynqBerry board

Access http://sp.utia.cz/index.php?ids=projects/fitoptivis

Licence Type

Open Source license with these exceptions: (1) UTIA video I/O
drivers provided as pre-compiled libraries. (2) Vivado HLS and
SDSoC 2018.2 require commercial license from Xilinx:
https://www.xilinx.com/ .

http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=projects/fitoptivis
https://www.xilinx.com/

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 112 of 119

© FitOpTiVis Consortium public

10.8. Design Time Resource Integrator of Model Composer
IPs (DTRiMC) Technology.

Name
Design Time Resource Integrator of Model Composer IPs
(DTRiMC) Technology

Technology in a Nutshell

DTRiMC technology [7.12], [7.13] serves for FitOptiVis system
integration of IPs designed, modelled and validated in Xilinx
Model Composer (MC) and Xilinx System Generator for DSP (SG
for DSP).
DTRiMC technology supports integration of MC IPs into Zynq
(32bit) and Zynq Ultrascale+ (64bit) systems by support of
automated generation of (1) HW data movers IPs; (2) SW API
needed for the 32bit DMA or SG DMA or Zero Copy based data
movers.
 DTRiMC tool automates generation of needed HW support for
communication with the user defined C/C++ SW applications.
SW applications run in user space of Debian OS on Arm A9
(Zynq) or on Arm A53 (Zynq Ultrascale+).
DTRiMC technology targets platforms supporting the Xilinx
SDSoC 2018.2 compiler for Zynq and Zynq Ultrascale+. These
platforms are generated by the FitOptiVis Design Time Resource
Configurator (DTRC) technology.

Key Features –
FitOptiVis Starting Point

DTRiMC technology is extending the Board support bring up
scripts provided by company Trenz Electronic
https://www.trenz-electronic.de/ for Zynq and Zynq
Ultrascale+. See
http://sp.utia.cz/index.php?ids=projects/almarvi
ECSEL JU project ALMARVI. Features at the start of FitOptiVis:

 Support for Xilinx SDSoC 2015.4 standalone Zynq modules

without OS with Python 1300 Video sensor or Full HD HDMI

Video I/O.

TRL level @ 2017 – 4/5.

Intended Users

 Software developers/embedded system engineers with

little to no knowledge of the hardware.

 Hardware architects/embedded system engineers

requesting DMA connections of Debian application with HW

accelerator IP. The integrated HW IP is imported from MC

via SG for DSP.

Benefits for the User

 DTRiMC technology supports integration of HW IPs from

Xilinx MC and SG for DSP models by automation of DMA

connection to Debian app.

 DTRiMC technology supports integration of MC HW IPs

with Full HD video input/output for Zynq and Zynq

https://www.trenz-electronic.de/
http://sp.utia.cz/index.php?ids=projects/almarvi

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 113 of 119

© FitOpTiVis Consortium public

Ultrascale+ systems with Debian OS.

Key features of the supported Xilinx Model Composer
framework:

MODEL COMPOSER supports fast modelling of blocks written in

C

MODEL COMPOSER supports models with Video data from file

system

MODEL COMPOSER supports Computer Vision and Math blocks

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 114 of 119

© FitOpTiVis Consortium public

MODEL COMPOSER supports generation of IP cores for:

 Xilinx VIVADO (in form of packed RTL HDL IP cores)

 Xilinx SG for DSP (in form of RTL HDL subsystems)

 Xilinx Vivado HLS compiler (in form of synthesizable C++
code)

Model Composer (MC) and System Generator for DSP (SG for
DSP) are commercial tools provided by Xilinx.
https://www.xilinx.com/video/hardware/model-composer-
product-overview.html
https://www.xilinx.com/products/design-
tools/vivado/integration/sysgen.html
MC supports model based design, simulation and HW IP
generation. It targets Xilinx FPGAs/SoCs via generated IP cores
for Vivado flow.
MC targets the Vivado design flow directly (in form of Vivado
HLS SW) or indirectly via the integration/simulation in the SG
for DSP. MC and SG for DSP work both with support from
Matlab and Simulink. SG for DSP supports finite state machines
and logic blocks defined as user defined special Matlab m-code
functions. These m-code functions are compiled via conversion
to C source code into binary format to accelerate simulation.
Complete system composed from these blocks can be compiled
to HDL RTL. SG for DSP targets Xilinx FPGAs/SoCs via generated
packed IP cores for Vivado design flow.
SG for DSP supports bit-exact and cycle accurate modelling. It
is usually an order of magnitude faster than the bit-exact and
cycle-accurate simulation of hdl RTL code in tools like Questa or
the Vivado hdl simulator). SG for DSP supports inclusion, bit-
exact and cycle accurate simulation and RTL IP generation from
user-defined SW blocks coded in Vivado HLS C++. SG for DSP
supports inclusion, bit-exact and cycle accurate simulation and
RTL IP generation for RTL hdl subsystems exported from Xilinx
Model Composer to Xilinx SG for DSP. SG for DSP serves in this
case as a common, bit-exact and cycle accurate simulation
environment.
MC supports only bit-exact modelling. MC blocks can process
large objects like matrices or video frames and process them by

https://www.xilinx.com/video/hardware/model-composer-product-overview.html
https://www.xilinx.com/video/hardware/model-composer-product-overview.html

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 115 of 119

© FitOpTiVis Consortium public

algorithms defined in C SW code. MC simulation can be an
order of magnitude faster than the cycle accurate simulation in
the SG for DSP. Acceleration is significant, especially for
modelling and design of video processing IPs.
MC supports video I/O from/to files, visualisation of video with
relatively high FPS.

Tool/Technolo
gy

Requirements

Inputs

 User defined HW IP designed and tested in MC and

exported via the SG for DSP into HW IP core for Vivado

2018.2. The HW IP must have:

o One 32bit AXI-stream input.

o One 32bit AXI-stream output.

o One 32bit AXI-lite interface to 32bit control

registers.

 HW module description files (version 2018.2) from Trenz

Electronic.

Configuration files for Xilinx Petalinux (version 2018.2)

 User defined application SW C/C++ for the Debian OS user

space.

Input to the DTRiMC tool: Exported MC IP block in base Zynq

system.

Outputs

 Board support package describing HW for Petalinux OS

2018.2 kernel, Debian OS file system and for the SDSoC

2018.2 compiler with integrated user defined IP designed

and tested in Xilinx Model Composer.

 Configured and compiled Xilinx Petalinux kernel with

installed and compiled Xilinx SDSoC support drivers for the

DMA and Scatter Gather (SG) DMA data transfers to/from

HW accelerators.

 Configured and compiled Debian OS file system in form of

SD card image with two partitions:

 FAT32 Win7/Win10 compatible partition for file transport

 Configured and populated Debian file system partition

 Configured support for X11 Desk top GUI on separate Full

HD Display

 Configured SW projects for the SDSoC compiler. Project can

be executed with actual video I/O in SW on ARM. Projects

can be compiled by SDSoC compiler and then executed in

HW with ARM SW support and video I/O as user defined

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 116 of 119

© FitOpTiVis Consortium public

app. Code for Debian.

 Support for Arrowhead framework 4.0 compatible C/C++

SW clients for authentication and management of Ethernet

access rights.

 Support for FiVis compatible C++ clients for Ethernet data

transfer and visualisation via FiVis server. FiVis server

generates graphical visualisation pages accessible from

standard www browsers.

Output from DTRiMC: MC IP block integrated with DMA I/O to

Debian

Targets

 Module with Xilinx Zynq 7010 in Raspberry Pi Form Faktor

ZynqBerry PCB TE0726-03M

https://shop.trenz-electronic.de/en/TE0726-03M-

ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-

Form-Faktor?c=350

 MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2

GByte DDR4 SDRAM

https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-

MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-

GByte-DDR4-SDRAM-4-x-5-cm

Carrier Board for Trenz Electronic 7 Series

https://shop.trenz-electronic.de/en/TE0701-06-Carrier-

Board-for-Trenz-Electronic-7-Series?c=261

 UltraSOM+ MPSoC Module with Zynq UltraScale+

XCZU15EG-1FFVC900E, 4 GB DDR4

https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-

UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-

1FFVC900E-4-GB-DDR4

UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+
https://shop.trenz-electronic.de/en/TEBF0808-04A-
UltraITX-Baseboard-for-Trenz-Electronic-TE080X-
UltraSOM?c=261

Depende
n-cies

commerci

 Matlab, Version 9.3 (R2017b) MathWorks (commercial tool)

 Simulink Version 9.0 (R2017b) MathWorks (commercial

https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 117 of 119

© FitOpTiVis Consortium public

al
tools

tool)

 Fixed-Point Designer toolbox Version 6.0 (R2017b)

MathWorks (commercial tool)

 System Generator for DSP toolbox 2018.2 Xilinx

(commercial tool)

 SG for DSP 2018.2 Xilinx (commercial tool)

 Vivado HLS High Level Synthesis tool 2018.2 Xilinx

(commercial tool)

 SDSoC system level compiler 2018.2 Xilinx (commercial tool)

Depen-
dencies

Open
source
tools

 FitOptiVis Design Time Resource Configurator (DTRC) tool

(UTIA)

 Petalinux 2018.2 (Xilinx)

 Debian “Stretch” repositories for 32bit ARM A9 and 64 bit

ARM A53

 Ubuntu 16.04 LTE is needed for the automated

configuration of Petalinux kernel and for generation of the

Debian file-system.

 FitOptiVis FiVis tool for remote data visualisation (optional)

 ArrowHead Framework 4.0 tool for access management

(optional)

Tool/Technolo
gy

DTRiMC
extends
 DRTC

techno-
logy

DTRiMC [7.12], [7.13] extends FitOptiVis DRTC technology [7.1],
[7.2], [7.3].

Base
DTRC

Packages
and

Applicati
on

notes

Design Time and Run Time Resources for the ZynqBerry Board
TE0726-03M with SDSoC 2018.2 Support
Design Time and Run Time Resources for Zynq Ultrascale+
TE0820-03-4EV-1E with SDSoC 2018.2 Support
Design Time and Run Time Resources for Zynq Ultrascale+
TE0808-04-15EG-1EE with SDSoC 2018.2 Support

FitOptiVis Technological
Advances

DTRiMC technology supports export of Model Composer IP (as
SG for DSP) IP to Zynq and Zynq Ultrascale+ SoCs .
DTRiMC technology generates DMA HW/SW data movers for of
Model Composer IPs.

Use within FitOptiVis
DTRiMC technology is released for public access [7.12], [7.13]
for Zynq & Zynq Ultrascale+. It is used by UTIA.

Use within
FitOptiVis

Demonstrato
rs

Links

DTRiMC technology release [7.12] for the entry level ZynqBerry
board:
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8
FP01x8 Accelerator on TE0726-03M
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-
te0726_fp01x8_short.pdf
DTRiMC technology release [7.13] for the Zynq Ultrascale+:
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s

http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 118 of 119

© FitOpTiVis Consortium public

Two serial connected evaluation versions of FP03x8
accelerators for TE0820-03-4EV-1E module on TE0701-06
carrier board
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-
FitOptiVis-te0820_fp03x8x2s.pdf

Access Evaluation SD cards for ZynqBerry TE0726, Ultrascale+ TE0820.

Licence Type

Open source license with these exceptions:
(1) UTIA Video I/O interfaces for boards supported by the
 FitOptiVis are provided only as pre-compiled Arm A9 and
 Arm A53 SW libraries.
(2) Vivado, SDSoC, MC , SG for DSP 2018.2 require licensing
 from Xilinx.
(3) Matlab, Simulik, Fixed-Point Designer require MathWorks
 license.
(4) Evaluation versions of integrated HW IPs have evaluation
 license enabling evaluation, but limiting permanent use of
 these IPs in the final applications.
(5) Release version of integrated HW IPs requires NDA with
 UTIA and commercial license from UTIA.

10.9. IMACS (IMAge in the Closed-loop System)

Name IMACS (image in the closed-loop system)

Tool/Technology in a
Nutshell

A framework to design, analyse, validate and generate
code for systems where image-processing or other data-
intensive processing is in a closed-loop. It allows for
simulation of physics of various dynamic systems including
camera and other sensors, Matlab front-end for designing
feedback/supervisory control and processing, code
generation support for multi-core platforms, and (efficient)
implementation on platforms like CompSOC, MPSoC and
NVIDIA AGX Xavier.

Key Features –
FitOptiVis Starting Point

The basic infrastructure is developed under the Marie
Curie European project oCPS and ECSEL project I-MECH.
It would be further developed in FitOptiVis with specific
focus on the FitOptiVis objective.

Intended Users Embedded and cyber-physical systems developers

Benefits for the User

 Applications can be developed, tested, validated and

debugged in hardware-in-the-loop and software-in-the-

loop settings;

 Performance evaluation and prediction of image-based

systems;

 Automatic code generation (for CompSOC).

Tool
Requirements

Inputs
 Details of the image-in-the-loop applications; e.g.,

system model, scenarios of interest and so on;

http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf

WP3 D3.2, version V1.0

FitOpTiVis

ECSEL 783162

Page 119 of 119

© FitOpTiVis Consortium public

 Camera and other sensor specifications;

 Platform details; e.g, processors, memory;

 Performance and quality requirements.

Outputs
 Controller design satisfying quality and performance

requirements;

 Generated code.

Target CompSOC and NVIDIA Xavier

Depende
ncies

Matlab and Simulink with embedded coder, physics
simulation engine (e.g., V-REP, Webots, LGSVL),
OpenCV

….

Tool/Technology Block
Diagram

Example

FitOptiVis Technological
Advances

Implementation of FitOptiVis resource management
architecture developed under WP4. Moreover, it will cover
the quality management aspects where design-time
optimization techniques will used/validated along with
runtime reconfiguration/decisions.

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

The results of design-time optimization in WP3 will be
partially implemented;

Potential
Foreseen

Links
Reconfiguration solution of WP4 will also be a part of it.

Open-Source Yes

Licence Type Apache2.0

Commercial license N/A

