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 Executive Summary 
This report represents deliverable D4.2, one of the outcomes of Task 4.1 in WP4 of the 
FitOptiVis project. This deliverable is an incremental update of deliverable D4.1. As 
such, this document retains the content of the previous deliverable and provides new or 
updated content to reflect the progress made during the second year of the project. The 
document is intended to be self-contained (and is written from that perspective), so that 
there is no need to cross-reference the previous version of the deliverable. However, to 
highlight the differences between D4.2 and D4.1, we provide a dedicated Chapter 2 
which lists the new and updated content along with a brief summary. 
The main objective of WP4 is to deal with the complexity of application runtime 
management while considering a diverse set of heterogeneous platform components 
and configurations. The WP4 solutions provide instances of the WP2 reference 
architecture described in deliverable D2.1. 
This deliverable provides an overview of runtime platforms which represent platform 
components as defined in deliverable D2.1, spanning levels of abstraction to match the 
needs of applications with diverse set of requirements. Consequently, our platforms 
include a latency-managed edge-cloud platform for latency sensitive cloud applications, 
a distributed OpenCL-centric heterogeneous device runtime software stack which 
provides a unifying backbone to applications relying on hardware accelerators, both 
local and remote, an OpenMP runtime built on top of the distributed OpenCL runtime, 
the CompSOC platform for applications targeting execution on system-on-a-chip, and a 
deterministic networking platform to support time-sensitive applications with mixed-
criticality communication requirements. 
To enable adaptive control of application quality attributes (e.g., image resolution and 
quality, or frame rate) in response to resource availability and the desired quality trade-
off, the runtime platforms need to provide means for resource managers to control 
application parameters linked to individual quality attributes and to manage resources 
assigned to an application. Each of the platforms enables adaptation at different levels 
of abstraction and at different time scales. To facilitate design of the necessary 
management interfaces, the deliverable also reports on adaptation scenarios relevant 
to use cases from various partners contributing to WP4. 
The content of this deliverable contributes to milestones MS5 (M18 specification update) 
and MS6 (M24 partial demonstrators). 



 
 

 
© FitOpTiVis Consortium (Public Document) 

 

WP4 D4.2, Version 1.0 
FitOpTiVis 

ECSEL2017-2-783162 

Page 7 of 118 
    

 Document Updates 
This chapter provides a brief summary of specific content that has been updated or 
added to D4.2 with respect to D4.1. Naturally, Chapters 3 and 6 have been updated to 
reflect the new content. 
4.1 Managed-Latency Edge-Cloud Environment 

• Updated platform status in Section 4.1.3 to include information about the newly 
developed performance predictor (further elaborated in Section 5.1.3). 

4.2 Heterogeneous Distributed Software Runtime 

• Added description of the low overhead control protocol and the distributed event-
based synchronization which has been implemented in the runtime. 

• Updated the status of the internal release of pocl-remote. 
4.3 Extended OpenMP Runtime Infrastructure 

• Updated Section 4.3 to reflect new OpenMP offloading requirements. 
• Added Section 4.3.2 describing the development of a new approach for code 

offloading based on an LLVM pre-processor pass and integration of the 
offloading methodology in an open source compiler (clang). 

• Added Section 4.3.5 providing an analysis of the use of OpenMP for offloading 
threads in a video pipeline. 

4.5 The Xilinx Zynq Platform 

• Removed Section 4.5.1 (Inter-Cloud Connectivity with Arrowhead) as obsolete. 
4.6 Deterministic Networking Platform 

• Updated description of a TSN bridge design and implementation to reflect use-
case requirements in Section 4.6.1. 

• Added Section 4.6.2 with a QRML model of TSN as a platform component, with 
details concerning configuration parameters of individual components and run-
time monitoring provided by the time synchronization component. 

• Added Sections 4.6.3 and 4.6.4 describing application of TSN in different use 
cases. 

5.1 Reconfiguration in Managed-Latency Edge-Cloud 

• Added Section 5.1.3 with an overview of a performance predictor which uses a 
novel technique for statistical prediction of the upper bound of the response time 
of a service sharing the same computer with other services. 

5.2 Reconfiguration on the CompSOC Platform 

• Added Section 5.2.4 describing an analytical framework for budget matching, 
which allows to determine if the provided budget matches the required budget in 
presence of multiple resources of different types. The framework is an important 
ingredient of quality and resource management support in FitOptiVis. 

5.3 Reconfiguration in Processor/Co-processor Systems 
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• Updated Section 5.3 to describe integration of an overlay monitoring layer in the 
processor-coprocessor system, which enables collection of runtime metrics and 
subsequently runtime estimation of selected performance indicators. 

• Added Section 5.3.3 describing initial definition and evaluation of a coprocessor 
for the Water Supply use case, which will be used to assess the envisioned 
dynamic parameter adjustment strategy. 

5.4 Reconfigurable 8xSIMD Floating-point Accelerators 

• Introduced support for reconfigurable floating-point accelerators on the Xilinx 
Zynq platform. Individual subsections provide description of the accelerator 
architecture, design considerations, and supported reconfiguration scenarios. 

5.5.1 Modelling System Variants and Configuration Changes 

• Updated the description of the modelling approach to take advantage of QRML, 
the FitOpTiVis DSL for capturing quality and resource management models. 

5.5.2 Selection and Compression of Task-Specific Features 

• Updated strategies for bandwidth reduction using regions of interest and 
described the application of the bandwidth reduction strategies in the Habit 
Tracking (UC3) and Smart Grid (UC9) use cases. 

• Added QRML models of system components, along with component descriptions 
and reconfiguration scenarios in UC3 and UC9. 

5.5.3 Distributed Image Pre-Processing and Optimized Image Segmentation 

• Added QRML model of the Edge component, along with description of the 
relevant monitored metrics and reconfiguration scenarios to enable runtime 
adaptation to achieve the desired performance. 
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 Introduction 
Work package 4 addresses Objective 3 of the FitOptiVis project: 

Objective 3: Real-time multi-objective combinatorial optimisation; data and process 
distribution; run-time adaptation through virtualization; run-time quality and resource 
management; energy driven adaptations; workload (re-)distribution; support for run-time 
upgrades. 

Specifically, in WP4 the consortium develops techniques for run-time resource 
management within the system architecture template outlined in WP2. The main goal is 
to deal with the complexity of application runtime management, reconfiguration, and 
monitoring, while considering a diverse set of heterogeneous platform components and 
configurations. To increase developer productivity and to promote vendor independence 
with respect to compute platform, this diversity should become transparent from an 
application developer’s point of view. Task 4.1 focuses on run-time technologies and 
models to support management of performance, energy, and other qualities. This 
deliverable reports on the outcomes of the first two years of the project. 
In Chapter 4, the report provides an overview of technologies that provide basis for 
virtual reconfigurable platforms and concrete platform components as defined in the 
FitOptiVis reference architecture (see deliverable D2.1). To satisfy the diverse set of 
requirements found in FitOptiVis use cases, multiple concrete platforms are needed, 
each tailored to serve different types of requirements. For example, while real-time 
applications with modest latency requirements and a time frame for reconfiguration 
measured in seconds may be well served by a solution utilizing a general-purpose 
compute cluster in an edge-cloud environment, a hard real-time application 
implementing a tight control loop may need to utilize custom FPGA accelerators to meet 
its latency requirements. Building a single unified hardware, software, and tooling 
framework to satisfy vastly different requirements would be neither possible, nor 
desirable. Instead, in FitOptiVis, we aim to unify at the level of concepts, principles, and 
abstractions to identify and extract commonalities found in different domains. 
The idea is that the technologies developed in WP4 each serve a particular purpose and 
are intended to be used as building blocks for implementing different use-cases and 
demonstrators. This is captured in Figure 1, which shows an example instantiation of 
the runtime technologies in a “Multi-access Edge Computing” setup, which is a 
computing model comprising a local edge device (a lightweight terminal computer such 
as a smart phone or a smart camera) connected to a nearby edge-cloud (or a cluster of 
GPU and/or FPGA accelerator servers) using a fast network connection. In the context 
of FitOptiVis, use-cases such as UC2 and UC3 are examples of such a computing 
model. 
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Figure 1. An example instantiation of WP4 technologies in a Multi-access Edge Computing (MEC) scenario 
(which applies to several use cases in the project), with different tools serving specific purposes in the 
implementation of the system. OpenMP serves as a layer which boosts developer productivity in defining 
the Terminal/Edge application. Pocl-remote is used for distributed computing across diverse heterogeneous 
resources. MECE handles the server-side control loop, taking into account the latencies incurred both by 
the potential virtualization of the server-side resources as well as the application running on the edge device. 
If required by an application, CompSOC can be used for managing hard real time guarantees at a System-
on-a-Chip level. Different reconfiguration mechanisms (with different granularity) can be used to program 
FPGA devices on the fly—based on the requirements of the application being accelerated. MDC provides 
reconfiguration at task granularity, presenting a CGRA overlay architecture that can be implemented either 
as a FPGA soft core, or as an ASIC in a new SoC, FP SIMD FPGA overlays add runtime reconfigurable 
floating point accelerators, whereas AIPHS can generate monitoring (bus snooping) hardware to be utilized 
in the FPGA-based accelerators, which is discussed more thoroughly in D4.3. Finally, TSN can be used to 
synchronize the times of multiple server nodes to provide meaningful timestamps and accurate time 
triggered events as well as provide support mixed-criticality network traffic on shared network infrastructure. 
FIVIS enables global (system-of-systems level) profiling and performance data analysis. 

A common theme of FitOptiVis systems is adaptive runtime management of various 
quality aspects through adjustment of configurable system parameters. The architecture 
of adaptive systems is often based on the MAPE-k loop [KEP03] architectural pattern, 
which provides a general concept of a control loop. Systems implementing such control 
loops can be nested to form a hierarchy of control loops operating at different time 
scales. This approach can be also applied in FitOptiVis, where a top-level MAPE-k loop 
can operate at the time frame of seconds, determining the setpoints for a lower-level 
control loop operating at the time scale of milliseconds or even microseconds. The 
presented technologies are intended for solutions operating at different time scales. 
Section 4.1 describes a multi-node managed-latency private edge-cloud platform that 
will provide probabilistic guarantees to parts of applications (time-sensitive services) with 
soft real-time requirements which will be deployed in the edge-cloud. The platform aims 
to support solutions with reconfiguration time frames in seconds, which can be either 
general soft real-time services, or top-level adaptation control loops managing set points 
for lower-level control loops. By focusing on probabilistic guarantees, we aim to reduce 
the impact on developers by not requiring them to express application performance 
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requirements through many low-level metrics, but rather through a simple end-to-end 
metric defined on probe points provided by an application. 
For interactive applications targeting shorter time frames, Section 4.2 provides a 
description of a distributed, heterogeneous-device runtime software stack based on 
OpenCL, which can be used to spread the execution of application’s computational tasks 
to all available resources (local or remote), and which can be fully controlled from the 
application running on a terminal device. The foundation for an extensible and portable 
heterogeneous system-software stack had been laid out in the ALMARVI project, and is 
being extended in FitOptiVis to support new use cases in distributed and reconfigurable 
computing. This part directly addresses the objective of managing the complexity of a 
heterogeneous distributed execution platform and allowing an application to harness all 
available resources through a standardized API. Because OpenCL can encapsulate all 
types of compute devices ranging from general-purpose CPUs to fixed-function 
accelerators, the consortium believes that the diversity management goal is well met by 
relying on it as a backbone, by enabling easy support/integration path for the various 
hardware-software platforms developed in the project by partners, and by extending the 
standard whenever needed. Section 4.2 also lists potential extensions to the OpenCL 
API that will enable runtime monitoring, among other requirements associated with a 
distributed, dynamically changing environment. OpenCL supports defining 
heterogeneous task graphs via its command queue abstraction, which provides a basis 
for distributed heterogeneous task scheduling, which also helps Task 3.2 (Programming 
and Parallelization Support). 
A higher-level programming model, OpenMP 5, is being added as an example of an end-
user programming language on top of the developed stack. This addresses the goal of 
transparency. Because the OpenMP view of the platform components is more restricted 
than that of OpenCL, more decisions on the suitable devices for each function are 
delegated to the management layers in the stack, instead of relying solely on the 
programmer. The OpenMP 5 offloading support developed on top of the OpenCL based 
stack is described in Section 4.3. 
For the lowest-level solutions operating at the shortest time frames, Sections 4.4 and 
4.5 discuss two hardware-software platforms that are being supported and extended in 
the project: the CompSOC platform for composable and analysable hard real-time 
applications running on a single system-on-a-chip, and platform templates tailored to 
Xilinx Zynq-based FPGA SOCs as an easy-to-use implementation and prototyping 
platform. Both platforms target and support high-performance embedded computations, 
but place themselves in different layers of the work done within FitOptiVis: CompSOC 
defines a complete framework for design and implementation of hard real-time 
applications which utilize resource sharing, while the presented FPGA platforms enable 
prototyping and integrating of any hardware platforms with ease. The presented Xilinx-
based platforms make a connection to the design flows in WP3 (Design-time support) 
allowing to prototype and utilize new hardware IP in combination with already 
commercialized ones running in the same system as described in WP5 (Devices and 
components). 
An important component of any distributed system is the communication fabric. In the 
context of edge-cloud, we are mostly dealing with common networking technologies. 
However, many of the use cases are built around time-sensitive applications which need 
to exchange data with different levels of criticality. Section 4.6 therefore introduces a 
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platform component providing deterministic networking, which caters to the needs of 
time-sensitive applications. To this end, the platform provides a custom time-sensitive 
networking bridge built on top of standard networking technologies. 
Chapter 5 deals with support for adaptation in the runtime platforms and applications 
built on those platforms. To support different trade-offs between various quality aspects 
(visual quality, resolution, latency) and resource usage (compute resources, I/O 
bandwidth, memory consumption), the architectural description of FitOptiVis 
applications (see Deliverable D2.1) will enable binding individual quality aspects to 
corresponding resource requirements. It will also expose configurable parameters that 
allows a runtime entity, e.g., an adaptation manager, to request a particular quality level 
for a specific aspect. Such an adaptation manager will then control the individual 
parameters to achieve a higher-level goal, e.g., best overall quality given fixed amount 
of resources, minimal resource usage, best quality possible, etc. The adaptation 
manager needs to closely co-operate (or be integrated) with the platform runtime in order 
to ensure that the resource requirements associated with the desired levels of different 
quality aspects are satisfied. 
Similarly to Chapter 4, we have to deal with adaptation at different levels of abstraction 
corresponding to the supported runtime platforms. In Section 5.1 we, therefore, provide 
an overview of adaptation support in the context of the managed-latency edge-cloud 
platform, where the system needs to manage deployment of applications to individual 
nodes as well as allocation of resources such as CPU time, memory, and I/O bandwidth 
to co-located applications. For applications targeting systems-on-a-chip implementation 
and shorter time frames, Section 5.2 presents an overview of adaptation mechanisms 
and management interfaces on the CompSOC platform, along with mapping of 
CompSOC concepts to the FitOptiVis reference architecture and a mechanism to match 
provided and required budgets. Section 5.3 provides an overview of adaptation support 
for reconfigurable hardware, specifically targeting reconfigurable neural network 
accelerators, and Section 5.4 presents reconfigurable SIMD floating-point accelerators. 
Section 5.5 collects application-specific adaptation scenarios related to use cases from 
partners contributing to WP4, elaborating on the supported system configurations, 
conditions which trigger reconfiguration, monitored parameters, and other scenario-
specific requirements. 
Chapter 6 provides a short conclusion, briefly summarizing the advances during the first 
two years of the project. 
In addition to the main document, the deliverable also contains a survey of existing 
virtualization and resource management techniques, which provides a basis for new 
contributions in FitOptiVis. The survey is included in Appendix A. 
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 Runtime Platforms 
This chapter provides an overview of technologies and concrete platforms that will serve 
as a basis for virtual reconfigurable platforms as defined in the FitOptiVis reference 
architecture. We describe the platform model and the correspondence to architectural 
concepts defined in WP2 (Reference architecture, virtual platform and integration), i.e., 
the “instantiation” of the WP2 architecture on a specific platform. Each platform serves 
to satisfy a different subset of the diverse requirements present in FitOptiVis use cases 
and is intended to applications operating at different time frames. 

4.1 Managed-Latency Edge-Cloud Environment 
Modern Cyber-physical Systems (CPS) rely on data from sensors and perform 
computationally-intensive tasks on the data (computer vision, data analytics, 
optimization, and decision making, learning and predictions) which often cannot be 
executed on edge devices due to the limited energy budget and computational power. 
To obtain the necessary computational power, such systems are typically split into parts 
that execute on edge devices and parts that execute in the cloud. However, the 
connection with the physical world inherent to CPS requires these systems to operate 
and respond in real-time, whereas the cloud was primarily built to provide average 
throughput through massive scaling. The real-time requirements impose bounds on 
response time, and when executing tasks in the cloud, a significant part of the end-to-
end response time is due to communication latency. 
The concept of edge-cloud aims to tackle this problem by moving computation to 
computational clusters that are physically closer to edge devices. While this reduces 
communication latencies, edge-cloud alone does not guarantee bounded end-to-end 
response time, which becomes more dominated by the computation time. The reason is 
that while the cloud itself focuses on optimizing the average performance and the cost 
of computation, it does not provide any guarantees on the upper bound of the 
computation time of individual requests. To satisfy the needs of modern cloud-connected 
CPS we need an approach that can reflect the real-time requirements of modern CPSs 
even with cloud in the computation loop. 

4.1.1 Probabilistic Latency Guarantees 
Strict latency guarantees on each individual request are the domain of real-time 
programming, which comes at a very high price, as it forces developers to use a low-
level programming language, severely limits the choice of libraries, and imposes a 
relatively exotic programming model of periodic non-blocking real-time tasks. 
We instead advocate the use of standard cloud technologies (i.e., micro-services 
running in a container-based cloud such as Kubernetes) and modern high-level 
programming languages (e.g., Java, Scala, Python). However, we restrict ourselves to 
a class of applications for which soft real-time guarantees are enough (i.e., the 
guarantee on the end-to-end response is probabilistic, such as “in 99% of cases the 
response comes in 100ms and in 95% of cases the response comes in 40ms”). 
It turns out that this is acceptable to a wide class of applications including augmented 
reality, real-time planning and coordination, video and audio processing, etc. Generally 
speaking, this class comprises any application that has a safe state and has a local 
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control loop that keeps the application in the safe state while computation is done in the 
cloud. Consequently, the soft real-time guarantee pertains to qualities such as 
availability and optimality, but not to safety. In the context of the FitOptiVis project, which 
generally focuses on developing distributed image and video processing pipelines, this 
applies to many of the use cases (augmented reality, habit tracking, municipal speed 
cameras, etc.). 

4.1.2 Probes and Latency Requirements 
One of the goals of our work is to minimize the impact of using a managed-latency edge-
cloud environment on application developers. Given that we aim to use standard cloud 
technologies, we also envision the developer creating artefacts, e.g., for the Kubernetes 
(K8S) platform. The only required extension is the specification of application real-time 
requirements in the application deployment descriptor. 
Contrary to common cloud deployment practices, we aim to spare the developer from 
dealing with the selection of VM type, the number of virtual CPUs, memory, IOPS, etc. 
Similarly, we aim to avoid specification of auto-scaling rules (including triggers), because 
we consider these to be implementation details of the cloud platform’s internal 
mechanisms which the developer is not equipped to set correctly without an experiment. 
We instead work with an abstraction in which the developer is responsible for providing 
the application and its soft real-time requirements, while the responsibility for assessing 
the performance of the cloud application, as well as allocating resources (i.e., the 
required number of virtual CPUs, memory, IOPS, etc.) and making scheduling and 
deployment decisions so as to ensure that the (probabilistic) guarantees are met, lies 
with the cloud platform. Consequently, if the platform determines that it cannot satisfy 
the requirements, it will not admit the application for deployment. 
Specifically, when developing an edge-cloud application, the developer has to describe 
the application in terms of an auto-scaling micro-service with added communication 
latency requirements. In the specific case of the Kubernetes cloud platform, we extend 
the Kubernetes application deployment descriptor to allow declaration of measurement 
probes, special functions provided by the developer which the system uses to assess 
the performance of the application in a particular deployment scenario. 
An example deployment descriptor for a sample face-recognition application is shown 
in Listing 1. The timing requirements for the application state that the response of the 
application on the “recognize” probe should be below 100 milliseconds in 99% cases, 
and below 50 milliseconds in 95% cases. 
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kind: Deployment 
metadata: 
  name: recognizer−deployment 
  labels: 
    app: recognizer 
spec: # microservice specification 
  template: 
  metadata: 
    labels: 
      app: recognizer 
  spec: 
    containers: 
    − name: recog 
      image: repo/recog 
      ports: 
      − containerPort: 7777 
      probes: # probes 
      − name: recognize 
      timingRequirements: 
      − name: recognize limit 
        probe: recognize 
        limits: 
        − probability: 0.99 
          time: 100 # Max. 100ms in 99% cases 
        − probability: 0.95 
          time: 50 # Max. 50ms in 95% cases 

Listing 1. Application deployment descriptor with timing requirements 

A probe (or a set of probes) has to capture the essential behaviour of the application so 
that when invoked by the cloud-edge platform, it will provide a representative sample of 
the application’s performance in the current deployment configuration. Expressing the 
application timing requirements over developer-supplied probes simplifies the 
specification of the contract between the application and the cloud-edge platform, and 
allows it to treat the application as a black-box. 

4.1.3 Platform Status 
The development of the managed-latency edge-cloud platform is in progress. During the 
first year of the project, several design iterations have been made and work on prototype 
implementation has been started. Inter-module interfaces, application middleware, and 
module prototypes have been implemented. 
During the second year of the project, in addition to continued platform development, we 
have been investigating methods for performance prediction of co-located workloads. 
Specifically, we focused on developing a prediction method that uses of performance 
measurements collected while executing different combinations of co-located workloads 
to predict performance of new, previously unseen, workload combinations. In addition, 
we have been working on experimental methods to automatically establish the 
operational boundaries of the predictor. 
Given the experimental nature and possibly involved installation and configuration of the 
prototype, we plan to make the platform available as a hosted service during the third 
year of the project. We will work closely with partners interested in deploying parts of 
their application in a managed-latency edge-cloud environment. 
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4.2 Heterogeneous Distributed Software Runtime 
The development of a single-node heterogeneous software stack based on OpenCL 
was initiated in the ALMARVI project. In FitOptiVis, this stack is being extended to 
support a distributed edge-cloud setup that can map the architecture models defined in 
WP2 to concrete run-time concepts of execution platforms and their topologies while 
supporting new devices developed with WP3 technologies and other devices and 
components of WP5. 
The primary questions we seek answers in the runtime stack development for are: 

• What are the workloads that need to be executed on local devices given 5G, 
WiFi6 and other high-speed low-latency wireless network technologies? 

• Where are the latency bottlenecks when offloading interactive applications 
across such networks to cloud-edge servers? 

• Can we distribute event synchronization to minimize communication due to 
back-and-forth synchronization between the “application device” and the cloud-
edge servers? 

These questions are approached by developing a proof-of-concept heterogeneous 
runtime that is optimized also for low-latency tasks and which can support also other 
types of computation offloading in addition to those based on frame serving (e.g. cloud 
gaming which has become popular in the recent years). 
The software stack being developed is shown in Figure 1, while an example usage 
context is shown in Figure 2.  

 
Figure 2. Multi-node heterogeneous distributed software runtime stack. 
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Figure 3. An example use context for the distributed runtime software stack. A terminal device (here a 
smartphone) deploys and starts the OpenCL application which then through a fast wireless link 
communicates to remote GPU devices in clusters at the cloud-edge and in the cloud. 

4.2.1 OpenCL API Extension Candidates 
The current notion is that OpenCL can serve as a good basis for a compute API both in 
local and distributed scenarios. However, already during the first year of the project, we 
identified the following features, which might be beneficial to add to the API (first as 
extensions and later as official part of the standard) to better support remote cloud-edge 
offloading scenarios: 

• Platform: Device Proximity. The existing OpenCL API (practically) does not 
model connectivity between devices. Devices are assumed to reside in a single 
computer and to be accessible at most via a system bus such as PCIe or AXI, 
with shared external memory and/or per-device external memory. It would be 
beneficial to allow applications to make offloading decisions based on how 
efficiently devices are connected together: the API could be a platform-level 
query API with a possibility to query for the link between two devices. How the 
links are modelled and categorized is an open question at this point. E.g. 1) same 
shared-memory hierarchy, 2) same system bus, 3) in the same local network, 4) 
internet connectivity  

• Device: Link Status. Especially with 3) of the previous item and especially with 
4), the performance of the link heavily depends on the simultaneous traffic and 
other varying conditions (e.g. the proximity of the nearest 5G base station). It 
would be useful to be able to monitor historical statistical information of the link’s 



 
 

 
© FitOpTiVis Consortium (Public Document) 

 

WP4 D4.2, Version 1.0 
FitOpTiVis 

ECSEL2017-2-783162 

Page 19 of 118 
    

performance (e.g, in the past 5 seconds, or the past 5 buffer transfers). Because 
it is hard to isolate the network part’s time from the client side code, it might be 
useful as an OpenCL runtime API. Of course the most important link status 
information is whether the link is working in the first place, as it affects the 
reachability of the device. 

• Device: Reachability. In OpenCL there is already a flag for ‘availability’ of the 
device. This might be reused for scenarios where a remote device is temporarily 
unavailable due to networking issues. 

• Command Queues: Performance History. Auto-tuning scenarios attempt to 
execute a kernel on multiple devices while varying parameters that affect 
execution. While the information is natural to reside on the client side of the 
OpenCL API, it might be useful to provide some level of support in the runtime 
API for querying the estimated performance of the given kernel. The kernel 
performance estimate might be identified with a hash and input buffer sizes or 
similar. It might be difficult to design this API to fit OpenCL therefore it might be 
better to keep it in a client-side helper API layer. 

• Command Queues: Command’s Energy Consumption. Now the profiling 
command queues allow storing time stamps of events. In terms of tuning the 
power performance, it might be interesting to also record the consumed energy 
in case the target supports such information. This might be difficult to get 
accurate as it’s hard to account for which kernel consumed the energy in the 
processor especially if there are multiple ones running. It’s worth researching at 
least for the dedicated GPU farm scenario where we execute one kernel at a 
time and might then resort to average power numbers which can be multiplied 
with the execution time. The OpenCL API could be connected to the profiling 
command queues time stamping system: the time stamps could also record 
“energy stamps” at a similar incremental fashion. 

• Command Queues: More Profiling/Performance Counters: Advanced profiling 
information could include the cache hit miss counter values in a similar stamping 
fashion with the same caveat as above: in case multiple kernels are executing 
at the same time, it might be difficult to isolate which kernel caused which part of 
the cache level misses. 

• Device: Temperature Readings of the processor/memories or any other 
components equipped with a temperature sensor.  

• Command Queues: Real Time Commands with Execution Cancellation: In 
some soft real time cases we can just reduce quality when a kernel takes too 
long time. It would be useful to provide mechanism to the command queues that 
allow killing a kernel when a time limit is reached. This could yield a special 
“timeout event” which other commands could listen to and kill also the next ones 
that are dependent on the regular finish event that the killed command should 
have produced. 

• Buffers: Unreliable Buffers: This is connected to the soft real-time case and the 
cancelled kernels, and not delivering full data in time, but still producing some 
useful data. E.g. when we produce images in a tiled fashion, it may be useful to 
display a partially rendered/decompressed frame, especially when applying 
heavy filtering on top of it or when it’s assumed that the incomplete frame in 
general looks OK if there are enough complete frames displayed per second. 
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• Buffers: File-initialized Buffers: Some of the buffer content could be initialized 
from files (possibly an URI) in the system where the remote Device resides. This 
is currently not possible in OpenCL as it only allows initialization from an array. 

4.2.2 Using pocl-remote 
To provide the reader with an idea on how remote offloading works with pocl-remote, 
brief usage instructions are given here, while a more detailed documentation, including 
build instructions, can be found at: 
https://github.com/cpc/pocl-fitoptivis/blob/master/doc/sphinx/source/remote.rst 
On the server, the clinfo command must list at least one OpenCL device. The server 
can be then started using the following command: 
./server/pocld <IP ADDRESS> <PORT> 

Note that pocld will listen on two ports, PORT and PORT+1. The number of messages 
produced by the server can be adjusted by setting the POCLD_LOGLEVEL environment variable 
to the desired level before running pocld. The default log level is err. The server accepts 
the following log levels: debug, info, warn, err, critical, and off. On the client, the following 
environment variables need to be exported: 
export POCL_DEVICES=remote 
export POCL_REMOTE0_PARAMETERS=<IP ADDRESS>:<PORT>/<DEVICE ID> 

The IP ADDRESS and PORT values are self-explanatory. PORT is the lower of the two 
port numbers assigned to the server. The DEVICE ID is the index of the device on the 
server. Valid indices range from 0 to N-1, where N is the total number of devices across 
all platforms on the server. The index is the order in which pocld lists the devices in the 
OpenCL platform it uses. This is the same order as displayed by clinfo. 
The clinfo tool can be used to perform a "smoke test" to ensure that the distributed setup 
works. When configured properly, the tool should also list remote devices: 
$ clinfo|grep pocl-remote 
Device Version OpenCL 1.2 CUDA HSTR: pocl-remote 123.456.789.123:10998/0 

A simple dot-product example can be then run by executing the example1 binary: 
$ cd examples/example1 
$ ./example1 
(0.000000, 0.000000, 0.000000, 0.000000) . (0.000000, 0.000000, 0.000000, 0.000000) = 0.000000 
(1.000000, 1.000000, 1.000000, 1.000000) . (1.000000, 1.000000, 1.000000, 1.000000) = 4.000000 
(2.000000, 2.000000, 2.000000, 2.000000) . (2.000000, 2.000000, 2.000000, 2.000000) = 16.000000 
(3.000000, 3.000000, 3.000000, 3.000000) . (3.000000, 3.000000, 3.000000, 3.000000) = 36.000000 
OK 

4.2.3 Low-Overhead Control Protocol 
Use of a more general and feature-rich communication framework was foregone in 
favour of working directly with TCP sockets that have been configured for minimum 
possible OS-side latency, and packets with well-defined in-memory representation to 
remove any serialization and deserialization overhead associated with more general 
purpose portable data representations. 
The protocol is implemented as plain C structures whose in-memory representation is 
fixed and which start with a field signifying their exact type, i.e. using the tagged union 
pattern. The downside of this approach is that all variants end up being padded to the 
size of the largest existing variant. Initial testing has shown that this introduces as much 

https://github.com/cpc/pocl-fitoptivis/blob/master/doc/sphinx/source/remote.rst
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as a couple of kilobytes in overhead, as most packets are less than a few hundred bytes. 
This includes buffer transfers, as the machine-learning frameworks we tested initially 
ended up creating dozens (up to hundreds) of less than kilobyte-sized buffers. 
To address this, command-specific size value is sent before the structure and the part 
of the structure that goes over this size is left undefined since it will not be accessed 
when handling the given command. This adds slight overhead due to requiring an extra 
read call to the network driver, but still avoids a more traditional deserialization step. 

4.2.4 Distributed Event-Based Synchronization 
Inter-command synchronization is handled internally on the remote servers by utilizing 
event dependency information as well as buffer dependencies extracted from in-order 
queues. This way commands can be started as soon as they are received, given their 
dependencies are met and the execution can proceed independently from the host 
device, avoiding round-trips to the main device, which can heavily impact the perceived 
overall latency. 
Results are sent back to the host from a separate thread that polls in-flight tasks in order 
to send the reply as early as possible without interrupting reception of new tasks nor 
execution of the current ones. 
Tasks spread across multiple devices are synchronized on two levels: between devices 
on the remote server no extra network communication to the application is needed 
beyond notifying the host application of task completion, as illustrated in Figure 3. For 
synchronization between different remote servers, an extra thread is added for every 
peer to listen for incoming data migration requests. This way the host application does 
not need to be involved after firing off the initial migration command, and the command 
only needs to be dispatched to one remote server. Remote servers are assumed to be 
located in close proximity to each other (in the same data center), and thus to have much 
faster connections to each other than to the host application. 
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Figure 4. Multiple levels of data transfer and event signalling - application to remote server, peer-to-peer 

communication between servers and direct transfers between devices in a single server 

 

4.2.5 Platform Status 
The distributed OpenCL runtime is being implemented within the Portable Computing 
Language (POCL) open source project, with internal releases made available to the 
project partners until the runtime becomes mature enough for general use by the open 
source community, at which point the code will be published at http://code.portablecl.org. 
At the time of writing this document, the latest internal release available to project 
partners at https://github.com/cpc/pocl-fitoptivis was labelled as version 0.7 with the 
following feature highlights: 

• Remote code includes work to make event processing more asynchronous 
• ALMAIF driver was updated and optimized; some new features (see docs for 

details):  
• Hybrid compilation (allows running tests on TCE and then same tests on FPGA 

via ALMAIF, without having to change test code to load from binaries) 
• Linux UIO support (possible to run programs without root) 
• TCE was made thread-safe, new driver call-backs implemented, new math 

library functions implemented 
• Glow tests added, TCE driver should now pass 90%+ of tests 
• Improved support for more complicated multiple-device setups 
• Android support 

http://code.portablecl.org/
https://github.com/cpc/pocl-fitoptivis
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We now consider the runtime to be in “optimization stage”, because the main known 
stability issues have been resolved. The rest of the time in FitOptiVis will be spent on 
further scalability and performance improvements. 

4.3 Extended OpenMP Runtime Infrastructure 
OpenMP is the de-facto standard for parallel programming of Symmetric Multi-
Processing (SMP) architectures with shared memory. During the last years, OpenMP 
specifications have been adding new features to support parallel programming on 
heterogeneous platforms. In fact, recent releases of popular compilers (such as gcc and 
clang) support the latest OpenMP specification (5.0), which supports runtime offloading 
of code to different devices such as NVIDIA GPUs, Intel Xeon-Phi co-processor, and 
multi-core architectures. 
The OpenMP target offloading methodology differs from approaches used in other 
parallel programming environments such as OpenCL. In OpenMP, the code to be 
offloaded is precompiled for all targeted devices at build time. This main disadvantage 
of this approach is that all target devices must be supported by the OpenMP compiler. 
In contrast, OpenCL relies on compilation at runtime, which makes it easy to support 
new devices as they become available, but also introduces runtime overhead due to 
runtime compilation and compilation error management. 
More importantly, though, there are devices such as FPGAs, which cannot be efficiently 
programmed using OpenCL—to generate an efficient FPGA implementation, the source 
code usually requires extensive modifications (manual or automatic code rewriting) to 
make it suitable for hardware synthesis. In some cases, specific hardware 
implementations need to be provided in a hardware definition language (HDL). This 
makes FPGA synthesis difficult to integrate even with traditional software build process, 
let alone with runtime compilation employed by OpenCL. 
In FitOptiVis, the consortium is developing a new OpenMP offloading methodology 
which explores solutions to these limitations. The new approach, presented in the 
following sections, is based on two main techniques: source-code offloading and 
dynamic code management at runtime. 

4.3.1 OpenMP Offloading Requirements 
To support the new offloading methodology, the runtime implementation developed 
within the consortium aims to meet the following requirements: 

• During compilation, the compiler should include in the executable files the code 
of the threads that could be allocated in different computation resources at 
runtime. 

• There should be a methodology that allows developing new thread 
implementations after compilation, but before application execution. The 
methodology allows extracting the thread code from the executable file and 
defines mechanisms for dynamic loading of the new implementations. 

• During execution, the runtime infrastructure should identify all the available 
thread implementations. The new implementations will be dynamically loaded. 

• The runtime infrastructure provides dynamic thread allocation during application 
execution. 
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• The runtime library provides information about the available thread 
implementations and well as identified computing resources. 

• The computing resource information could optionally include performance data, 
such as memory size and clock frequency. 

• The device-specific implementation of a thread could optionally include 
performance data, such as memory requirements, execution time or power 
consumption. 

• During code execution, the runtime library provides a methodology to facilitate 
thread runtime monitoring.  

4.3.2 OpenMP Offloading Methodology 
The goal of the consortium is to develop an OpenMP extension meeting the above 
requirements. So far, we have provide a runtime library that is capable of satisfying the 
following requirements: 

• The runtime infrastructure can detect and dynamically load implementations of 
target code that were developed after the original code compilation. 

• The runtime library provides basic monitoring of thread execution. 
• The device-specific implementations can provide performance data for the 

runtime, which is then used to select the optimal implementation to execute. 
In addition, we have been working on the compiler driver of an open source compiler 
(clang/llvm) to satisfy additional requirements that were not the sole responsibility of the 
runtime library, such as the inclusion of target code for different resources in executable 
files, or the development of the code extraction system. To comply with these 
requirements, we first modified the Clang compiler driver, but due to tight API bindings 
between the compiler driver and the Clang code generator, we had to use a different 
approach for code extraction. 
The new approach is based on exploiting the capabilities of the LLVM framework to 
create an automatic code transformation tool that can directly modify the existing 
OpenMP code for device offloading as well as integrate the new dynamic runtime library. 
This approach integrates the automatic extraction of OpenMP thread code, the 
integration of other runtimes such the FitOptiVis dynamic runtime library, and the 
infrastructure to implement the target code extraction tool. 
The code transformation pass needs to satisfy the following requirements: 

• It must maintain code functionality, because it is only slicing the parts that define 
the target thread code. 

• It should automatically include any additional files required by a specific target, 
as well as add any function declarations required after slicing and retooling of 
the code. 

• It should generate code from which an OpenMP compiler can automatically build 
an executable. 

• It should be integrated in our modified compiler toolchain, performing code 
transformation and compilation without extra intervention from the user. The 
compilation process is therefore split into two phases: modification of the 
OpenMP code and subsequent compilation. 
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4.3.3 The OpenMP Framework 
We have been extending the standard OpenMP methodology to meet the above defined 
requirements in order to support a new target: the thread source code. 
We provide a dynamic library to enable integration of our extension into application code. 
The use of the library is complemented with a code pre-processing pass that will slice 
and extract the target code. It also automatically provide runtime support for the dynamic 
library. During execution, the runtime identifies available implementations and allows 
selecting the desired implementation of the current thread. 
The extended OpenMP framework is shown in Figure 4. The framework currently 
supports the activities shown in the solid-green boxes, which implement the dynamic 
thread-implementation management at runtime. The compilation pass embeds the 
thread source code in the OpenMP executable. An extraction tool can access this code 
in order to use a different compilation process. The new target implementation is 
compiled into a dynamic library that is loaded at runtime. The runtime uses an 
environment variable to discover the newly produced thread implementation libraries 
and loads them using infrastructure code that was automatically generated by the code 
extractor. For this reason, all implementations include a common infrastructure that 
allows identifying the OpenMP thread that the target implementation provides. The 
OpenMP applications can also access this infrastructure, which allows reconfiguring the 
thread target allocation at runtime. 

 
Figure 5. The Extended OpenMP framework. 

4.3.4 OpenMP and OpenCL Integration 
The methodology presented in the previous section has been extended to implement 
OpenMP threads in OpenCL, so that it fits on top of the OpenCL-centric runtime stack 
described in Section 4.2. 
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To this end, we generate an OpenCL kernel from the OpenMP thread code sections 
during code transformation, together with a library that synchronizes the OpenMP thread 
management and the OpenCL-based resource control. During execution, the application 
can select the OpenCL device that will execute the thread code, which is then compiled 
at runtime using the OpenCL API. 
 

Figure 6. OpenCL integration in the OpenMP infrastructure. 

This integration has the advantage of adding support for remote-device infrastructures, 
such as pocl-remote presented in Section 4.2, as well as any other remote device 
implementations. 

4.3.5 Offloading OpenMP threads in a video pipeline 
To demonstrate the methodology, we have developed a working example of a video 
pipeline, which is similar to a pipeline found in UC10, where this approach will be used. 
In this deliverable, we present a simple example of real-time edge extraction pipeline in 
which some of the OpenMP threads are offloaded to different hardware resources. 
The pipeline, shown in Figure 6, consists of a camera component, which captures and 
relays images, a compute component, which performs scaling, filtering and edge 
detection on the images, and a display component, which provides the user with a side-
by-side view of the original and the processed images. In particular, the compute 
component comprises four sub-components: a grayscale filter, a median filter, an edge 
detection algorithm, and a scaling algorithm. These sub-components were implemented 
as kernels that can be offloaded to different computing devices. 

 
Figure 7. Architecture of the image processing pipeline (with the compute components in gray) 

To implement this video pipeline, two OpenMP parallelization strategies were used: 
1. Parallel section based parallelization. 
2. While loop with OpenMP tasks and resource control with semaphores. 
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The first approach (parallel sections) is shown in Figure 7. Every thread (kernel) is 
implemented in an OpenMP parallel section that is executed in parallel with other 
sections. Each thread has an internal loop that allows maintaining the video pipeline and 
a barrier for synchronization with other threads. In this implementation, the video frames 
are transferred from one thread to another after barrier synchronization. This 
implementation is close to the UML/MARTE component model that has been developed 
in WP3, which is why we discuss this implementation in more detail. 
The second parallelization strategy provides similar results. It only has an execution path 
(the video pipeline) which is concurrently executed by several threads. The threads use 
semaphores and critical sections to avoid resource access conflicts. For example, if four 
hardware threads or cores are allocated to execute the video pipeline and there is only 
one camera, only one thread will be allowed to access the camera in a particular time 
slot. The synchronization on resources causes the threads to execute in a pipeline 
fashion. The code in the critical sections could be offloaded to different target devices. 

 
Figure 8. Image processing pipeline based on OpenMP parallel sections 

Once the architecture was set, a reference CPU-based implementation was developed 
and profiled in order to find the bottlenecks in the system. We found that the edge 
detection algorithm requires more execution time than the other components. For this 
reason, we have explored two target offloading approaches: GPU-based implementation 
executed on a traditional PC, and an FPGA-based implementation executing on a Xilinx 
Zynq MPSoC. 
For the GPU-accelerated architecture, an OpenCL kernel was generated and compiled 
using the standard OpenCL runtime compilation mode. For the FPGA-accelerated 
MPSoC, the extracted kernel code was heavily modified to take advantage of the Vivado 
HLS FPGA synthesis tool. Both implementations provided substantial throughput gains, 
as shown in Table 1 and Table 2. 
Table 1 shows the frame rates achieved for a sequential CPU-only implementation, a 
standard OpenMP-based parallel implementation (which uses four threads executing on 
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four CPU cores), and a GPU-accelerated implementation (which offloads the heaviest 
thread on the GPU and executes the three remaining threads on three CPU cores). 

Table 1. Pipeline speedup on Intel CPU + NVidia GPU 

 
Table 2 shows the results of executing the pipeline on the Xilinx Zynq MPSoC with FPGA 
offloading. 

Table 2. Speedup results on Zynq MPSoC CPU+FPGA 

 
We also want to highlight the need for device-specific optimization when using automatic 
hardware synthesis tools. If such tools are simply used on the extracted kernel code, the 
performance achieved by the synthesized hardware is far from impressive. However, 
after significant code modifications (with hardware synthesis in mind), the generated 
FPGA hardware can provide tremendous speedup. 
This is illustrated by results in Table 3, which shows a side-by-side comparison of the 
throughput of two FPGA implementations of the median filter sub-component: one is 
synthesized directly from the extracted kernel code, while the other is synthesized from 
code which was heavily modified after extraction. 
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Table 3. Performance of hardware synthesized from unmodified and optimized kernel code 

 

4.3.6 OpenMP Extension Status 
During the first year, the consortium has developed the initial approach and 
infrastructure to support dynamic thread implementations, and demonstrated the 
integration of OpenCL into OpenMP. 
Throughout the second year, we have made significant progress on slicing and 
integration of target code into a fat binary executable by leveraging the capabilities of 
the LLVM/Clang compiler. We have added a pre-processing pass to the compilation in 
which we analyse the thread code, separate target regions into different files, perform 
code substitution in the original code, and automatically load our runtime library. This 
makes the original OpenMP program ready for compilation by any OpenMP-compliant 
compiler which would generate the executable code. 
The approach is illustrated on the flowchart in Figure 8. Starting from the unmodified 
source code, we run the pre-processing executable that will analyse, slice and modify 
the code to make it ready for compilation. The modified code adds support for the new 
target offloading style and includes the original target (kernel) source code embedded 
in string constants. 
While this approach has been originally devised for transformations of OpenMP code to 
OpenMP code, once implemented, the pre-processing pass can be extended to also 
offload (with some limitations) OpenMP threads to OpenCL kernels. 
In comparison, the original approach required modifications and extensions to the Clang 
OpenMP runtime libraries, extensive modifications of the code generation module of the 
compiler driver and of the compiler interfaces between the code generation module and 
the Clang Runtime Library. It also required creating an external tool for code extraction. 
While such an approach may have seemed convenient and low on toolchain bloat, it 
ended up requiring extensive modifications to tightly coupled and not very well 
documented libraries and APIs. In addition, both the code generation module and the 
runtime library were specifically designed to adhere to OpenMP 4.5/5.0 specifications. 
Consequently, it is not ready for device-agnostic offloading or code injection at runtime 
(after compilation), because the target intermediate representation is generated in 
tandem with the target region delimitation and outlining. 
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Figure 9. The pre-processing approach for integrating target code into fat binary 

The improved approach aims to leverage the OpenMP code annotation pragmas to 
direct not only compilation for known targets, but also for unknown targets at runtime, 
without requiring complex modifications of undocumented LLVM/Clang code. It also 
simplifies the construction of the code extraction tool, which can then extract target code 
directly from the source code. 
The main difference between the two approaches is how the extra functionality is added. 
The modifications and extensions to the Clang OpenMP runtime library required by the 
original approach would need to be accepted into the official Clang code. This would 
require new API endpoints for the Clang compiler to call to be introduced into the code 
generator. 
In contrast, the improved approach adds the new functionality as an extra runtime library 
and code to load the library is automatically added during the pre-processing pass. This 
makes supporting the extensions much simpler, with minimal modifications in the code 
generator module (to add the source code of target regions into symbols, something 
requiring very little code and no extra API endpoints). Figure 9 shows where the extra 
functionality is integrated into the program and where the compiler modifications would 
occur. 
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Figure 10. Comparison between the improved and the original approach to extending OpenMP 

4.4 The CompSOC Platform 
The CompSOC platform offers a Virtual Execution Platform (VEP) to each application. 
VEPs are entirely isolated from each other (space, e.g. memory, and time, e.g. TDM on 
processors or network-on-chip), such that each application can use its own Model of 
Computation and can be developed independently. This section is a summary of the 
platform description presented in [GOO17]. 

4.4.1 Hardware Architecture 
MPSoCs contain multiple processors with local and shared memories. The processor’s 
local memories are always on-chip Static Random-Access Memory (SRAM), close to 
the processor. Nonlocal memories shared between processors may be on-chip SRAM 
but often include off-chip Dynamic Random-Access Memory (DRAM). The latter has a 
much larger capacity (number of bits) than the on-chip memory, but at the cost of a 
longer execution time. Processors reach shared memories using a communication 
infrastructure, which is increasingly a NoC. A NoC is a miniature version of the Internet 
in the sense that communication is concurrent, is distributed, and is either packet based 
or circuit switched. As a result, it can run multiple applications of different criticalities at 
the same time. The CompSOC platform consists of multiple tiles interconnected by a 
NoC. Tile types are master tiles, slave tiles, or a mix of both, and include processor tiles, 
memory tiles, peripheral tiles, etc. 
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4.4.2 Software Architecture 
The CompSOC hardware platform contains computation, communication, and storage 
resources. Almost all can be shared between multiple requestors, and almost all can be 
(re)programmed at run time. The CompSOC software extends the single hardware 
platform to offer multiple Virtual Execution Platforms (VEPs). A VEP is an execution 
platform that is a subset of the CompSOC hardware platform, in terms of time (e.g., time 
multiplexing a processor) or space (e.g., non-shared DMA or a region in memory). Each 
application runs in its own VEP, which is created, loaded, started, and possibly stopped 
and deleted, at run time. A CompSOC platform can run multiple VEPs concurrently, 
without any interference between them, i.e., composably. 

4.4.3 Microkernel and RTOS 
Task arbitration can be classified along several axes. First, it may be absent when there 
is only one task on a resource. Otherwise it is required. Second, it may be preemptive 
or not. Third, arbitration may be static and follow a static-order schedule or be dynamic 
where the order of tasks is determined at run time. Multiple applications can share the 
processor using a microkernel such as CoMik, which arbitrates only between 
applications. Each application can use virtualized RTOS, such as µC-OS III, to 
independently arbitrate between application tasks.  
An example CompSOC platform is shown in Figure 10 [GOO17]. 

 
Figure 11. An example CompSOC platform. 
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4.4.4 FitOptiVis QRM Framework on CompSOC 
The above CompSOC platform will be used to implement quality and resource 
management (QRM) framework envisioned in FitOptiVis. This requires several further 
developments including the dynamic reconfiguration mechanism and budget handling in 
line with what is developed in WP2. Further details of these platform adaptations are 
provided in Deliverable D4.3. 

4.5 The Xilinx Zynq Platform 
In contrast to the predecessor ALMARVI project, which only provided support for 
standalone boards and no board-to-board communication, the FitOptiVis project focuses 
on providing Peta Linux and Debian OS support, as well as enabling board-to-board 
communication in a local cloud. 
The first version of design time and runtime support for the family of Xilinx Zynq and 
Zynq UltraScale+ systems has been developed by WP4 partners and released for use 
by project partners and general public by the end of April 2019. The new runtime 
provides support for Ethernet-based board-to-board communication in the local cloud, 
utilizing the Arrowhead framework, which is compatible with C/C++ clients running on 
ARM processors. 
The following Xilinx Zynq systems are supported: 
ZynqBerry (small). A small-size, low cost system with design time support developed 
in FitOptiVis. It has the Raspberry form factor and utilizes a 32bit Xilinx Zynq device 
(28nm) with small programmable logic area. WP4 provides support for Arrowhead-
based board-to-board communication, Debian OS, and 32bit C/C++ clients. See 
[KAD18a], [TE0726], and [ARROW] for details. 

 
Zynq UltraScale+ (medium). A medium-size system with design time support 
developed in FitOptiVis. Utilizes a 64bit Xilinx Zynq device (16nm) and reuses the carrier 
board and the Full HD video I/O FMC card from the ALMARVI project. WP4 provides 
support for Arrowhead-based board-to-board communication, 64bit Debian OS, and 
64bit C/C++ clients. See [KAD18a], [KAD18b], [ARROW], [TE0820], and [TE0701] for 
details. 
Zynq UltraScale+ (large). A large-size system with design time support developed in 
the FitOptiVis. The carrier board has the Mini-ITX form factor, utilizes a 64bit Xilinx Zynq 
device (16nm), and reuses the Full-HD video I/O FMC card from the ALMARVI project. 
WP4 provides support for Arrowhead-based board-to-board communication, 64bit 
Debian OS, and 64bit C/C++ clients. See [KAD18a], [KAD18c], [TE0820], [TE0808], and 
[TE080X] for details. 

4.6 Deterministic Networking Platform 
Time Sensitive Networking is a set of IEEE 802 standards providing reliability and 
determinism in Ethernet networks, which is required by time-sensitive applications. TSN 
enables mixed-criticality communication by allowing real-time and best-effort traffic to 
coexist on the same network infrastructure. 
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TSN is committed to standards that are fully integrated into the Ethernet protocol stack, 
as virtually all the functionality belongs to the IEEE 802.1 bridge layer—except the frame 
pre-emption capability, which is developed on top of the IEEE 802.3 MAC layer. 
Deterministic end-to-end latency is supported by three key capabilities. Firstly, a time 
synchronization protocol (providing accuracy in the range of 50 ns) enables precise 
coordination between different elements in the network. Secondly, known and bounded 
network latencies given by link propagation delays and switch forwarding delays. And 
last, but not least, the isolation of critical and non-critical traffics. 

4.6.1 TSN bridge design and implementation 
The TSN bridge implementation within FitOpTiVis needs to provide the functionality 
required by the use-case requirements, which can be summarized as follows: 

1. A well-known high-speed interface: Ethernet 100/1000-Base-T 
2. Mixed-criticality communication between distributed processing nodes, providing 

deterministic services: zero packet-loss for congestion, bounded latency, and 
deterministic delivery for end-to-end synchronized communications. 

3. Time Synchronization to facilitate a common time base for all monitoring 
information retrieved from heterogeneous and distributed elements. The 
synchronization is also required for coherent co-processing of remote nodes, 
especially for distributed hard real-time applications (i.e. Smart Grid). 

To satisfy the requirements, the TSN bridge implements the following standards: 
● IEEE 802.1Q VLAN switching. This standard defines the mechanisms 

enabling the coexistence of mixed-critical traffics over the same Ethernet 
network. Tagged Ethernet provides differentiation and prioritization through 
VLAN identification (VID) and Priority Code Point (PCP) fields. Each TSN 
bridge can handle up to 16 different traffic types (VID) classified in up to 4 
different priorities (PCP). 

● IEEE 802.1AS gPTP. The generalized Precision Time Protocol (gPTP) is a 
time synchronization protocol suitable for TSN, because it can achieve 
synchronization accuracy in the order of tens of nanoseconds. It supports fast 
failover by means of re-election of the time reference or Grandmaster (Best 
Master Clock Algorithm), and by processing redundant time synchronization 
messages (passive port role). Besides, gPTP continuously monitors the links 
conforming to TSN and reports key metrics such as link propagation delay, 
neighbour status, current time reference, and the synchronization tree (i.e. the 
path to the time reference or Grandmaster). 

● IEEE 802.1Qbv. The Time-Aware Traffic Shaper (TAS) performs priority-based 
queuing and strict time-driven transmission scheduling based on PCP traffic 
priorities. 

A Xilinx Zynq-7000-based platform is used to implement a 4-interface TSN bridge. This 
MPSoC provides an ARMv9 processing system and programmable logic. The functional 
architecture is shown in Figure 16. The functionality requiring deterministic behaviour, 
i.e., traffic switching, scheduling, and shaping, as well as timestamping and 
synchronization servo, are implemented in the programmable logic. The gPTP state 
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machines and the tasks responsible for configuration and run-time monitoring through 
the TSN user API are implemented in software executing on the ARM core. 
The architecture of the TSN bridge consists of two main blocks: 

● The networking component, which provides 1000 Base-T Ethernet connection, 
traffic differentiation and prioritization, in addition to priority-based, time-driven, 
strict arbitration of the output bandwidth. The blue modules, i.e., the redirector, 
the VLAN tagger (and untagger), and the Time-Aware traffic Shaper (TAS) 
implement the IEEE 802.1Q functionality, while the green modules, i.e., MAC, 
PHY, and DMA are off-the-shelf Xilinx IP-cores implementing standard IEEE 
802.3 functionality. A Linux network driver is provided for this particular 
gateware. 

● The timing component, which provides the IEEE 802.1AS functionality, i.e. highly 
accurate time synchronization between all TSN stations in the network. This 
component (orange modules) consists of a gPTP cyclic executive running on the 
PS and a PTP hardware clock, supported by Time Stamp Units (1G TSU’s), 
present on each gPTP-capable interface. 

Note that the TAS mechanism alone does not prevent interference between time-critical 
messages and lower-priority jumbo frames found in video streaming applications. This 
issue can be addressed by considering guard bands on the output bandwidth cyclic 
schedule, at the cost of available bandwidth. To avoid potential RT-QoS violations and 
to optimise bandwidth usage, a frame pre-emption mechanism is being considered. 
Frame pre-emption is a MAC sublayer enhancement described in IEEE 802.3BR that 
stops lower priority frame transmissions whenever TAS notices that a time-critical 
message should be transferred. 
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Figure 12. The architecture of the TSN bridge. 

4.6.2 Modelling TSN as a platform component 
This section uses the FitOpTiVis DSL defined in WP2 to provide a model of TSN as a 
platform component for hosting time-sensitive applications. An overview of the model is 
shown in Figure 17. 

4.6.2.1 Application components: 
Time Sensitive Application 
This component represents different time-sensitive applications, implemented on top of 
different interconnected systems. Different time-sensitive applications typically demand 
connectivity with different Quality of Service (QoS), ranging from best-effort to time-
critical, which is required for time synchronization or distributed hard real-time 
applications. 
The time-sensitive application may also require time synchronization, either for time-
triggered messaging or to coordinate the co-processing among distributed nodes. 

4.6.2.2 Virtual execution platform 
VLAN IEEE 802.1Q 
This component represents the switching capability of the TSN network, attending to the 
traffic type and the corresponding QoS. The VLAN component provides mixed-critical 
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traffic support and requires strict traffic scheduling from the Time-Aware Traffic Shaper 
(IEEE 802.1Qbv) component. 
Parameters 

• Configuration values: Protocol field pattern for different kinds of incoming traffic 
which should be encapsulated into VLAN frames. 

• Translation rule: VLAN tag to be applied, given by the VLAN VID and the VLAN 
PCP fields. The VLAN module supports up to 16 different traffic types and 4 
different priorities. 

gPTP IEEE 802.1AS 
The gPTP component encapsulates the time synchronization capability of the TSN. 
gPTP provides the synchronization required by time-sensitive applications and the Time-
Aware Traffic Shaper. The gPTP demands the maximum time-criticality from the VLAN 
module to keep all the networks synchronized. The IEEE 802.1AS standard defines run-
time parameters and monitors which have been reflected in the DSL model. 
Parameters 

● Active Interfaces: The Zynq-7000 based platform provides four RJ-45 Ethernet 
interfaces. This list specifies in which one gPTP is available. 

● OperAnnounce: Run-time message periodicity for the messages providing 
information about the Grandmaster and synchronization tree. The announce 
messages are key requirement of the Best Master Clock Algorithm. 

● OperSync: Run-time message periodicity for the messages carrying the 
synchronization information. 

● OperPdelay: Run-time message periodicity for the messages supporting the 
Peer to Peer delay mechanism. This mechanism is responsible for continuous 
monitoring of the link, the corresponding propagation delay and the remote peer 
status. 

● prio1, prio2: These parameters control the eligibility of the current node to serve 
as the Grandmaster or time reference. 

Qualities 

● Adjustment: Current time drift between the Grandmaster and local-clock time. 
● Servo status: The status of the servo performing the local clock control. 
● grandMaster: The current time reference. 
● pathTrace: List of the stations traversed by the synchronization messages. 
● steps_removed: Number of stations in the pathTrace. 
● rateRatio: the ratio between the frequencies of the local clock and the 

Grandmaster clock. 
● asCapable: Remote peer capability status. 
● Role: Current functionality mode of each interface. One of |Master, Slave, 

Passive or Disabled. 
● Link Delay: Link propagation delay refreshed by the Peer-to-Peer delay 

mechanism. 
● Link Status: Link status reported by the PHY. 
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TAS IEEE 802.1Qbv 
The Time-Aware Traffic Shaper (TAS) provides the strict traffic scheduling required to 
isolate the different kinds of traffic and satisfy latency and bandwidth requirements. The 
TAS requires the bandwidth and connectivity provided by the IEEE 802.3 MAC layer and 
the time synchronization provided by the IEEE 802.1AS gPTP module. 
Attending to the IEEE 802.1Qbv standard, the TAS requires to be configured with the 
base time and the scheduling table. On the one hand, the base time allows the time 
alignment provided the propagation delay along the TSN stream path. On the other 
hand, each entry of the scheduling table contains the parameters characterizing each 
interval of the cyclic schedule. 
Parameters 

• Base Time. POSIX timespec structure (seconds and nanoseconds) indicating the 
system time after which the cyclic scheduling is executed. Before this time, time-
aware gates remain open. 

• Number of intervals. The number of entries in the scheduling table. 
• Tick granularity of the time schedule. Possible values are 1, 2, 4 or 8 ns. 
• Interval time. Execution interval time length. 
• Gate configuration list. Boolean array indicating which priority queue is 

opened or closed at a given interval. 

4.6.2.3 Execution platform 
100/1000 Base-T 
This component represents the lowest layers of the Ethernet protocol stack. They 
provide the required connectivity and bandwidth between network elements. 
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Figure 13. DSL model of the TSN platform component 

 

4.6.3 Application in Context of UC3 (Habit Tracking) 
In UC3 (Habit Tracking), gesture recognition, person tracking, augmented reality, and 
biometric sensors cooperate to provide a senior-friendly smart home. This scenario 
relies on heterogeneous devices almost all of which require 100/1000-Base-T 
connectivity (except for wearable sensors, which require wireless Ethernet connectivity). 
For the preliminary demonstrator, the following end stations have been considered: 

● Central station. The central station collects monitoring data from the different 
systems. Besides, it provides co-processing capability for gesture recognition 
and person tracking. 

● Nvidia-based GPU platforms. These platforms (Jetson TX2, Xavier) are used 
to manage CCTV cameras and perform processing in the edge for gesture 
recognition and person tracking. 

● Augmented reality glasses. This wearable device is likely to be connected via 
a wireless Ethernet connection. 

● Biometric sensors. Biometric sensors are connected via wireless connections 
and via smart phones. 
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Biometric sensors and augmented reality require wireless connectivity. However, 
because TSN is based on point-to-point links, an IPv4 tunnelling will be implemented 
over the wireless connectivity to adhere to TSN requirements. For the rest of devices, a 
100/1000-Base-T interface will be provided. 
Gesture recognition and person tracking systems require coherent processing between 
edge devices (Nvidia GPU platforms) and the central station. Biometric sensors 
generate monitoring signals which are registered and presented on the central station. 
Augmented reality sunglasses may show a low-quality video streaming sourced by the 
central station when an event is detected. 

● Consequently, time synchronization is required to facilitate co-processing and 
coherent monitoring of the distributed systems. Furthermore, each system 
generates one or several heterogeneous data streams: 

● Video streaming of different qualities and, hence, with changing bandwidth 
requirements. Video streaming is generated by gesture recognition, person 
tracking and augmented reality systems. 

● Control streaming required by person tracking and gesture recognition for 
coherent processing on edge and cloud (central station). 

● Low bandwidth data generated by wireless, biometric sensors 
● Monitoring traffic, generated by all the systems participating in the use case, and 

collected on the central station. 
In this context the TSN should provide a common infrastructure to facilitate the 
cooperation between these heterogeneous systems, by providing a common time 
reference. At the same time, it should provide isolation between different kinds of traffic, 
and provide zero-congestion, zero-loss, or bandwidth guarantee for control traffic. 

4.6.4 Application in Context of UC9 (Surveillance 
of smart-grid critical infrastructure) 

In UC9, TSN should provide connectivity to the distributed elements comprising the 
smart-grid and surveillance subsystems and facilitate cooperation between these 
subsystems. 
Again, TSN provides the well-established 100/1000-Base-T Ethernet interface to 
interconnect equipment from different vendors: 

● The Remote Terminal Unit (RTU) controls circuit breakers and disconnect 
switches of the electrical substation. It can be connected to other RTU’s to 
conform a HSR ring or directly to the TSN. 

● The HSR Redbox provides gateway between the HSR and TSN network. 
● Nvidia-based GPU platforms performing CCTV camera control and edge 

processing for surveillance purposes. 
Specifically, the following kinds of traffic have been identified: 

● Time-critical traffic between Remote Terminal Units for the Smart Grid system. 
● Control streaming between edge and cloud processing nodes. 
● Video streaming of different qualities generated by surveillance processing 

nodes at the edge. 
● Monitoring traffic generated by the different equipment and presented on 

central stations.  
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To this end, time synchronization should be provided to talker and listener nodes. 
Besides, time synchronization is also required for the coordination between distributed 
co-processing nodes of the surveillance system, and to facilitate the cooperation 
between surveillance and smart grid. Last, but not least, the common time allows 
correlating monitoring data from different sources collected on remote central stations. 
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 Runtime Adaptation 
To manage trade-offs between different aspects of quality (e.g., frame resolution, 
quality, frame rate or latency) and resource usage (e.g., CPU time, memory usage, I/O 
bandwidth, or energy), the runtime platforms need to be able to modify configurable 
parameters in response to desired quality set points and changing conditions. 
In this chapter, we review the developed mechanisms for runtime reconfiguration and 
resource management, and introduce some of the algorithms and techniques envisioned 
to achieve the desired trade-offs between quality (performance) and resource usage for 
selected systems. The latter part of the chapter includes partner descriptions of runtime 
adaptation scenarios in use case-specific applications and contexts to serve as scenario 
descriptions for guiding the development for the duration of the project. 

5.1 Reconfiguration in Managed-Latency Edge-Cloud 
At the highest level of abstraction, the managed-latency edge-cloud infrastructure 
implements a MAPE-K self-adaptation loop [KEP03] (shown in Figure 18) to ensure that 
application requirements will be satisfied even in face of continuously changing 
conditions. To this end, the infrastructure periodically checks whether the soft real-time 
requirements are met and predicts near-future development. This allows the system not 
only to intervene after detecting a violation of application requirements, but also to act 
proactively ahead of time if needed. 
A single adaptation loop is used to manage both the initial deployment as well as 
redeployment of microservices. In fact, redeployment is nearly identical to initial 
deployment—calculation of real-time requirements is done periodically and takes into 
account the current placement of microservices to prevent unnecessary relocations. 
Each phase of the control loop has a distinct responsibility: 

• Monitoring. The monitoring phase is responsible for keeping the internal model 
of the system up-to-date. In the context of the edge-cloud platform, the controller 
monitors the state of the K8S cloud (nodes, pods, and other entities such as 
services and deployments) as well as the state and performance of individual 
applications, e.g., how often. 

• Analysis. The analysis phase is responsible for finding a deployment 
configuration (an assignment of application components to nodes in the cloud) 
that satisfies performance guarantees. A Constraint Satisfaction Problem (CSP) 
solver is used to find feasible solutions (in which timing requirements can be 
expected to hold), while the controller is responsible for evaluating the feasible 
solutions and choosing from among them. 

• Planning. In the planning phase, the controller determines if the desired 
configuration differs from the actual configuration and if necessary, prepares a 
sequence of actions to bring the cloud to the desired state. 

• Execution. In the execution phase, the controller makes actual changes to the 
cloud platform, following the plan of actions produced in the planning phase. In 
many cases, the actions can be executed in parallel, except when there are 
explicit precedence constraints among tasks. 

The four phases execute simultaneously, sharing data through a central knowledge 
component. In its simplest form, the knowledge component can be represented by a 
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single centralized database. However, it is entirely possible for the knowledge 
component to interface with several storage back-ends that can be used for different 
purposes. As an example, we can consider the FIVIS data storage, analysis, and 
visualization platform (developed in the context of Task 4.2) to serve as the knowledge 
component. 

 
Figure 14. Self-adaptation loop of the managed-latency edge-cloud platform. 

Note that this control loop applies only to management of latency in the edge-cloud 
platform. FitOptiVis systems in the role of edge-cloud applications will implement 
application-specific higher-level (higher-latency) control loops responsible for 
configuring the set-points (e.g., resource limits, desired framerate) for a lower-level (low-
latency) control loop responsible for achieving the desired set-points on the hardware 
components. 

5.1.1 Edge-Cloud Platform Architecture 
The architecture of the edge-cloud platform shown in Figure 19 comprises a number of 
modules, each with distinct responsibilities in the control loop. Yellow modules (need to) 
run on the master node, green modules do not (need to) run on the master node, and 
blue modules represent a middleware layer. We now elaborate on the role of individual 
modules and their interaction with other modules: 

• Event Cache. The module is responsible for persistent storage of important 
events, such as changes in application deployment (requests to deploy or 
undeploy an application) and connections from unmanaged components. 
Unmanaged components execute outside the edge-cloud platform (e.g., a 
hardware accelerator) and connect (as clients) to the managed components 
executing in the cloud. 

• Knowledge. Provides data storage and query capabilities to modules directly 
responsible for implementing the MAPE-K control loop. Knowledge data 
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generally concerns cloud nodes (and their subtypes), application types and 
instances, and component types and instances. 

• Cloud Monitor. Implements the monitoring phase of the MAPE-K control loop 
by periodically collecting information about the state of the nodes in the cloud, 
network latencies, and unmanaged components. 

• Analyzer. Implements the analysis phase of the MAPE-K control loop and is 
responsible for finding an application deployment plan that satisfies the timing 
requirements of all deployed applications. The module is internally split into 
Solver and Predictor submodules. 

o Solver. Responsible for finding the best deployment plan within a given 
time limit. Takes into account node utilization, network latencies, and 
predictions of component performance in deployment scenarios 
considered. 

o Predictor. Predicts performance of managed components, taking into 
account the hardware they are running on and the load induced by other 
components running on the same hardware. 

• Planner. Implements the planning phase of the MAPE-K control loop, which 
means identifying differences between the current application deployment and 
the desired deployment. Constructs an ordered execution plan of tasks that need 
to be executed to transition the system to the next state. 

• Cloud Executor. Implements the execution phase of the MAPE-K control loop 
by executing planned tasks either on the Kubernetes cloud, or on the other 
(Managed and Unmanaged) controllers. 

• Managed Controller. Responsible for invoking probes on managed 
components and for reconnecting dependencies of managed component 
instances. Can access all Node Controllers at runtime. 

• Unmanaged Controller. Responsible for reconnecting dependencies of 
unmanaged component instances from one managed instance to another, 
invoking probes on the client (which invoke managed components) to observe 
managed component performance including communication latency, and 
monitoring the state of unmanaged components. 

• Node Controller. Runs on each node and monitors the utilization of a particular 
node and of all the components executing on that node (using standard K8S 
facilities for resource monitoring). In addition, it serves as a proxy to managed 
component instances for the Managed Controller. 

• Probe Controller. Serves as a central entity through which all requests for probe 
invocation (on Managed and Unmanaged components) have to pass. Caches 
and forwards the results of probe invocations. 

• Network Controller. Responsible for making changes in network configuration 
and for collecting network utilization data and connection latencies. 

On each node, the information about a microservice obtained during the assessment 
phase is used to assign each deployed microservice the resources needed to perform 
its tasks within the timing constraints. This resource allocation is strictly enforced using 
features of the operating system, containerization technology, or the virtualization 
platform. Specifically, we rely on resource allocation features of Docker and Linux 
cgroups. This is necessary to prevent microservices from exceeding their allocated 
share of resources (due to, e.g., a sudden spike in the number of clients), which could 
have a negative impact on the execution time of other microservices. 
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Figure 15. Architecture of the managed-latency edge-cloud platform. 
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5.1.2 Performance and Interference Models 
To adaptively control deployment and redeployment of components in edge-cloud and 
thus to probabilistically guarantee end-to-end response time, the platform needs to build 
a model of application performance. This model needs to capture several modes of 
execution: baseline performance, when the application is exercised in isolation, 
performance under constrained resources, and performance in presence of other co-
located applications sharing the physical hardware through virtualization. 
Because we do not require the developer to provide the platform with apriori knowledge 
about application performance and resource requirements, the cloud platform needs to 
build the application performance model using experimental evaluation. 
The model then is used to predict application performance in different situations, 
especially during admission control (when deploying a new application), and when 
optimizing the deployment of existing applications (to ensure that real-time guarantees 
are met, or to manage the utilization of cloud resources). 
An important aspect of performance that the cloud platform needs to take into account 
is performance interference on shared resources (CPU caches, memory and IO 
bandwidth, etc.) when co-locating multiple virtual machines and/or containers on the 
same physical machine. 
On the other hand, we generally consider the underlying network bandwidth unlimited 
for modelling purposes. The rationale behind this assumption is that edge-cloud 
applications are likely to be latency-sensitive, but not necessarily bandwidth-intensive—
that would defeat the primary purpose of edge-cloud, which is to reduce communication 
latencies due to distance. 
We also assume that edge-cloud infrastructure can generally be private, i.e., with 
significant level of control (like in hospital use cases). Consequently, we assume that 
the network infrastructure can be configured to assign time-critical network traffic a QoS 
class with high priority; that latency-sensitive services with guaranteed response time 
requirements will not saturate the network with bulk transfers; and that applications with 
excessive bandwidth requirements can be dealt with by proper network infrastructure 
design. In particular, if latency-sensitive traffic needs to coexist with bulk traffic on the 
same network infrastructure, we assume that solutions based on Time-Sensitive 
Networking will be used (see Section 4.6). 

5.1.3 Performance Prediction of Co-located Workloads 
One of the key responsibilities of the Analyzer module (see platform architecture in 
Figure 19) is finding and analysing deployment alternatives. The analysis primarily 
concerns application performance prediction, providing the adaptation controller with 
data for making decisions—both when considering an application for admission as well 
as when reacting to violation of application’s timing requirements. 
The Predictor part of the Analyzer module uses a novel performance prediction 
algorithm which is based on statistical characterization of application performance 
measurements followed by a similarity comparison, revealing performance 
dependencies between background workloads (i.e., microservices). 
We first use performance measurements to build a structured data set and the, 
whenever a performance prediction of a particular scenario is needed, the relevant 
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prediction data are extracted into a linearized data-fitting model. This model is then 
solved by a constrained least-squares method, giving a reliable order statistics estimate 
of application performance, including its fidelity. 
To build the initial data set, we perform a number of measurements for a number of 
scenarios involving one or more workloads. There is always a scenario in which each 
workloads executes in isolation, without any other workloads running in the background. 
For each workload, we also include various combinations of background workloads. 
Because this may quickly become computationally infeasible, we generally focus on 
collecting information for pairs of co-located workloads, which reveals first-order 
performance impact, i.e., how applications influence each other on given hardware 
platform. Scenarios involving three or more workloads are sampled depending on 
available resources. 
For each scenario, we collect measurements on a number of parameters which 
characterize the application behaviour. In addition to response time, this includes CPU 
utilization, number of I/O operations, and memory utilization. To ensure robustness of 
the predictor, each scenario is measured multiple times to properly sample the influence 
of factors that can influence the measured parameters, but are beyond our control, such 
as virtual memory layout, file system state, or just-in-time compilation. With the initial 
data collected, we can start predicting application performance in different scenarios. 
The prediction algorithm consists of three phases, and is summarized in the schema 
shown in Figure 20 below. Here we discuss the individual phases in more detail: 

1. Data pre-processing. The first phase represents all computations that can be 
performed apriori to save the computational costs in later phases. The goal is to 
compute a number of statistical characteristics (for each of the given scenarios) 
in order to capture dependencies of all parameters of interest on the 
measurement conditions. This includes information about statistical distribution 
of the measurements, i.e., the sample mean and median, selected sample 
percentiles, standard and relative deviations, standard error, and the difference 
between the sample maximum and minimum values. 
While the characteristics such as mean or median capture typical behaviour, the 
sample maximum and minimum capture information about extremes. The 
difference between the typical and extreme behaviour is used to effectively 
penalize measurements with lower fidelity, improving performance prediction 
reliability. 
We also compute various quantities that allow revealing dependencies between 
performances of different workloads. In particular, these include slow-down 
parameters corresponding to the difference between sample percentiles of 
measured parameters for cases when a workload executes in isolation and when 
it executes together with other workloads. 

2. Task fitting. Given the initial data, their statistical characterization, and a user-
specific prediction requirement (i.e., a question), we first need to detect 
precomputed scenarios relevant for the prediction. We allow two types of 
scenario questions: 

• Q1: performance prediction for one of the already tested workloads, Wi. 
• Q2: performance prediction for a new workload, Wn+1, for which we have 

data measured in isolation. 
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The situation is simpler for Q1. The prediction must be based on the statistical 
characteristics of the scenarios involving Wi. We therefore build a prediction 
model using all scenarios involving Wi, except the one in which Wi executes in 
isolation. This gives us a data fitting problem, modelling the unknown correlation 
between the question and the preselected initial scenarios, which we then solve 
using the constrained least-squares method with non-negative constraints 
(NLS). 
For Q2, the prediction is based on finding an existing workload Wj that most 
closely resembles the new workload Wn+1. To find such a workload, we first 
compute the statistical workload characterization (see phase 1) for the scenario 
in which Wn+1 executes in isolation and compare it to characterizations of other 
workloads executing in isolation. Using some similarity measure, e.g., a weighted 
vector norms of the difference between mean, median, and deviation for the most 
relevant measured parameters, we look for the lowest difference (best match), 
producing Wj. Finally, we incorporate the statistical characterization of Wn+1 in 
the data set and “rephrase” Q2 as Q1 with Wj in the role of Wi serving as a proxy 
for the new workload Wn+1. 

3. Data-based prediction. In the last phase, we use a weighted combination of 
workload dependencies to predict the behaviour in the scenario from Q1 or Q2. 
Specifically, we estimate percentiles of expected performance of Wi in Q1 by 
shifting the percentile observed for Wi executing in isolation by a linear 
combination of estimated weighted slowdowns. 

 
Figure 16. Overview of the performance prediction algorithm. 

The interactions among co-located microservices sharing the underlying physical 
resources are generally complex, and often non-linear—especially when the physical 
resources are nearing exhaustion. Consequently, the prediction accuracy varies with 
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different combinations of applications and resources used, and cannot provide 
actionable results for all possible scenarios. 
To ensure that the predictor can be used with confidence within the adaptation loop, it 
is critical to establish the predictor’s operational boundaries and ensure that the 
managed system stays within the boundaries. The boundaries can be expressed as 
limits on the utilization of the CPU, memory, and IO resources used to characterize the 
workloads. 
While our system currently does not support automatic discovery of the operational 
boundaries, our initial evaluation indicates that they could be established experimentally 
for a particular platform. We expect that this could be turned into an automated 
procedure. 
The work presented here is currently under review in a scientific journal. 

5.1.4 State of the Art 
Cloud computing has been both a blessing and a curse. Cloud users can benefit from 
unprecedented availability and elasticity of resources, but the benefits come with strings 
attached. Cloud platforms have to continually balance the tension between efficient 
resource utilization (which determines costs) on the one hand, and quality-of-service 
guarantees demanded by latency-sensitive (LS) applications on the other hand. 
Management of cloud resources has therefore become a vast and quickly moving 
research area, with many surveys mapping and categorizing the problems, challenges, 
and the state-of-the-art in various problem domains [CHE18, AMI17, HAM16, SIN15, 
FAN15, MAN15, GAR14]. In the context of our work we focus primarily on approaches 
to performance- and interference-aware self-adaptive systems which manage resource 
allocation and assignment in a cloud environment to achieve efficient utilization of 
available resources while allowing applications to meet their QoS target. 
Q-Clouds [NAT10] is a QoS-aware control framework which transparently adjusts 
resource allocation to mitigate effects of interference on shared resources. Q-Cloud first 
profiles the virtual machines (VM) submitted by clients on a staging server to assess the 
amount of resources needed to attain the desired QoS without interference, and then 
manages the resources allocated to the deployed VMs in a closed control loop. 
Cuanta [GOV11] is a technique for predicting performance degradation due to shard 
processor cache for any possible placement using a linear (as opposed to exponential) 
number of measurements. Applications are replaced by a synthetic clone which is tuned 
to mimic the application's cache pressure, and interference due to colocation is predicted 
based on a matrix of know interference effects between different configurations of cache 
clones. Even though Cuanta is not a full-fledged cloud scheduler, it was used to make 
better workload placement decisions for a given performance and resource constraints. 
Bubble-Up [MAR11] avoids pairwise colocation profiling by characterizing the QoS 
degradation in LS applications using a synthetic workload with configurable memory 
subsystem stress test (the bubble), and the contentiousness of batch applications using 
a reporter workload with known sensitivity curve. The contentiousness of a batch 
application is mapped to a configuration of the bubble, which is then used to predict the 
interference inflicted by the batch application on the LS application. 
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Bubble-Flux [YAN13] improves on Bubble-Up by performing online profiling for LS 
workloads to account for workload phase changes and to identify more colocation 
opportunities. 
Paragon [DEL13] is an online interference-aware scheduler, which uses collaborative 
filtering to classify incoming applications based on limited profiling signal and similarity 
to previously scheduled applications. It does not differentiate between batch and LS 
applications and schedules applications so as to minimize interference and maximize 
utilization. Applications are classified for interference tolerance using micro-benchmarks 
stressing a specific shared resource with tuneable intensity, which are run concurrently 
with an application to find out the interference level at which the application's 
performance falls below 95% of its performance in isolation. 
Quasar [DEL14] improves on Paragon in that it also performs resource allocation 
instead of only resource assignment. Quasar extends the classification engine of 
Paragon to consider scale-out and scale-up scenarios, as well as different workload 
types with different constraints and resource allocation controls. It also provides an API 
that allows expressing the performance constraints regarding throughput and latency. 
CloudScope [CHE15] is a representative of model-based approaches to QoS-aware 
cloud resource management and uses a discrete-time Markov Chain model to predict 
performance interference of co-located VMs. CloudScope runs within each host and 
collects application and VM-related metrics at runtime. The metrics serve to maintain an 
application-specific model capturing the proportion of the time an application uses a 
particular resource. The model is then used to predict slowdown due to colocation and 
ultimately to control placement of guest VM instances as well as adjusting the resources 
available to a hypervisor. 
CtrlCloud [ADA17] is a performance-aware cloud resource manager and controller, 
which optimizes the allocation of CPU resources VMs to meet QoS targets. It maintains 
an online model of the relationship between allocated resource shares and the 
application performance, and uses a control loop to adapt the resource allocation so as 
to progress towards a probabilistic performance target expressed as a percentile of 
requests that must observe a response time within certain bounds. 
Pythia [XU18] is a colocation manager which uses a linear regression model to predict 
combined contention on shared resources when co-locating multiple batch workloads 
with an LS workload. Pythia performs contention characterization for each batch 
workload running together with a particular LS workload and removes batch workloads 
that are too contentious to allow safe colocation. It then selects a small subset of batch 
workloads to co-locate with a latency sensitive workload and measures their combined 
contention to build a linear regression prediction model for contention due to multiple 
batch workloads. 
Our selection illustrates a variety of approaches proposed over the years, each fitting a 
different context, yet none able to claim to solve the problem once and for all.                                                                                                                                                       
Our approach will not be different in this aspect, but will focus on a privately-controlled 
cloud infrastructure. Unlike other approaches, we aim to treat all resources equally for 
the purpose of performance interference characterization, and rely on statistical 
characterization and similarity to reveal dependencies between background workloads. 
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5.2 Reconfiguration on the CompSOC Platform 
The following presents the concept of reconfiguration and resource management 
framework to be realized on the CompSOC platform. This framework is an instance of 
the FitOptiVis architecture (see Deliverable 2.1). The mechanism to realize the 
framework is detailed in Deliverable 4.3. The section also describes how the concepts 
map to the abstractions provided by the OpenCL-centric runtime API. 

5.2.1 Terminology 
• Component: A component is a part of a platform or an application. Components can 

be composed to form larger components—e.g., applications or (virtual) execution 
platforms. They have one or more configurations, determined by component 
parameters, and may be reconfigurable. Component configurations have budgets 
and qualities. A budget can be provided or required. In OpenCL terminology, a 
component can be an OpenCL device (e.g. a GPU, CPU or an FPGA device) or an 
OpenCL platform (including all the controllable devices). It can also mean the whole 
OpenCL application including the host and the device parts, depending on the 
abstraction level used. 

• Task: A task is an (application) component, which has only required budgets. In the 
OpenCL API, the kernels and buffer transfer commands are the tasks. 

• Application: An application is a set of tasks that provides functionality to a user. In 
OpenCL the application consists of a main program running on a host device and a 
number of commands created by the program. 

• Resource: A resource is a (platform) component, which has only provided budgets. 
This matches the concept of an OpenCL device. 

• Virtual Resource (VR): A virtual resource is a (platform) component, which is 
mapped to a single resource. In the case of pocl-remote, a virtual resource can be 
the device type/class/vendor for which an OpenCL kernel is optimized. Then the 
actual physical device will be assigned by the server-side resource manager. 

• Execution Platform (EP): An execution platform is the set of all resources. This 
matches the OpenCL platform. 

• Local Execution Platform (LEP): A LEP is the set of resources managed by a 
single Local Execution Platform Manager (LEPM). Every resource is part of a single 
LEP. Each compute server in the pocl-remote scheme can use a LEPM to manage 
its devices (e.g. which GPUs are dedicated to which remote application’s use at 
which time).  

• Virtual Execution Platform (VEP): A VEP is a set of virtual resources that can host 
an application. An application has a valid deployment on a VEP when its required 
budgets match the budgets provided by the VEP. 

• Virtual Local Execution Platform (VLEP): A VLEP is a subset of a VEP that 
contains all VRs mapped to (resources that are part of) a single LEP. Each VLEP is 
managed by a Virtual Local Execution Platform Manager (VLEPM). The VEP/VLEP 
concepts currently do not have a direct counterpart in the OpenCL API, but these 
can be added within FitOptiVis as an additional initialization API by means of a 
runtime platform requirement description mechanism. 
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5.2.2 Overview 
A block diagram of the proposed quality and resource management framework is 
depicted in Figure 21. Applications are composite components that are made up of 
tasks. Applications have one or more configurations, which are determined by 
application parameters. Applications may have certain provided qualities, and during 
their execution, they may be expected to provide certain quality levels (i.e., meeting QoS 
requirements). Each application configuration results in certain quality levels. 
As shown in Figure 21, an Execution Platform (EP) is used to execute applications. In 
order to use the EP efficiently, applications are consolidated in an isolated manner. 
Subsequently, to realize this isolated consolidation, applications are deployed on Virtual 
Execution Platforms (VEPs). VEPs are composite platform components, which are 
comprised of virtual resources each of which must be mapped to a resource located in 
the EP. An application has a valid deployment on a VEP when its required budgets 
match the budgets provided by the VEP. 
Applications may have certain quality requirements, which are met when they are 
properly configured and provided with sufficient resource budgets. Consequently, we 
propose a quality and resource management framework, which configures applications 
according to their quality requirements and ensures that application budget 
requirements are met. The proposed framework consists of several function blocks and 
databases, also shown in Figure 21. In the following section, we elaborate on the 
responsibilities of each block. 

 
Figure 17. Block diagram of the proposed quality and resource management framework. 
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5.2.3 Functional Blocks 

5.2.3.1 Application Quality Manager (AQM) 
The Application Quality Manager is responsible for lifecycle management of an 
application. Each application may have one AQM task, which performs application-
specific functions such as configuring application tasks with proper parameters. In 
particular, it has the following responsibilities: 

• Configuration and reconfiguration of applications during the instantiation and 
reconfiguration phases, respectively. Each application task may have certain 
parameters that must be set before the task starts to execute. Additionally, it may 
be necessary to modify these parameters during task reconfiguration. The AQM 
configures/reconfigures the application tasks using the parameters that are given 
by the VEPM. 

• Measuring application qualities during application execution. A quality is a 
measurable value that demonstrates how effectively an application is operating. 
Each application may have certain quality requirements that must be met during 
application execution. Employing an application-specific method, the AQM 
measures and monitors application qualities at run-time. 

• Making reconfiguration decisions when certain events happen. During 
application execution, certain events such as workload transitions may occur 
which necessitate application reconfiguration including modifying application 
allocated resources, application parameters, and/or application state (e.g., 
application tasks). Such reconfiguration decisions are made by the AQM. 

• Sending reconfiguration requests to VEPMs. Since the AQM is not privileged 
enough to modify the application VEP, it must ask VEPMs to perform 
reconfiguration when the application VEP must be modified. 

5.2.3.2 Orchestrator 
The orchestrator, which serves as the entry point of the system, manages the execution 
of applications (i.e., instantiation and reconfiguration) by orchestrating the EPM and 
VEPMs. The orchestrator is responsible for the following: 

• Receiving user requests regarding running and lifecycle management of 
applications. As mentioned above, the orchestrator is the entry point of the 
system. The end user sends its requests regarding loading (i.e., running) and 
lifecycle management (e.g., updating quality requirements) of applications to this 
entity. 

• Management of Application Bundles Database (ABDB) and Application 
Instances Database (AIDB). 

• Lifecycle management of Virtual Execution Platform Managers (VEPMs). Each 
application VEP is managed by a VEPM, and a VEPM itself is managed by the 
orchestrator. VEPM lifecycle management tasks such as VEPM instantiation are 
performed by the orchestrator. 

• Management of application deployment. To deploy an application, the 
Orchestrator asks the Broker to select one of the application configurations and 
determine a VEP to host it. 
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5.2.3.3 Virtual Execution Platform Manager (VEPM) 
The Virtual Execution Platform Manager is responsible for the lifecycle management of 
the VEP an application is deployed on. This is done through orchestration of VLEPMs. 
For each application, there exists one and only one VEPM. Upon user requests to 
instantiate an application, a VLEP is created, and the VEPM is loaded onto it by the 
Orchestrator. Subsequently, the VEPM creates VLEPs for VLEPMs, and manages the 
creation of application VEP by orchestrating the VLEPMs. The VEPM has the following 
responsibilities: 

• Lifecycle management of VLEPMs. Each application VEP is distributed 
among several VLEPs, each managed by a VLEPM. VLEPM lifecycle 
management tasks such as VLEPM instantiation are performed by the 
VEPM. 

• Lifecycle management of application VEPs. Lifecycle operations (including 
creating, destroying, and reconfiguration) of application VEPs are managed 
by the VEPM. Since an application VEP is composed of one or more VLEPs 
each of which managed by a VLEPM, its lifecycle management requires the 
orchestration of VLEPMs, which is performed by the VEPM. 

5.2.3.4 Virtual Local Execution Platform Manager (VLEPM) 
The Virtual Local Execution Platform Manager is responsible for the lifecycle 
management of a VLEP, which is a part of an application VEP. VLEPMs are instantiated 
by VEPMs and are responsible for lifecycle operations of VLEPs including creating, 
destroying, and reconfiguration of VLEPs. To do so, each VLEPM communicates with 
the LEPM and Resource Managers of the LEP it is mapped on. Constrained by its 
access rights, a VLEPM must ask the LEPM to reserve/release virtual resources. 
However, for other lifecycle operations, such as allocation and initialization, it directly 
asks the Resource Managers. 

5.2.3.5 Execution Platform Manager (EPM) 
The Execution Platform Manager is responsible for managing the resources that the 
Execution Platform (EP) is comprised of. All the global resource-related requests are 
passed to this entity. Additionally, it keeps track of available resources, their costs, and 
resources used by VEPs. In particular, the EPM is responsible for: 

• Management of Execution Platform Database (EPDB) and Virtual Execution 
Platforms Database (VEPDB). The information regarding available resources, 
resource costs, and the resource shares owned by VEPs are collected and 
managed by the EPM in two databases. These information are provided by 
LEPMs. 

• Exposing resource information to the Broker. During the resource brokering 
process, the Broker provides the EPM with a set of application required budgets 
and the maximum affordable costs. Having the global view of available 
resources, the EPM provides the Broker with a set of VEPs meeting the required 
budgets and costs. 
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5.2.3.6 Local Execution Platform Manager (LEPM) 
As mentioned before, each resource is part of a LEP and is managed by a single Local 
Execution Platform Manager. LEPMs are entry points of LEPs. Resource-related 
requests sent by remote functional blocks are received by this entity. LEPMs are 
responsible for: 

• Management of resource reservations and allocations. In order to create VLEPs, 
their required resources must be reserved and allocated. The actual reservations 
and allocations are performed by Resource Managers. However, given the fact 
that each VLEP may be composed of various resources, a single entity is 
necessary to ensure that all the required reservations and allocations are done 
successfully. 

• Exposing resource information to the EPM. In order to keep the global view of 
EP updated, each LEPM informs the EPM about the available resources and 
their costs. 

5.2.3.7 Resource Manager (RM) 
Resource managers are employed to create, configure/reconfigure, and destroy virtual 
resources. As shown in Figure 22, several steps must be taken for each operation. To 
create a virtual resource, first, its required budget – described in the Budget Descriptor 
– must be reserved. In this step, the required budget is being compared to the budget 
provided by the resource. If the reservation is successful (i.e., the provided budget is not 
less than the required one), a virtual resource identifier is generated, and the creation 
process continues with allocating the resource. During this step, the budget is 
programmed into the resource using the identifier. Hence, the allocation step may take 
more time than the reservation step. After the allocation step, the virtual resource is 
created and it is ready to be initialized (i.e., to be configured, e.g., load instruction 
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memory of a vCPU with application code). Finally, the initialized virtual resource starts 
running. 
Similarly, several steps must be taken to destroy a virtual resource. First, the virtual 
resource must be stopped. Given the fact that the virtual resource may be busy at this 
point, stopping a virtual resource can be a slow process. After the resource becomes 
stopped, it may need to be reset to its initial state. Finally, the programmed budget must 
be released. When the budget is released, the available budget gets back to its previous 
state, and the virtual resource is destroyed. Besides lifecycle management of virtual 

resources, RMs measure and monitor performance and costs of resources. In order to 
keep the LEPM updated about the status of local resources, RMs provide the LEPM with 
the measured performance and costs. Such provided data are maintained in the EPDB 
by the EPM. 

5.2.3.8 Broker 
The Broker, which acts as a decision maker in the system, determines the optimal 
configurations for all the platform and application components. For instance, when an 
application is planned to be instantiated, the Broker decides which application 
configuration should be deployed to meet the application’s quality demands and which 
VEP configuration should be selected to host the application instance. To do so, the 
Broker needs to know information concerning application configurations (including their 
required budgets and offered qualities) and VEP configurations (including their provided 
budgets and costs). The former is provided by the Orchestrator using Application 
Bundles stored in ABDB, and the latter is provided by the EPM using the information 
stored in EPDB. The decisions are made in such a way that the application quality 
requirements are met and the aggregate cost of resources is minimized. 

Figure 18. Lifecycle FSM of a virtual resource. 
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5.2.3.9 Databases 
As shown in Figure 21, there are several databases in the proposed architecture 
containing information necessary for quality and resource management. Generally, the 
information of each component is stored in a structure called Component Bundle, shown 
in Figure 23. For each component configuration, the Component Bundle contains its 
parameters, qualities, Budget Descriptor, and initial state. Configurations are determined 
using the parameters. Qualities describe offered qualities of application components or 
costs of platform components. The Budget Descriptor, which has a hierarchical 
structure, describes either the provided budget of a platform component or the required 
budget of an application component. 

The mentioned databases store the following information: 

• Application Bundles Database (ABDB): This database stores all the application 
bundles. Each application bundle contains all the application configurations. This 
database is created and maintained by the Orchestrator. 

• Application Instances Database (AIDB): It stores the bundles of application 
instances. Since each application instance is configured with one application 
configuration, the application instance bundle contains only one configuration. 
This database is also created and managed by the Orchestrator. 

• Application Configurations Database (ACDB): The AQM needs to know about all 
the application configurations for making reconfiguration decisions. This 
database provides the AQM with this information. In essence, it stores the 
application bundle, which is also stored in the ABDB. 

• Execution Platform Database (EPDB): It contains information of all the resources 
within the Execution Platform. This database is maintained by the EPM using the 
information collected from LEPMs. 

• Virtual Execution Platforms Database (VEPDB): This database maintains 
information of all the created VEPs. Since each VEP is configured according to 
a single configuration, its bundle has only one configuration. This database is 
also maintained by the EPM using the information collected from LEPMs and 
VEPMs 
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Figure 19. Structure of Component Bundle 
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5.2.4 Budget Matching 
As explained before, the Broker makes decisions regarding application configurations 
and the VEP they deploy on. To do so, the Broker must decide on the budget 
connections (i.e., vertical compositions) as well. That is, the Broker makes sure that: 

I. the VEPs on which applications are deployed provide enough resource budgets 
to applications, and that 

II. the EP provides enough budgets to the VEPs that it hosts. 
For this purpose, we have proposed and developed a performance analysis framework 
whereby the worst-case response time of applications can be determined based on their 
resource requirements and resource budgets provided by the EP. The overview of this 
framework is shown in Figure 24 below. 
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Figure 20. Overview of the performance analysis framework 

In this framework, the provided budget of a resource is modelled by two functions 
describing the capacity of the resource and the rate at which the resource serves the 
requestors. The capacity of a resource describes the maximum service that the resource 
can deliver to applications at all the time instants (e.g., stored energy of a battery), and 
the rate describes the maximum service that the resource can deliver to applications at 
each time instant (e.g., battery power). 
Resources such as processors and interconnects do not have any constraints on the 
total service they can allocate to applications; however, the service they deliver at each 
time instant is constrained by their limited bandwidth. In other words, their provided 
capacity is infinite, but their provided rate is limited. 
Resources such as memories (space) and FPGA (area) can only accept requests when 
the total service they deliver to applications at that moment has not reached their 
capacity. 
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Finally, a class of resources such as batteries has limits on both their provided capacity 
(joules) and rate (watts). Provided budgets for an illustrative example where the EP is 
composed of a CPU, a HW accelerator, a memory, and a battery are shown in Figure 
25 below. The horizontal axis in all plots is time. 

 
Figure 21. Example budgets for different resource classes 

Applications require budgets when they are invoked by incoming events (e.g., video 
frames, DMA transactions, OpenCL kernel calls). Each application requires a certain 
service from one or more resources to handle an event. We assume that the required 
budget of applications can be characterized by a set of functions that specify the service 
that an application requires from a resource when certain application progress is made.  
Application progress indicates the number of (fully or partially) processed events. 
Applications make progress only when they are delivered the budgets they require from 
all resources. At each time instant, an application makes progress until a point at which 
the total delivered service does not exceed the provided capacity and the service that is 
delivered since the previous time instant does not exceed the provided rate. The 
required budgets of an application used in the illustrative example are depicted in Figure 
26 below. Here, the horizontal axis of all plots is progress, and the curves regularly 
repeat over progress. 

 
Figure 22. Resource budgets required by an application to make progress 

By computing the application progress, we can obtain the timing behavior of processed 
events, thereby computing response times of incoming events. We say the budgets 
provided by the EP are matched with budgets required by applications/VEPs whenever 
the worst-case response time of events is not greater than the required response time 
of those components. In addition to computing WCRT of a given trace of a system, the 
framework allows us to compute an upper bound on WCRT when bounds of traces are 
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given. The plots in Figure 27 below show the response times, application progress, and 
backlog in the illustrative example when the incoming stream of events is periodic with 
jitter. 

 
Figure 23. Example application response time, progress, and backlog 

5.3 Reconfiguration in Processor/Co-processor Systems 
In general, designers should be supported at design-time, to define, characterize and 
be able to deploy platforms that optimally match the given requirements, while 
guaranteeing that customized applications are still interoperable. Nevertheless, in 
dynamic and reactive systems, such as CPS, design-time customizability is not 
sufficient. 
Modern systems are required to be flexible and versatile, capable of supporting multiple 
operational profiles corresponding to different trade-offs, and capable of switching 
between these profiles at runtime [BYS10] during dynamic reconfiguration. We are 
therefore addressing the definition of efficient run-time methodologies capable of coping 
with the need for flexibility at all levels of CPS systems, from edge to cloud. Here we 
deal specifically with run-time adaptability at the hardware component level, in particular 
in reference to multi-purpose co-processing units. 

5.3.1 Dynamic Parameter Adjustment 
The concept of dynamic parameter adjustment was introduced by Burleson et al. 
in [BUR01]. As illustrated in Figure 28, tuning processing in response to content variation 
and/or changing user/system requirements is made possible by runtime variation of 
different parameters. These can be classified as follows: 

• Functional parameters. These allow tuning the output of a computation, and 
may include, e.g., filter and transform lengths, or quantization levels. 

• Architectural parameters. These allow tuning guaranteed performance and 
energy consumption—without modifying the output of the computation. 
Architectural parameters include, e.g., the level of parallelism employed in the 
computation, which may affect throughput and energy consumption. 
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Figure 24. Dynamic parameter adjustment [BUR01]. 

The work of Burleson et al. refers mainly to video codec specifications, but it can be 
generalized to image and video processing pipelines such as the ones we are dealing 
with in FitOptiVis. Within the CERBERO H2020 project, which has been recently 
finished, a similar concept has been formalized in the definition of the adaptation 
loop [PFS19] shown in Figure 29. 

 
Figure 25. Self-adaptation loop as defined in the CERBERO H2020 project. 

According to the formalization provided within CERBERO, self-adaptation aims at 
changing structure, functionality or parameters of the system in response to information 
coming from the environment, the user, or the system itself. Self-adaptation in 
CERBERO involves a feedback loop from sensors to a decision entity, decomposed as 
follows: 

1. Run-time sensing/monitoring capabilities—to capture environment, human-
commanded and system status changes with proper interfaces. 

2. Run-time estimation capabilities—to estimate, during system execution, the Key 
Performance Indicators (KPIs) reflecting the status of the system. 
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3. Decision making capabilities—to define, given the evaluated KPIs and a set of 
predefined criteria, whether adaptation is needed to meet the expected goals, or 
whether to keep the execution as close as possible to its current status. 

4. Mastering capabilities—to select a type of adaptation suitable for the available 
computing infrastructure. 

5. Reconfiguration capabilities—to execute the planned changes on the available 
adaptable fabric. 

Both above-mentioned approaches have been used as the starting points/building 
blocks for activities carried out within FitOptiVis. In particular, [BUR01] presents a way 
of describing a dynamically tuneable computing infrastructure that fits the work carried 
out in WP2, where a composable, customizable and reconfigurable virtual reference 
platform for video and image processing pipelines is defined. According to this 
formalism, both functional and architectural parameters can be customized to optimize 
a system before deployment to meet the given constraints, and to adapt the system at 
runtime according to varying environmental or system conditions, or to human requests. 
The formalization of the FitOptiVis DSL (D2.2) has allowed us to derive a subset 
description of the Water Supply use case (see D6.1), both in terms of application and 
architectural components. Adaptation support is not yet implemented yet, but initial steps 
have been taken to enable modelling and prediction of some of the important execution 
parameters, such as latency. 

5.3.2 Runtime Estimation and Decision Making 
The contribution specific to WP4 is at the predictor level, which should encapsulate the 
runtime estimation and decision making capabilities of the CERBERO adaptation loop. 
In processor to co-processor systems (see Deliverables 5.1 and 5.2 for more details) 
deployed using the Multi-Dataflow Composer (MDC, see Deliverables 3.1 and 3.2 for 
more details) coarse-grained functional and non-functional reconfiguration is enabled. 
In particular, MDC generated co-processors/accelerators are specialized hardware 
modules capable of accelerating different algorithms (functional reconfiguration) and/or 
different variants of the same algorithm (non-functional reconfiguration). Applied at a 
coarse-grain level, reconfiguration is very quick and takes place by simply overwriting a 
unique configuration register in the accelerator. Decisions on parameter tuning can be 
then taken at run-time, starting with the knowledge of the current state and taking into 
consideration varying objectives/requirements, characteristics of the processed data, 
and actual processing and architectural KPIs, such as the offered quality of service, 
throughput, or energy consumption. 
We have completed the definition of the automated support for dynamic reconfiguration. 
The MDC tool is capable of automatically generating the APIs that enable transparent 
access to co-processors/accelerators from a host-processor and supports different 
types of coupling (e.g., loose coupling, utilizing memory-mapped communication, or tight 
coupling, utilizing stream-based communication), different host processors, and 
optionally using DMA for data transfers (WP3 and WP5 work). These APIs also enable 
co-processor/accelerator reconfiguration by simply changing the specific function call 
used to offload computation on the co-processor/accelerator. 
We are also working on the definition of a proper, minimally invasive monitoring 
infrastructure which will enable gathering runtime data required for KPI estimation. So 
far, the collaboration within the consortium resulted in preliminary integration of MDC 
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and AIPHS. We have also presented1 a framework for developing complex 
heterogeneous architectures composed of programmable processors and dedicated 
reconfigurable accelerators in FPGA. The framework supports customizable monitoring 
systems and enables control over the introduced overhead [JOINTER]. More detailed 
elaboration of this framework is provided in D4.3. 

5.3.3 Reconfigurable Neural Network Accelerators 
Given that the predictor component is partially use-case specific (with respect to the 
functional parameters to be tuned), we have been working on the implementation of the 
part of processing relevant to the Water Supply use-case. Three different neural 
networks provided by AITEK (INC_net, Mobile_net and VGG_net) have been 
implemented as reconfigurable hardware accelerators with the help of the MDC tool. 
The three networks are composed of different operators/actors, some of them 
parameterized and reused in multiple networks. Table 4 illustrates the composition of 
the networks in terms of operators/actors as well as the maximum value of parameters 
for each operator/actor within the neural networks. This shows that reusing 
operators/actors in different network implementations and support for functional 
parameter adaptation is feasible. 
Table 4. Composition of neural networks in terms of operators/actors and maximum value of parameters. 

 
INC_net Mobile_net VGG_net 

nr max param nr max param nr max param 

Input 1 1x128x128x3 1 1x128x128x3 1 1x128x128x3 

Transpose 2 - 2 - 1 - 

Conv 23 64x64x3x3 14 512x256x1x1 13 1024x1024x3x3 

Relu 23 - 14 - 13 - 

Concat 3 - 14 - 0 - 

Reshape 1 - 1 - 1 - 

Sigmoid 1 - 1 - 1 - 

BatchNormalization 3 256 14 512 0   

MaxPool 6 - 1 - 4 - 

Add 3 784 1 2 1 2 

Sqrt 1 - 0 - 0 - 

Reciprocal 1 - 0 - 0 - 

Mul 3 784 0 - 0 - 

Sub 1 784 0 - 0 - 

Cast 1 2 1 2 1 2 
                                                
1JOINTER: Joining flexible monitors with heterogeneous architectures. DATE 2020 virtual U-
Booth exposition. 
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MatMul 1 784x2 1 512x2 1 1024x2 

AveragePool 0 - 0 - 1 - 

Output/Sigmoid 1 1x2 1 1x2 1 1x2 

Porting to hardware is still an ongoing activity. So far we have managed to optimize 
some of the critical operators/actors, in particular the Conv operator/actor, which is 
responsible for all convolution calculations in the neural networks, and which turned out 
to be the most complex and time consuming. We started from the baseline Register 
Transfer Level description of the operator/actor produced by Vivado HLS without any 
directive or designer intervention, and produced two different variants of the design with 
the aim of employing more resources to increase performance: 

• paral: this variant was obtained by applying an UNROLLING directive to the inner 
loop of the computation in the C implementation of the Conv operator/actor; 

• pipe: this variant was obtained by applying a PIPELINING directive to the inner 
loop of the computation in the C implementation of the Conv operator/actor. 

Table 5 shows the resource usage of the Conv operator/actor together with the latency 
of the computation code block for the three variants: baseline, paral, and pipe. The 
results show that applying either of the directives to the HLS flow leads to significantly 
reduced latency compared to the baseline variant. Obviously, the speed up is paid for in 
terms of resource—the paral variant requires significantly more resources than the 
baseline (about 650% more LUTs, about 490% more FF, and 3100% more DSPs when 
implemented in a Xilinx Artix-7 XC7A50TCSG324 FPGA). However, the pipe variant, 
which provides even higher speedup than the paral variant, only requires a modest 
increase in resources (about 16% more LUTs, and about 7% more FFs), making it ideal 
for implementing the neural networks. 

Table 5. Resource occupancy and execution latency of the computation code block of the Conv 
operator/actor variants. 

metric 

Conv operator/actor variant 

baseline paral pipe 

value value % value % 

LUT 1154 8653 649.83 1337 15.86 

FF 608 3583 489.31 650 6.91 

DSP 1 32 3100.00 1 0.00 

BRAM 3 3 0.00 3 0.00 

computation 
code block 
latency [us] 

944.64 385.92 -59.15 189.44 -79.95 

In the final year of the project, we plan to implement a simple predictor with decision 
making capabilities to support functional reconfiguration in the Water Supply use case, 
relying on the building blocks available in the project (models developed in WP2, 
monitoring infrastructure developed in WP4, and extension of the MDC tool expected in 
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WP3) and the characterization of reconfigurable accelerators we expect to complete 
soon. Architectural reconfiguration, enabled by monitoring data, is still ongoing work. 

5.4 Reconfigurable 8xSIMD Floating-point Accelerators 
In Y2, we have developed reconfigurable 8xSIMD floating-point accelerators for the 
Zynq and Zynq UltraScale+ platform. Detailed description of the accelerators is provided 
D5.2, while integration into a Linux system is described in D3.2. In this section we 
describe the mechanisms for run-time reconfiguration, and concrete examples of code 
utilizing the reconfiguration mechanism are provided in D4.3. 
The internal structure of the accelerator is shown in Figure 30. 

 
Figure 26. Run-time reconfigurable 8xSIMD floating point accelerator 
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5.4.1 Design Considerations and Requirements 
The run-time reconfigurable floating point accelerators for the Zynq and Zynq 
UltraScale+ platforms have been designed and realized with respect to the following 
considerations and requirements: 

1. Software utilizing the accelerator can be developed also directly on the board, 
using the C++ compiler (g++) present in the Debian OS and Xilinx data-mover 
support drivers. 

2. The entire HW platform, comprising one or more accelerators, is provided in form 
of a shared library. The provided library API is compatible with C++ development 
practice and standard “make” can be used to build the user application. 

3. The hardware of the floating point accelerators is fixed. Reconfiguration is 
performed by reprogramming the firmware code which defines the function of the 
programmable finite state machine (FSM) inside the accelerator and the function 
of the communication logic (see Figure 30 above). 

4. Data communication is implemented as an AXI-stream and supports accelerator 
chaining. 

5. The data communication support HW is determined at design time and cannot 
be changed at runtime. The following variants can be generated:  

a. Zero copy (ZC) HW data movers consuming minimal HW resources, 
b. DMA data HW data movers, 
c. Scatter gather (SG) DMA data movers with interrupts, 
d. Combination of ZC HW (DDR to Accelerator) and SG DMA HW 

(Accelerator to DDR) 
6. All communication alternatives have to work with identical SW API. It means that 

the user SW code remains identical and does not need modifications at run-time. 
7. Software must be able to query the list of SIMD FP operations supported by the 

accelerator. Based on this information, the software can be reconfigured to take 
advantage of supported operations. 

8. The accelerator must be able to provide information on whether the HW license 
coming with the accelerator is valid. 

9. The accelerator firmware is a simple sequence of VLIW vector instructions which 
support for-loops, if-else, and similar constructs. However, there is no support 
for checking overflow/underflow in floating point operations. Such constructs 
have to be implemented in the host code (executing on ARM core). 

10. Computation performed in the accelerator can overlap with stream-based data 
communication. This is controlled by the user-space host software running on 
the ARM core. 

11. Data are stored in 64bit-wide dual-ported blocks. This arrangement enables to 
use the Ultra RAM blocks (4096x64b) present in some larger Zynq UltraScale+ 
devices without affecting the accelerator library API or user code. 

5.4.2 Reconfiguration by Change of Firmware 
The accelerator executes sequences of VLIW vector instructions (firmware) stored in 
accelerator program memory. This firmware can be first defined in the host software and 
then downloaded via the streaming interface to the accelerator. The program memory 
will usually contain multiple different sequences of VLIW instructions. 
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Computation performed in the accelerator can overlap with stream-based data 
communication. This is controlled by the host software running on the ARM core and it 
can be used for run-time reconfiguration by loading a new VLIW instruction sequence to 
the accelerator program memory while computation is in progress. 
For example, consider an application which needs to perform accelerated multiplication 
of 64x64 matrices (Z[64,64] = A[64,64] × B[64,64]). The application running on the host 
will split the matrix operation into shorter sequences of VLIW instructions and loaded 
instruction sequences into the accelerator program memory schedule scheduled by the 
application software running on the ARM host by adjusting pointers to instruction 
sequences to be loaded into the accelerator program memory while streaming parts of 
matrix B[64,64] from host DDR memory to the accelerator. Rows of the matrix are 
propagated as identical to all 8xSIMD memories in 8 subsequent stages. Detailed 
example of software using this run-time reconfiguration is presented in D4.3. 

5.4.3 Reconfiguration by Temporary Change of Firmware 
Application software can temporarily reconfigure the accelerator in the following steps: 

1. Save accelerator context to DDR (this involves saving the content of accelerator 
memories and firmware to DDR; only selected parts of the context may be saved 
to reduce context-switching overhead), 

2. Change firmware and upload it to the accelerator, 
3. Execute the firmware (for example the SupOp instruction) 
4. Read the results from accelerator data memory into ARM host memory, 
5. Restore (full or partial) accelerator context from DDR. 

After performing the above steps, the accelerator data and firmware is back in its original 
state and the application software running on the ARM host has information about the 
supported SIMD operations as well as about the status of the HW license. 
Consider a scenario in which the application software needs to find out which SIMD 
operations are actually supported by the accelerator. This information is required to 
determine, e.g., which firmware version can be used with the accelerator. If the DotProd 
instruction is supported by the accelerator, the accelerated computation of 64x64 matrix 
multiplication (Z[64,64] = A[64,64] × B[64,64]) will use the instruction to improve 
efficiency. 
Alternatively, if the DotProd instruction is unsupported, the application software running 
on the ARM host can implement an accelerated matrix multiplication using sequences 
of Mac (multiply and accumulate) instructions. 
If the Mac instruction is also unsupported, the matrix multiplication can be implemented 
using the Add and Mult instructions. The performance of the matrix multiplication will 
be reduced by approximately 50%, but the accelerator will require less HW resources to 
implement. This might be necessary for some platform configurations where the 
programmable logic area is used by pre-defined HW accelerated video processing. 
More detailed elaboration of this run-time reconfiguration is presented in D4.3. 

5.4.4 Reconfiguration of Streaming Data Path 
The architecture supports multiple accelerators connected in serial chains. This allows 
saving resources that would be otherwise spent to implement HW data movers and 
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enables direct communication from one accelerator to the next accelerator in the chain. 
However, such a connection creates dependency between accelerators and run-time 
reconfiguration of the data path is needed to full-fill the needed tasks. 
The application software reconfigure the accelerator streaming data path at runtime to 
achieve the following functions: 

1. Set all accelerators in the chain as “pass-through” with the exception of one, 
which uses the streaming data for: 

a. Read (reading data from the selected accelerator to ARM host DDR) 
b. Write (write data to the selected accelerator from ARM host DDR) 
c. Read and Write (perform read and write at the same time from two 

identical or different 64-bit BRAM blocks) 
2. Write identical data to 2, 3 or 4 selected 64-bit BRAM blocks to all accelerators 

in the serial chain of accelerators. 
3. Read from one selected accelerator and write data to another accelerator 

downstream in the chain of accelerators. 
Consider again the case of matrix multiplication, in which run-time reconfiguration of the 
streaming data path can be performed to download rows of matrix B[64,64] from ARM 
host memory to the accelerator. Rows of matrix B are propagated to memories of all 
accelerators connected in the chain. Matrix B is modified in 8 run-time reconfiguration 
stages. 
More detailed elaboration of this run-time reconfiguration is presented in D4.3. 

5.5 Application-Specific Adaptation Scenarios 
The following subsections provide details on adaptation specific to selected use cases. 

5.5.1 Modelling System Variants and Configuration Changes 
In the design phase of computer vision systems, it is most often left to the human 
designer to model and define the rules that can be applied dynamically at run-time to 
achieve adaptability (e.g., choosing a reduced frame rate or picture size). This can be 
theoretically made quite effective but often requires manual fine tuning of these rules. 
In FitOpTiVis we aim for an incremental advancement over the current state of practice 
in this field. In deliverable D4.1 we proposed an approach based on generic variability 
modelling tools such as CVL [FLE09] and [LOP13]. These enable designers to model 
different system variants which then can be activated by a monitor which is analysing 
the performance of the system and the suitability for adaptations. 
However, in the second year for the project, there have been significant advances in 
support for modelling, specifically the domain-specific language resulting from work 
within WP2. In contrast, the interest in variability-intensive modelling languages appears 
to be fading, both in the market and research communities. To reflect this development, 
we have re-evaluated our approach and instead of using CVL and related languages, 
we adopted FitOpTiVis DSL for modelling system configuration variants. 
The FitOpTiVis DSL [D2.2, HEN20] is “an integral approach for smart integration of 
image-processing pipelines architecture, as well as supported tools for both design-time 
and run-time […]. The DSL provides a language in which systems are specified in an 
integral way, whereas the toolset enables automated optimisation within systems”. The 
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language thus provides a good platform which allows defining the functionality and 
possible configurations of a complex, multi-device video processing system such as the 
one presented in UC3 (Habit Tracking). 
The proposed model (presented in D2.2) is currently simple and only covers a very 
particular example of adaptation: when energy levels in the system fall below a certain 
threshold, the clock speed and the energy profile of the board are both lowered. To 
support this scenario, model abstractions are generated for all participating components: 
the board, the camera, the facial recognizer itself, and the energy monitor. These 
components capture the requirements and constraints that need to be satisfied to 
perform configuration changes. 
In WP4 we propose a mechanism based on the usage of the DSL to enable configuration 
changes in computer vision modules built for UC3 (Habit Tracking). The support for 
reconfiguration allows controlling the distribution of load between edge nodes (running 
on computing-power constrained ARM devices) and eventually more powerful cloud 
nodes (running similar algorithms but on powerful x86 nodes), changing the features of 
behaviour recognition, and changing the power profile of the edge nodes based on 
monitoring of the battery state and throttling of the CPUs/GPUs in the edge hardware. 
The general architecture of the system is shown in Figure 31. 

 
Figure 27. Architecture of the Habit Tracking adaptation system. 
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During Y2 we have focused mainly on modelling of the edge components (the camera, 
the board, and the power daughterboard). This provides us with a working basis with 
support for adaptation which will be expanded in the last year to support task distribution 
across more powerful cloud devices and other (underutilized) edge devices. 

5.5.2 Selection and Compression of Task-Specific Features 
During the first year of the project, a study was performed that assessed the feasibility 
of using visual attention to reduce data bandwidth in computer vision models for tracking 
and activity recognition applications. We have also considered other active-vision 
approaches that include changing geometric parameters of the sensor according to the 
task, or changing the perspective or focal length of the selected sensor. From the 
existing centralized methods, different metrics have been considered for resource 
management (runtime or not), adopting the edge-cloud paradigm. 
Issues related to streaming of video include (but are not limited to) scalability when using 
multiple image/video sources, bandwidth of the shared network, real-time performance 
of the video processing components, privacy issues related to transmission of images, 
or the additional computational complexity when encryption is required. To address 
these issues, task-driven mechanisms that select (and compress) the most relevant 
information (e.g. through visual attention) are required. These mechanisms are part of 
the active vision [CHI17] concept, which covers (among others) adaptation and smart 
compression. 
Two different strategies will be used: adaptation and task-driven selection of relevant 
features in order to reduce the data bandwidth and achieve real-time performance at the 
video processing components. The metrics upon which adaptation will be based depend 
on the application. 
Our contributions to use cases UC3 (Habit Tracking) and UC9 (Surveillance of smart-
grid critical infrastructure) will be released in form of software libraries. Regarding tools, 
we are currently using Python, C++ and OpenCV libraries, and GPU-accelerated 
solutions implemented using CUDA to achieve real-time performance on Ubuntu 
systems. 

5.5.2.1 Application in context of UC9 (Smart-grid infrastructure surveillance) 
Different computer-vision techniques have been considered to reduce computer load 
and network bandwidth in the context of UC9, especially techniques based on the 
concept of visual attention, which efficiently select relevant features and enable 
reduction of the required data bandwidth [BAR14]. The concept originates in biology, 
where perception is an active selection mechanism, and where adaptation and 
compression plays an important role. Many visual attention models emulating the 
biological process have been presented in the literature, conjugating a bottom-up 
saliency and a top-down modulation pathways. The saliency mechanism selects areas 
based on how discriminating they are with respect to their environment. The top-down 
modulation biases the selection with respect to the task being performed. This 
mechanism has been applied in many different fields such as robotics [FUJ10], 
autonomous navigation [LIU12], or military [CHE11]. 
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Figure 28. Example of saliency estimation from a driving scenario [BAR14]. Road mark, and the traffic 

sign are highlighted in the final saliency image (estimated with intensity, orientation, and color 
discriminative features). 

In the second year of the project, another set of proven techniques has been found more 
efficient for the same task, with a more developed state-of-the-art. This technique is 
known as detection of Regions of Interest (ROIs). These regions are areas of the image 
in which there is a greater probability of finding elements that are relevant to a specific 
problem and problem domain [REN17]. In our case, these are areas with a greater 
probability of finding human subjects. The usual approach to detection and monitoring 
of moving objects in a video stream obtained by a static camera consists of background 
extraction. This technique allows identification of moving objects within a scene by 
generating a model of the frame's background [PIC04]. 
Figure 33 shows a frame from a test video stream and the result of applying different 
background extraction algorithms (MOG, MOG2, GMG, LSBP, KNN) on that stream. 
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Figure 29. Impact of background extraction algorithms on detection of moving objects 

Table 6 shows the performance of different background-extraction algorithms on the test 
stream. During testing, the MOG2 algorithm achieved the highest frame rate while 
producing good results with respect to background extraction, and was therefore 
selected for application in both UC3 and UC9. 

Table 6. Performance of background extraction algorithms 

Algorithm Test 
FPS 

Algorithm Test 
FPS 

Mixture of Gaussians 
(MOG) [KAE02] 33.35 Local SVD Binary Pattern 

(LSBP) [GUO16] 11.12 
MOG2 [ZIV06] 125.12 KNN [ZIV06] 124.16 
GMG [GOD12] 23.80   

In the case of UC9 (Smart-grid surveillance), the vision subsystem is focused on video-
surveillance of the perimeter of an electrical substation and the main functionality is the 
detection of suspicious behaviour and robust tracking of suspicious targets.  
Traditional object-tracking algorithms include mainly mean shift [COM00], particle 
filter [HUE02], frame-difference algorithms, Kalman filter [KAL60], etc., which follow the 
location of an object through multiple consecutive iterations. In recent years, tracking-
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by-detection methods have received increased attention when dealing with a tracking 
problem [HAO18]. In this sense, the re-identification of persons is fundamental for the 
relationship between the detections of the same human subject over the time of a 
recording. In practice, a re-identification system consists of a person detector, a tracker, 
and a person matcher [ZHA19]. 
For our tracking application, accuracy and performance are the two qualities that are 
taken into account. Accuracy can be defined as the difference (in pixels) between the 
true location (real or labelled) and the estimated location of the target [SME14]. 
Performance is measured in number of frames that can be processed per second (FPS). 
Because performance depends on the number of targets being tracked, the number of 
targets to be tracked is a parameter that can be adjusted at runtime in response to 
desired performance. In the context of UC9, we require the system to be capable of 
tracking 4-5 targets in real time, and tolerate reduced performance if more targets were 
to be tracked. 

 
Figure 30. Operation of the tracker when human subjects have been detected 

Figure 34 shows the operational workflow of the tracker when it has detected one or 
more human subjects. If more targets are found in the scene, the number of comparisons 
to be made to re-identify these detections or the number of calculations to predict the 
trajectories of their movements within the scene will increase and this will necessarily 
increase the required computational capacity. 
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Regarding the reduction of bandwidth when there are interesting events in the scene, 
we consider that applying an active scheme could reduce it to 3.7 MB/s by selecting a 
128x128 (full resolution) box for the detected target, and transmitting the original image 
using a single color channel, scaled to ¼ of the original resolution (320p), maintaining 
the original frame rate, instead of transmitting a 1280p video stream at 30 frames per 
second that sums up to 120 MB/s. 
We have also implemented a mechanism to adapt the resolution of the video feed to the 
saliency of the image data. Given a specific video source, more resolution and priority 
is assigned to a video source when a potentially interesting target is detected in its field 
of view. In other cases, only low-resolution images are transmitted, ensuring sensible 
use of network bandwidth and computational resources. Three different video qualities 
have been considered depending on the importance of events taking place in the scene: 

• SD video (320 x 240 pixels at 5 frames per second),  
• HQ video (960 x 720 pixels at 10 frames per second), and 
• HD video (1280 x 960 pixels at 30 frames per second). 

Modelling smart-grid infrastructure surveillance components 
To model the smart-grid infrastructure surveillance system in QRML, we need to 
differentiate between application and platform components. The application components 
represent the software part of the system that deals with input from an RGB camera and 
outputs processed video data. The platform components represent the hardware part, 
specifically the edge nodes and the cloud server. The components interact at system 
level—processing the video stream, identifying and computing tracking data related to 
human targets. An overview of the model is shown in Figure 35. Here we only present a 
brief description of the individual components—additional details can be found in the 
QRML model files. 
Application components 

• RGBCameraApp: provides RGB video input at 30 fps. 
• Scaler: adjusts image resolution and frame rate of the input video stream. Three 

different configurations are supported (see SD, HQ, and HD resolution/frame-
rate combinations above). 

• HumanDetector: identifies human targets in selected frames, extracts regions 
of interest (ROI) using a deep-learning classifier, and outputs bounding boxes 
containing the detections and feature vectors. 

• MultiCameraTracker: responsible for re-identification of human subjects across 
different cameras and over time, using spatial-temporal information and the 
identified feature vectors. 

Platform components 
• RGBCamera: physical camera which provides video input to the system. 
• JetsonTX2: edge node implementing human detection on an NVidia® Jetson 

TX2 board. 
• CloudCompute: cloud server which aggregates information from cameras, puts 

together information from the edge nodes, and carries out robust tracking. 
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Figure 31. QRML model of the components of the smart-grid video surveillance system (UC9) 

The video processing is split up between two platform components: the Nvidia® Jetson 
TX2 edge nodes and the high-performance cloud server. The edge nodes perform 
computationally demanding video processing tasks that only require local information, 
i.e., inference for human detection using a deep-learning model (running on 256 CUDA 
cores) or pre-processing and video scaling (running on 4 ARM cores). The cloud server 
gathers the local information and performs robust tracking in the multi-camera scenario. 
The different configurations considered for system adaptation influence both image 
resolution and frame-rate, which in turn influences the accuracy of detection and re-
identification tasks. Different configurations therefore provide different confidence levels 
for triggering an alarm. The goal is to reduce false positives—this is currently solved at 
a high cost in video-surveillance systems by involving humans in the loop. 

System Adaptation and Reconfiguration 
The system can operate in multiple modes, each appropriate for a different situation. 
When the situation changes, the system needs to adapt by switching to a configuration 
appropriate for the current situation. The following scenarios reflect situations which 
trigger system reconfiguration: 

• Scenario 1: the system does not detect any people in the scene. 
o Monitoring signal: the number of humans detected in the scene, obtained 

from the HumanDetector component. 
o Reconfiguration action: taking into account the number of detections in the 

past and the confidence level of zero detections in a certain number of 
consecutive frames, the following reconfiguration sequence is sent to the 
nodes without detections: 

1. Obtain reconfiguration identifier from the cloud. 
2. Reconfigure Scaler for standard-definition (SD) video at 10 FPS. 
3. Perform only human detection video-surveillance task on SD video. 
4. Stream SD video to human operator for confirmation. 

o Outcome: the system only performs human detection video-surveillance 
tasks on SD video (the tasks related to re-identification and tracking are 
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suspended), providing limited (detect-only) video-surveillance functionality. 
As a result, it consumes less energy and computational resources, and 
produces less heat due to reduced edge node temperatures. 
 

• Scenario 2: the system detects people in the scene, but not close to security 
perimeters. 

o Monitoring signal: the number of humans detected in the scene, obtained 
from the HumanDetector component. 

o Reconfiguration action: taking into account the number of humans detected 
in the past and the recurrence of human detections in a certain number of 
consecutive frames, the following reconfiguration sequence is sent to the 
nodes with detections: 

1. Obtain reconfiguration identifier from the cloud. 
2. Reconfigure Scaler for high-quality (HQ) video at 15 FPS. 
3. Perform all video-surveillance tasks on HQ video. 
4. Stream HQ video to human operator for confirmation. 

o Outcome: the system performs all video-surveillance tasks (detection, re-
identification, and tracking of people) on HQ video, providing full video-
surveillance functionality with reduced network bandwidth usage. This mode 
provides more accurate results than the detection-only mode, but is not 
suitable for critical situations. 
 

• Scenario 3: the system detects people close to security perimeters. 
o Monitoring signal: the value of the Suspicious Behaviour score obtained from 

the MultiCameraTracker component. The score is derived from spatial and 
temporal features calculated by the human tracking component to reflect 
potential risk based on location and/or abnormal behaviour. 

o Reconfiguration action: if the Suspicious Behaviour score exceeds a set 
threshold, the following reconfiguration sequence is sent to the nodes with 
the highest scores: 

1. Obtain reconfiguration identifier from the cloud. 
2. Reconfigure Scaler for high-definition (HD) video at 30 FPS. 
3. Perform all video-surveillance tasks on HD video. 
4. Stream HD video to human operator for confirmation. 

o Outcome: the system performs all video-surveillance tasks (detection, re-
identification, and tracking of people) on HD video, providing full video-
surveillance functionality with focus on high accuracy. 

5.5.2.2 Application in context of UC3 (Habit Tracking) 
In the case of UC3, the vision component will be focused on the classification of a 
person’s behaviour while indoor. It is based on the ability to understand human actions 
and their purpose, and usually comprises: a) extraction of features from video 
sequences, and b) classification and labelling of actions using the features extracted in 
the first step. 
In recent years, several authors have been trying to identify human actions from several 
sources and using different technologies. One of the approaches is sensor-based 
activity recognition, which handles data that comes from smartphones, watches, Wi-Fi 
or Bluetooth [HAY15]. Another approach is using raw video as an input for perform 
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human action recognition (HAR) [WAN18]. In relation to HAR, various authors have 
used hand-crafted feature-based methods [KAN14, LAN15] and deep learning [SIM14, 
ULL18]. 
Advances to state-of-the-art in research on HAR hinge on availability of many different 
datasets that can be used by researchers to test their approaches [ZHU18]. Some of the 
video datasets are HMDB [KUE11], UCF-101 [SOO12], Charades [SIG16], Moments in 
Time [MON19], and Kinetics [KAY17]. The main objective of these datasets is to also 
provide a solution (as in the case of ImageNet [DEN09]), so that researchers can use a 
pre-trained model on a large action-video dataset such as Kinetics, which allows 
performing transfer learning, or fine tuning it to achieve a satisfactory result in other 
problem related to action recognition in a shorter period of time [CAR17]. 
After investigating the state-of-the-art in HAR, we have decided to adopt an approach 
based on deep learning, because of its accuracy on complex action-recognition tasks 
(with more than 600 different classes) [TRA18]. 
We have considered different deep-learning neural-network architectures, looking for 
one that best fits our indoor-action-recognition system. In particular, we have evaluated 
LRCN [DON15], 3D-ConvNet [TRA15], Two Stream [SIM14], 3D Fused Two-
Stream [FEI16], and Two Stream i3D [CAR17]. The results in Table 7 show that the Two 
Stream I3D architecture outperforms the rest of the architectures on samples from the 
UCF-101 and HMDB51 datasets. 

Table 7. Accuracy of different neural-network architectures for HAR 

Architecture 
UCF-101 HMDB51 

RGB Flow RGB+Flow RGB Flow RGB+Flow 

LRCN 81.0 - - 69.9 - - 

3D-ConvNet 51.6 - - 60.0 - - 

Two-Stream 83.6 85.6 91.2 70.1 58.4 72.9 

3D-Fused 83.2 85.8 89.3 71.4 61.0 74.0 

Two-Stream I3D 84.5 90.6 93.4 74.1 69.6 78.7 

The Two Stream I3D architecture consists of two independent 3D-ConvNet networks. 
One receives the input video in RGB, while the other is fed an Optical Flow estimation 
of the video Stream. The output of both networks can be fused in the last stage to get 
the Two Stream I3D network. This neural network model is pre-trained on over more 
than 600 classes. For this reason we will work with the Two Stream I3D model, because 
it allows using either one stream or both streams depending on the desired accuracy. 
We will be adapting the original neural network architecture to provide good performance 
in our Habit Tracking System. 
For behaviour classification, the actions to be studied are determined by the task. 
Potential actions identified at this point could be cooking, preparing coffee/tea, eating, 
walking, cleaning the floor and actions that will trigger alarms such as accidental fall, 
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fainting, or lying on the floor (for the indoor scenario). The action classifier does not need 
to run constantly, it requires a video sequence to do the action inference, which is just a 
label. With respect to the qualities to be used, precision (fraction of positive labels that 
are correctly classified) and recall (fraction of real positives that were correctly labelled) 
are the most common metrics in classification tasks. These metrics allow us to develop 
different several neural models and compare them to choose the most appropriate one 
for each scenario. 
Performance of the action classification process (actions labelled per second or fixed 
number of frames) depends on the number of actions to be classified (number of 
different labels that determine the complexity of the classification method). This 
parameter can be adapted to achieve the desired performance or other quality goals. 
Moreover, the number of visual features for the classification will depend on the 
complexity of the used neural network architecture, and can be also adapted based on 
the number of classes. This will also determine the performance of the final network. 
Although it is very seminal at this point, we are also considering features that can be 
estimated at the node, and how to send only the relevant ones to the cloud to do the 
final processing. In this case, not only performance is considered; but also privacy, 
avoiding the transmission of full images to the cloud. 
We plan to perform the computation of the neural models at the edge node, and send 
the alarms of the critical actions detected, as well as other monitoring parameters, to the 
cloud. 

Modelling habit-tracking action-recognition components 
The goal of the system is to monitor elderly people in their own homes, recognizing 
potentially critical actions and situations in their daily lives. Similarly to the video-
surveillance system in UC9, the model of the habit-tracking system is split between 
application and platform components. An overview of the model is shown in Figure 36. 
We again present only a brief description of the individual components—additional 
details can be found in the QRML model files. 
Application components 

• RGBCameraApp: provides RGB video input at 25 fps. 
• Preprocessor: pre-processes the video stream so as to make it suitable for 

processing and analysis by a neural network, such as batch normalization. 
• RGBActionRecognizer: processes the video frames of a captured action and 

outputs confidence levels for multiple possible action labels. The component is 
reconfigurable, and implements different neural networks, providing different 
levels of accuracy (calibrated on publicly available data sets) with different 
energy requirements. In particular, the component supports three configurations 
to guarantee real-time performance in various situations, trading accuracy for 
power consumption and vice-verse: 

o Configuration 1 achieves the lowest power consumption, because it only 
uses simple (and computationally least demanding) neural-network 
models. Here the low power consumption comes at the expense of lower 
accuracy due to use of simple models. 

o Configuration 2 uses more complex models to provide better accuracy, 
at the cost of higher power consumption. 
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o Configuration 3 achieves the best accuracy, because it uses the most 
complex (and computationally most demanding) neural-network models. 
Here the accuracy comes at the expense of high power consumption. 

• ActionEvaluator: uses the confidence levels assigned to different action 
labels to decide whether to engage the OpticalFlowCalculation and 
OPFActionRecognizer components to ensure that a particular action really 
occurred. 

• OpticalFlowComputation: calculates Optical Flow on the cloud server (with 
more computing resources) to satisfy real-time requirements. 

• OPFActionRecognizer: performs action recognition on the results of the Optical 
Flow calculation and outputs confidence levels for possible action labels. 

• ResultsFuser: combines results of the RGB-based and (optionally) the Optical 
Flow-based neural networks to obtain final confidence levels for action labels. 
These are sent to the FIVIS system. 

Platform components 
• RGBCamera: physical camera which provides video input to the system. 
• JetsonXavier: edge node implementing action recognition on an NVidia® 

Jetson Xavier board. The edge node sends monitoring information about energy 
consumption and CPU/GPU unit temperatures to the FIVIS system. 

• CloudCompute: central node, more powerful in terms of computing resources, 
which mainly performs Optical Flow calculations on a set of frames. 

 
Figure 32. QRML model of the components of the habit-tracking system (UC3) 

The Nvidia Jetson Xavier is an embedded compute device with 8 ARM cores and 512 
CUDA cores with support for Tensor Flow. It performs well on deep-learning tasks, and 
provides enough computing to enable real-time operation. The device is fully-
configurable and allows its performance to be adjusted at runtime by varying the number 
of processing cores, and the working frequency of both the CPU and GPU units. 
The cloud server (CloudCompute component) is equipped with an Nvidia RTX2080 Ti 
GPU with more than 4000 CUDA cores. The server is used to perform complex 
computations that cannot be performed on the edge nodes. In particular, the server 
hosts the OpticalFlowComputation component, which computes Optical Flow on a set 
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of frames. The edge nodes use the pocl-remote framework to perform computation on 
the server. 
As mentioned earlier, the RGBActionRecognizer component supports three 
configurations which use different neural network models to enable trade-off between 
action-recognition accuracy and power consumption. This is important to allow the 
system to adapt to different situations. In particular, if the active model cannot distinguish 
between two actions for a certain period of time, or if a confirmation is needed when a 
person has fallen down and is lying on the floor, a configuration with a more complex 
neural network model (operating at higher frequencies and with more resources) is 
activated to achieve better accuracy. When no critical actions take place and if there is 
no significant variation in the action-recognition confidence (e.g., if a person is watching 
TV), a configuration with less complex neural network (operating at lower frequencies 
and with less resources) can be activated, leading to reduced power consumption. 

System Adaptation and Reconfiguration 
Similar to the video-surveillance system, the habit-tracking system adapts to different 
situations by switching to a configuration appropriate for the current situation. The 
following scenarios reflect situations which trigger system reconfiguration: 

• Scenario 1: the system cannot decide which action is taking place, because at least 
two different action labels were getting similar maximum confidence scores over a 
period of time. 

o Monitoring signal: confidence levels of recognized actions stored in the FIVIS 
system, and a computed signal indicating that at least two actions have 
similarly high confidence. 

o Reconfiguration action: if there are two or more ambiguous actions for a 
certain period of time, attempt to disambiguate by using a more complex 
neural network model, triggering the following reconfiguration sequence: 

1. Obtain reconfiguration identifier from the cloud. 
2. Instruct the RGBActionRecognizer component to load a more 

complex neural network model while processing the incoming video 
frames using the current neural network model. This is necessary to 
keep the system operational, because loading and preparing a new 
neural network model for execution takes several seconds. 

3. Once the new model is ready for execution, switch processing in the 
RGBActionRecognizer component to the new (more complex) 
model, and stop execution of the previous model. 

4. Increase the operating frequency of the CPU and GPU units on the 
(Jetson Xavier) edge node. 

o Outcome: the system uses a more complex neural network model in an 
attempt to disambiguate actions, at the cost of higher power consumption. 
This adaptation action can be repeated until the system reaches 
configuration with the most complex neural network model. 
 

• Scenario 2: no discernible action appears to be taking place—the confidence levels 
for all actions are similar for a period of time (no action is reaching a high confidence 
value), there is no movement in the scene. 
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o Monitoring signal: confidence levels of recognized actions stored in the FIVIS 
system, and a computed signal indicating that all actions have similar 
confidence levels (no action has a significantly high value than others). 

o Reconfiguration action: if there is no discernible action, reduce power 
consumption by using a less complex neural network model, triggering a 
reconfiguration sequence similar to Scenario 1: 

1. Obtain reconfiguration identifier from the cloud. 
2. Instruct the RGBActionRecognizer component to load a less 

complex neural network model. 
3. When ready, switch processing in the RGBActionRecognizer 

component to the new (less complex) model. 
4. Decrease the operating frequency of the CPU and GPU units on the 

(Jetson Xavier) edge node. 
o Outcome: the system uses a less complex neural network model, reducing 

power consumption, and eventually system temperature. This adaptation 
action can be repeated until the system reaches configuration with the least 
complex neural network model. 
 

• Scenario 3: the energy consumption and system temperature is too high (for a period 
of time) and action must be taken to prevent system failure or running out of battery. 

o Monitoring signal: energy consumption and temperature readings stored in 
the FIVIS system, and computed signals for each quantity indicating that a 
specific threshold has been exceeded over the last N minutes. 

o Reconfiguration action: if both signals (for energy consumption and system 
temperature) indicate that a threshold has been exceeded for a period of 
time, the following reconfiguration sequence is triggered: 

1. Obtain reconfiguration identifier from the cloud. 
2. Change the Jetson Xavier performance mode to one with lower 

operating frequency of the CPU and GPU units. This change (unlike 
switching between neural network models) is almost instantaneous. 

o Outcome: the overall performance of the system is reduced in exchange for 
reduced power consumption, and eventually lower temperature. 

5.5.3 Distributed Image Pre-Processing 
and Optimized Image Segmentation 

Multiple view geometry is a complex and resource-demanding task. Thus, image pre-
processing, such as undistorting and segmenting, has to be carried out in the most 
efficient way. Nonetheless, precision in the segmentation process is key to offer 
accurate results that truthfully represent the reality. Specially, when the application is 
focused on industrial inspection. 
As pointed out by Shi et al. [SHI16], in a system where several images taken by a 
number of devices have to travel to a single node, an edge-computing approach can 
reduce latency and bandwidth usage, while increasing throughput. This approach is 
based on the principle that the workload should be finished in the nearest layer with 
enough computation capability to the things at the edge of the network. This translates 
into providing the cameras with computation capability in our envisioned application. We 
propose a distributed image processing pipeline where low-power execution boards are 
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in charge of performing an initial image processing and a fast segmentation in order to 
increase throughput and reduce energy consumption. 
Another approach for image processing distribution is based on the remote OpenCL-
based software stack described in Section 4.1. A modification of this framework enables 
image processing pipelines to be distributed among several computational nodes 
located anywhere in the network. We were investigating the suitability of this approach 
for our foreseen final application (3D industrial inspection system), but this approach 
requires sending the images through the network, which increases bandwidth usage, 
rendering it a non-viable solution. 
Therefore, we proposed a distributed image processing pipeline where low-power 
execution boards are in charge of performing an initial image processing and a fast 
segmentation in order to increase throughput and reduce energy consumption. These 
low-power boards are installed close to the cameras, thus, the first layer with 
computation capabilities is located immediately after images are captured. 
The diagram in Figure 37 shows a typical configuration of this kind of system, where the 
number of low power execution boards and cameras can be decided at design time, 
while we include a new element, a ‘dispatcher’ to perform workload decisions at runtime. 
Throughput can be increased with the distributed segmentation, as the low-power 

execution boards can segment new captures while the main computing node is working 
on the previous capture. 
As the first step, several low-power execution boards were evaluated on image 
segmentation workload to identify those most suitable in terms of computation power 
and cost trade-off. The table below shows the evaluated boards along with the achieved 
average image segmentation time in milliseconds. 
 

Table 8. Segmentation performance and cost of low-power execution boards 

Board Segmentation time 
[milliseconds] 

Cost (approx.) 
[euro] 

Espresso bin µ = 1045.37; σ = 2.89 44€ 

Figure 33. Typical configuration of an industrial inspection system. 
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Grapeboard µ = 1839.74, σ = 23.88 190€ 

Raspberry Pi µ = 3450.43; σ = 55.86 Discontinued 

Raspberry Pi 
(optimised, neon flag) 

µ = 2603.37; σ = 19.47 Discontinued 

Raspberry Pi 3 µ = 1554.24; σ = 87.11 30€ 

Raspberry Pi 3 
(optimised, neon and tune flags) 

µ = 758.04; σ = 21.09 30€ 

Nvidia Jetson TX2 µ = 130.78; σ = 5.26 500€ 

Nvidia Jetson Nano µ = 180.83; σ = 11.64 99€ 

The times shown in Table 8 above were obtained using the same segmentation 
algorithm that is currently deployed on the main computing platform. No platform-specific 
optimizations were applied to the algorithm. 
An example of one of the hardware configurations used is shown in Figure 38 below. 

 
Figure 34. Marvell ESPRESSObin board connected to a HD camera. 

Based on the results of the image segmentation benchmarks, the Nvidia Jetson Nano 
platform was selected as a cost-efficient solution providing sufficient performance. After 
selecting the hardware platform, the segmentation algorithms written in Python were 
ported to C++ and augmented with several optimizations. In order to provide hardware 
virtualization for the system (allowing to use other edge boards), two algorithm 
implementations were created: one for a CPU and one for a GPU using CUDA. 
Jetson Nano capabilities using parallelization were also analysed. The results obtained 
are presented in Table 9. 

Table 9. Nvidia Jetson Nano parallelization comparison 

Number of processes Hardware used Time in ms 

1 GPU 85 

2 GPU 160 

2 GPU + CPU 90/140 
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4 GPU 330 

4 GPU + CPU 175/240 

8 GPU N/A (Crashed) 

8 GPU + CPU 320/540 

To plan which phases of the segmentation process should be prioritized during the 
optimization of the algorithm on the most promising boards, the average execution time 
of each phase of the algorithm was measured on the low-power execution boards. Table 
10 below shows the fraction of time spent on each of the sub-tasks (only OpenCV 
related) in the segmentation process for the Espresso Bin board. The results are similar 
for the other boards tested. 

Table 10. Fraction of execution time spent in different phases of the segmentation 
algorithm running on the Marvell EspressoBin board. 

Background diff. Blur Erosion & 
Dilation 

Finding 
contours 

Gaussian 
Filter Thresholding 

3.63% 7.55% 29.04% 8.79% 47.37% 3.62% 

Based on these results, the algorithm could benefit most from (platform-specific) 
optimizations in the ‘Erosion & Dilation’ and the ‘Gaussian Filter’ phases. To optimize 
these two phases, we are working on specific modifications of the OpenCV API to adapt 
to the particularities of the most promising boards 
The second innovation we achieved by employing low-power execution boards installed 
close to the cameras is the reduction in bandwidth usage. Because images travel from 
the low-power boards to the main computing node already segmented, less bandwidth 
is used. As an example, the two images in Figure 39 below show a part processed by 
the system. The image on the left shows the raw data captured, while the image on the 
right shows the segmented image, reducing the total size of the image by about 30%. 
This kind of bandwidth reduction is extremely important, especially when using many 
cameras. 

 
Figure 35. Example of image before (left) and after (right) segmentation 

Moreover, low-power execution boards are capable of detecting incorrect captures and 
asking the capture system to retry a new capture of the same part. This decision is taken 
without the information travelling from the cameras to the computation cluster, which 
reduces bandwidth consumption even further. 
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All optimizations will be implemented in the segmentation algorithm in subsequent work, 
which will allow us to evaluate these innovations in comparison with the currently used 
approach. The optimization is focused on the following metrics: 

• Average throughput: the number of parts processed per unit of time. To obtain 
a relevant evaluation, a variety of tasks with different types of parts has to be 
employed. This variety should also include parts that are prone to produce 
incorrect captures due to their shape. 

• Bandwidth usage: the average number of bits per unit of time that are 
transferred from the capturing devices to the main computation node. 

• Latency: the time that the system takes to process a new capture. 
The diagram in Figure 40 below shows the architecture of the system. 

 
Figure 36. Capture system architecture. 

The ‘Master’ node show in the diagram is a critical element for the runtime support and 
includes the workload ‘Dispatcher’ explained before. First, the ‘Master’ communicates 
with the ‘Capturer’ to request a new shoot from the cameras. When the edge boards 
send the images taken by the cameras, the ‘Capturer’ stores them in a queue which the 
‘Master’ node is able to read, and from which the ‘Master’ distributes the captured 
images among worker agents (‘Workers’) who perform the computationally-intensive 
tasks. 
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Figure 37. QRML model of the Edge component 

The Edge component of the whole solution has been modelled using QRML. The 
diagram in Figure 41 above shows two differentiated branches: one for the hardware 
and one for the software. The hardware side abstracts from cameras and boards and 
considers different types of boards as alternatives. The software side shows two key 
processes related to bandwidth usage, which can be reconfigured depending on system 
load—one responsible for image transfer, and the other responsible for image 
segmentation. 
Finally, the aforementioned metrics are being monitored to support reconfiguration of 
the system to optimize resources. The 3D Industrial Inspection use case solution 
requires a local store to analyse and query information to make reconfigurations in the 
critical execution pipeline. The logic that makes decisions about reconfiguration is 
implemented locally, in the same hardware that executes the pipeline and so that no 
delay is introduced due to communications with external servers. 
In addition, monitoring data will be stored in an external platform such as FIVIS to 
provide operators with an overview of the system’s operation and performance, but the 
external system will not be used to trigger reconfiguration. 
Reconfiguration scenarios 
Having taken the above mentioned requirements into account, the system supports the 
following reconfiguration scenarios: 

1. Initial (start-up) configuration. When the system is starting, all the edge 
boards report the following information: 

• RAM capacity 
• GPU available 
• MTU of the Ethernet connection 
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Depending on the information from edge boards, the system selects the 
segmentation algorithm and the set of operations to be performed on the 
boards: 

• The amount of RAM installed on the board determines whether the 
board will perform segmentation or not. To enable segmentation, the 
board must have more than 1GB of RAM. 

• If GPU is available, segmentation will be performed on the GPU, 
otherwise it will be performed on the CPU. 

• The MTU of the network connection determines the encoding of color 
information in the output image. If MTU is less than 4000 bytes, colors 
will be encoded using the Bayer format, otherwise raw RGB encoding 
will be used. 

 
2. Avoiding segmentation due to processing delays. If the system detects that 

one or more boards are causing delays, it avoids image segmentation on those 
boards. Delays are detected by measuring the latency between receiving the 
signal to capture a new image and finishing the pre-processing of the whole 
image. The latency is measured internally by software running on each of the 
capture boards: 

• If the latency is greater than 300 ms the camera will skip the 
segmentation process. 

 
3. Sending RAW image. When a board detects that the detected region of 

interest (ROI) is similar to the original image size, the image is sent “as 
captured”, in the RAW12 format (12-bit Bayer) produced by the camera. This 
will save bandwidth, because the detected ROI is encoded using 8-bit RGB, 
requiring 24 bits per pixel, whereas the RAW12 format only uses 12 bits per 
pixel. The downside is the need for additional processing on the worker nodes 
(and wasted conversion to 8-bit RGB for ROI detection on the edge boards), 
because the image eventually needs to be converted to RGB for processing. 

• If the image ROI is greater than 50% of the original size then the image 
is sent in the RAW12 format to save bandwidth, and the conversion 
from 12-bit Bayer format to 8-bit RGB is delegated from the edge board 
to the worker node. 

5.5.4 Selective On-Demand Resource Loading  
To achieve near real-time (soft real-time) performance on low-power mobile platforms, 
such as the HURJA’s Salmi Augmented Reality (AR) system, we plan to utilize smart 
feature extraction, segmentation, and classification algorithms to reduce bandwidth 
usage by only sending the necessary parts of images/videos. 
Specifically in the context of the Salmi AR system, a mobile application called Extent 
can (upon request) download a JSON packet which consists of a list (descriptions) of 
wakeup images, objects, entities, and actions. Either the request can come from the 
Salmi MAPS website, from the Salmi AR mobile application, or directly from the Extent 
mobile application if the “free roam” state has been switched on (requires GPS). End-
users have the option to switch the “free roam” state off at any time and when this 
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happens, the Extent mobile application downloads new content only upon request from 
an external source (currently only the Salmi system related sources are available). The 
Extent mobile application downloads all required wakeup images, 3D-models, textures, 
audio files, videos, etc. based on the instructions received via JSON packet. 
To optimize the run-time performance of the Salmi AR system, all of these packets can 
be downloaded in advance. All files will be saved locally into end-users’ mobile device 
(smart phone or tablet) and those will be shown to end-users based on instructions 
received via JSON packets as soon as matching wakeup image, object, entity, or action 
has been found, or when an end-user is within a certain pre-defined distance from the 
target. Free roam data will be removed on-the-fly from end-users’ devices when each 
session ends. The Extent mobile application is currently being developed using C# 
programming language on top of the Unity 3D engine and the server back-end side is 
currently being developed using PHP. During our early testing phase, all description 
packets are in JSON format. 
The runtime state of the system includes measured performance and energy usage, 
which can be handled by a generic data model. Relevant metrics to be 
monitored/evaluated are the following: 

• Near real-time (soft real-time) performance: System performance can be 
monitored/evaluated in terms of frames-per-second or kilobits-per-second, but 
AR-feature robustness/performance depends highly on the selected AR-glass 
model. We plan to start development with state-of-the-art Magic Leap and/or 
HoloLens 2 glasses to ensure that all possible use cases can be implemented 
easily. Later on we plan to investigate the use of other (cheaper and less 
powerful) AR-glass options that may require more optimization of the system 
code to achieve the level of performance comparable with the high-end, state-
of-the-art AR-glasses. 

• Optimal energy usage: It is not an easy task to calculate the initial energy usage 
for the whole Salmi AR system before the first MVP version is fully implemented, 
but continuous camera feed and required advanced algorithms will present a 
challenge in terms of optimizing the energy usage of the system as a whole. As 
soon as the first MVP version is ready, we will perform extensive measurements 
on power usage and based on the achieved results, we will make adjustments 
to the implemented algorithms to enable optimal energy usage of Salmi AR 
system. 

In addition, the system monitors the achieved level of satisfaction of all end-user groups 
that can be handled by a generic data model: 

• The intended users of the Salmi AR system will be brain damage patients 
(assisted living), elderly people (assisted living), relatives (monitoring and 
situational awareness), nurses (home visits), and doctors (emergency cases). 
We have made careful plans to achieve the required level of satisfaction for all 
of these end-users of our Salmi AR system. However, when our first MVP version 
will be ready by June 2019, we cannot yet completely fulfill all of the below-
mentioned end-users requirements or all the needed features, but by the end of 
the project, we will have fully functional version of Salmi AR system that fulfils 
the level of satisfaction for all of these end-user groups. 
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5.5.5 Algorithms and Techniques to Achieve Real-Time 
Performance for PCC Demo System 

With the selection of MPEG V-PCC as PCC encoding and distribution scheme, Nokia 
can utilise available video hardware decoders to carry the major load in the decoding 
process. Figure 42 illustrates the current V-PCC decoding scheme block diagram, where 
available hardware decoding support is marked in teal. 
 

 
Figure 38. V-PCC TMC2 decoding structure. 

For the three decoding instances, texture, geometry and occupancy video 
decompression, not much special attention on real-time capability is required, as the 
current video decoding hardware can achieve much higher levels of decoding 
performance than demanded by the use case. However, attention is required due to 
three simultaneously running video decoder instances, which must be synchronised. 
This aspect and any possible implications must be further investigated within FitOptiVis. 
As for the real-time decoding of auxiliary patch information, little is known so far, and 
detailed experiments have to be carried out to assess any implications on real-time 
performance, e.g. maximum number of patches per frame, inter-prediction between 
patch auxiliary information, random access structures, etc. This investigation will also 
be part of the planned FitOptiVis research topics. 
Finally, decoding and rendering altogether has to happen in real-time. Thus, any 
unnecessary data transfers, e.g. copying 3D point cloud data from the CPU to the GPU 
for rendering, should be avoided. Therefore, we envision V-PCC decoding straight into 
the GPU memory, as well as tools for partial and simultaneous decoding and playback. 
Such tools, together with support of the hardware video decoders, should ensure real-
time capability of our PCC demo system. 
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 Conclusion 
This document summarizes the outcomes of Task 4.1 from the first two years of the 
project. We deal primarily with two aspects of runtime support for adaptive applications 
developed using the FitOptiVis approach. 
The first aspect concerns runtime platforms on which the applications execute. To 
establish a consortium-wide awareness and agreement on platform components (as 
defined in deliverable D2.1) developed within the project, we present an overview of the 
available runtime platforms. Each platform is suitable for different kind of applications, 
with requirements at different levels of abstractions, and operating at different time 
scales. 
During the second year of the project, there have been significant advances in many of 
the platforms. For example, the OpenCL-based Heterogeneous Distributed Software 
Runtime (pocl-remote, Section 4.2) added a low-overhead control protocol and event-
based synchronization, the Extended OpenMP Runtime Infrastructure (Section 4.3) 
managed to solve the issues related to dynamic offloading of OpenMP in fat binaries 
and added support for pocl-remote. Deterministic Networking (Section 4.6) has become 
a platform component, and made progress on TSN bridge design, supporting several 
use cases. Most of the platforms are available to project partners, but some are still not 
mature enough for consortium-wide release. This concerns, e.g., the Managed-Latency 
Edge-Cloud Environment (Section 4.1), where development focused on components 
critical for adaptation (i.e., performance predictor) after completing an initial prototype. 
In the final year, we will focus on making all the runtime platforms available to partners 
in the project and provide assistance to partners targeting specific platform components. 
Where applicable, contributions to relevant open-source code bases will be made. 
The second aspect concerns runtime adaptation and comprises two parts. The first part 
presents some of the mechanisms through which platforms enable adaptation. Here we 
emphasize progress on the performance prediction of co-located applications in the 
Managed-Latency Edge-Cloud Environment (Section 5.1.3), analytical methods for 
budget matching on the CompSOC platform (Section 5.2.4), reconfigurable neural 
network accelerators designed using Multi-Dataflow Composer (Section 5.3.3), and 
support for reconfigurable floating-point accelerators on the Xilinx Zynq platform 
(Section 5.4). 
The second part presents application-specific adaptation scenarios from use case 
owners participating in WP4. During the second year of the project, most of the scenarios 
have been elaborated in more detail, providing specific requirements, system models 
based on QRML (the FitOptiVis quality and resource modelling language), or information 
about signals and conditions triggering reconfiguration (Sections 5.5.1, 5.5.2, and 5.5.3). 
The use case requirements and adaptation scenarios proved invaluable in steering the 
development of some of the runtime platforms and interfaces for use by adaptive 
resource managers developed in the context of other WP4 tasks. 
Some of the platforms and applications have already adopted the reference architecture 
concepts from WP2, making them amenable to tool support, especially where it 
concerns design-time analysis and optimizations. In the final year of the project, we will 
finalize the instantiations of the runtime platforms within the framework of the reference 
architecture. 
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A. Review of Virtualization and 
Resource Management Techniques 

This appendix provides a review of the state-of-the art in the area of virtualization and 
resource management techniques. 

A.1 State-of-the-art in Virtualization Techniques 
Virtualization refers to the abstraction of a physical component into a virtual object 
whereby a greater measure of utility can be obtained from the resource component 
offers [1]. From the hardware perspective, virtualization refers to the abstraction of 
computer resources whereby applications are decoupled from the hardware they 
execute on. While the virtualization concept has been there since 1960s, when IBM 
developed virtualization to enable concurrency by partitioning a mainframe into logical 
machines [2], it has gained extra attention in the past decade possibly due to the 
proliferation of cloud services. The main advantages of virtualization are: 

• Consolidation: Consolidation refers to bringing together separate parts into a 
single or unified whole. Virtualization enables consolidation by bringing together 
several under-utilized execution platforms (i.e., machines) into a single execution 
platform, thereby reducing operating costs. This has been commonly referred to 
as multi-tenancy in the literature. 

• Isolation: Virtualization enhances security as well as reliability by providing 
isolated environments where applications running in one virtual execution 
platform cannot affect applications running in another one. Regarding the 
security, less-trusted applications can be executed in separate virtual execution 
platforms, thereby preventing them from accessing and affecting other 
applications. Virtualization improves the reliability by providing isolated 
environments where faults and bugs in one environment cannot interfere with 
other environments. 

• Flexibility: Virtualization provides flexible environments for applications where 
their allocated resources can change dynamically in response to changes in their 
demands. This includes modifying both the amount of resources and the 
mapping of virtual resources to physical ones. They are commonly called 
elasticity and live migration in the literature [3]. 

Although there are several types of virtualization (such as application virtualization, 
network virtualization, storage virtualization, etc.), we focus on platform virtualization 
(also called hardware virtualization or system virtualization in general, and server 
virtualization in cloud-oriented papers). By platform virtualization, we mean adding a 
layer between applications and the underlying hardware (called virtualization layer) 
which creates virtualized environments for applications to be deployed on. Based on 
the type of this layer, we classify the existing techniques into two classes, namely 
hypervisor-based virtualization and container-based virtualization, which are 
elaborated upon in the following sections. 

A.1.1 Hypervisor-based Virtualization 
For a long time, the term virtualization was used only for hypervisor-based virtualization. 
The hypervisor, also called Virtual Machine Monitor (VMM), is a software that abstracts 
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the underlying hardware into virtual components called Virtual Machines (VMs). Since 
the VMs need a complete execution platform (made up of various resources) to run, the 
hypervisor must virtualize all the underlying hardware resources (such as CPU, memory, 
storage, and I/O devices). The underlying hardware where the hypervisor runs is usually 
called the host, and the VMs that run on top of the hypervisor are called guests. Similarly, 
the operating system that runs on the host is called the host operating system, and the 
one running in a VM is called the guest operating system. 
Based on the presence of the host OS, hypervisors are categorized into two classes, 
namely Type-1 (also called native or bare-metal) hypervisors and Type-2 (also called 
hosted) hypervisors. As their names imply, Type-1 hypervisors run directly on the 
hardware and have their own drivers, whereas Type-2 hypervisors run on top of a host 
OS and need its facilities to perform their tasks. The most well-known Type-1 
hypervisors are: 

• VMWare ESX Server [4] 
• Microsoft Hyper-V [5] 
• Xen [6] 
• L4 microkernel family 
• CoMik [7] 
• XtratuM [8] 
• PikeOS [9] 

The examples of Type-2 hypervisors include but not limited to: 

• Vmware Workstation and Vmware Player [10] 
• VirtualBox [11] 
• Parallels Desktop for Mac [12] 
• QEMU [13] 
• KVM [14] 

Virtualization using Type-2 hypervisors is more suitable for enabling single users or 
small organizations to run VMs on a single machine. However, when high performance 
virtualization strategies are demanded, virtualization using bare-metal hypervisors, 
which impose less overhead due to direct interaction with the hardware, are more 
appropriate. Hypervisor-based virtualization approaches can be further classified into 
four categories which are explained next. 
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Full Virtualization 
In full virtualization, the hypervisor emulates all 
hardware resources on the virtual system, allowing 
for running unmodified guest operating systems in 
VMs. One of the key components that must be 
emulated in this method is the processor’s 
instruction set architecture. When operating systems 
run within VMs, they are not privileged enough to 
execute privileged instructions for interrupt handling, 
reading and writing to devices, and virtual memory. 
For instance, on the x86 architecture, there are four 
privilege levels (also known as rings) where the 
components running in level 0 are the most 
privileged, and the ones executing in level 3 are the 
least privileged. Usually, in non-virtualized systems, operating systems execute at level 
0, and user applications execute at level 3. Unlike the normal instructions (e.g., ADD, 
SUB, etc.), the privileged instructions (e.g., HLT, invalidate a TLB entry, etc.) can only 
be executed by the components running in level 0. As shown in figure, in a virtualized 
environment, guest operating systems execute in level 1, which inhibits them from 
executing privileged instructions. 
Since guest operating systems are unaware that they are running in a virtualized 
environment, they try to execute the privileged instructions similar to the case where 
they run in level 0. However, these attempts result in creating traps that go into the 
hypervisor which then emulates the expected functionality. Therefore, the guest OS 
never knows that it is running in a VM. Note that the non-privileged instructions execute 
directly on the hardware without the intermediation of the hypervisor. This technique is 
called trap and emulate. 
However, there are some thorny issues with this technique. In some architectures, some 
privileged instructions may fail silently (which are sometimes called virtualization holes). 
For example, some instructions execute both in the privileged mode and non-privileged 
mode. However, they produce different results depending on the execution mode. To 
overcome this issue, a common approach called binary translation is used by the 
hypervisor. In this approach, the hypervisor scans the unmodified operating system 
binaries and modifies the offending instruction sequences, making sure that they are 
dealt with carefully. Since every privileged instruction results in a trap into the hypervisor, 
the full virtualization method can cause significant performance loss in some workloads. 
The most well-known products that perform full virtualization are Vmware Workstation, 
Microsoft Virtual Server, VirtualBox, Parallels Desktop for Mac, and QEMU. 
Para-virtualization 
Para-virtualization (also known as OS-assisted virtualization) is an alternative approach 
to perform the virtualization. In this approach, the guest operating system is modified 
such that it is aware of being running within a VM. That is, as shown in figure, privileged 
instructions (i.e., non-virtualizable instructions) are replaced by calls to the hypervisor 
(also known as hypercalls). Therefore, compared to the full virtualization where the 
communication from the guest operating system to the hypervisor is always implicit via 
traps, in para-virtualization, the communication is explicit via hypercalls. This can offer 
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performance improvements compared to the 
full virtualization for some workloads. 
However, since the guest operating system 
needs to be modified, it causes compatibility 
and portability issues. Note that the para-
virtualization does not require any changes in 
Application Binary Interfaces (ABIs). Hence, 
the applications running on top of guest 
operating systems do not need any 
modifications. The most notable hypervisors 
performing para-virtualization are Vmware 
ESX, OKL4, XtratuM, and Xen.  
Hardware-assisted Virtualization 
In hardware-assisted virtualization (also 
known as accelerated virtualization), the underlying hard-ware provides facilities to 
accelerate the execution of VMs. For instance, as shown in figure, a new CPU privilege 
mode (called root-mode) has been added to x86 processors since 2006 whereby 
privileged calls are automatically trapped to the hypervisor without needing to perform 
binary translation or para-virtualization. These virtualization extensions are introduced 
in Intel VT-x and AMD-V technologies for Intel and AMD processors respectively. Since 
the guest operating systems are not modified in hardware-assisted virtualization, it is 
similar to full virtualization to 
some extent. However, 
given the fact that binary 
translation is not required 
anymore, hardware-assisted 
virtualization is considered to 
be a faster approach. Note 
that hardware-assisted 
virtualization is not 
supported in older systems. 
The hypervisors that 
leverage hardware-assisted 
virtualization include, but are 
not limited to Vmware ESX, 
KVM, Hyper-V, and Xen.  
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Unikernels 
Unikernel technology emerged in 2013 with the development of MirageOS [15]. The aim 
was to create specialized, single-purpose VMs whose unnecessary functionalities are 
removed at compile time, thereby reducing the footprint of an application running in the 
cloud. Unikernels are based on library operating systems proposed in the past (e.g., 
Exokernel [16] and Nemesis [17]). However, the hardware compatibility problems faced 
by these library Oss are solved in unikernels by targeting a standard hypervisor. As 
shown in figure, during the 
creation of unikernels, the 
required system libraries, 
language runtime, application 
binary, and configuration files 
are compiled into a single-
address-space VM which runs 
directly on a standard 
hypervisor. Accordingly, the 
scheduling and resource 
management of unikernels are 
done by the hypervisor. Note 
that since there is only one 
address space, context 
switches between user and 
kernel space are not needed 
anymore, which results in a 
better performance compared to the traditional VMs. In other words, both the application 
and kernel components run at the privilege level 0, which is not optimal in terms of 
security isolation [18]. Although unikernels were first introduced for cloud applications, 
their lightweight nature has made them a promising solution for upcoming IoT edge 
applications [19]. 
The most notable unikernel implementations include:  

• MirageOS [15] 
• HaLVM [20] 
• Osv [21] 
• IncludeOS [22] 
• ClickOS [23] 

A.1.2 Container-based Virtualization 
Container-based virtualization (also known as operating system virtualization or 
containerization) aims at virtualizing the OS kernel rather than the hardware. It is usually 
considered as a lightweight alternative to hypervisor-based virtualization. The main 
difference between hypervisor-based virtualization and containerization is that in the 
former, each VM has its own OS kernel, while in the containerization, all the containers 
share a single kernel. Hence, containers are more lightweight than VMs. However, 
hypervisor-based solutions provide more flexibility by enabling the running of multiple 
operating systems on a single machine. A container image contains an application plus 
all its dependencies, libraries, and configuration files. A container is a runnable instance 
of a container image, which essentially is a group of processes that are isolated from 
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other containers or processes in the system. The OS kernel (or container engine in 
particular) provides this isolation. Being light-weight in nature, containers are becoming 
the predominant technology in resource-constrained environments such as edge- and 
fog-based systems [24]. The examples of containerization solutions include, but are not 
limited to: 

• Linux Containers (LXC) [25] 
• Ubuntu LXD [26] 
• Windows Containers [27] 
• Docker [28] 
• OpenVZ [29] 
• BSD Jails [30] 
• Solaris Zones [31] 

Since the Linux-based solutions are more common in embedded/IoT architectures, 
Linux containers have been more focused on. Containers in Linux are realized by 
leveraging two kernel features, namely control groups and namespaces. Control groups 
(also called cgroups) is a kernel feature that limits, accounts for and isolates the CPU, 
memory, disk I/O and network’s usage of one or more processes. On the other hand, a 
cgroup is a set of processes that are bound to a set of limits defined by the cgroup 
filesystem. Namespaces allow for isolation of global system resources between 
independent processes, and they provide processes with their own system view. 
Processes within a namespace only see processes in the same namespace. This type 
of isolation prevents groups of processes from manipulating other groups. Linux 
provides several namespaces to isolate system resources such as process identifiers 
(PIDs), filesystem mount points, and network devices, to name but a few. 

A.1.3 Comparison 
From the previous discussions on virtualization techniques we can conclude that each 
approach has its own advantages and disadvantages, which makes it impossible to 
designate a single approach the perfect solution for virtualization. Accordingly, in this 
section, we compare the aforementioned techniques from various aspects. Quite a few 
works exist in the literature that compare virtualization techniques. Hence, to begin with, 
we review a group of these publications, and subsequently, we summarize the outcomes 
of these works. 
Literature Review 
A detailed performance comparison of hypervisor-based virtualization and recently 
proposed lightweight solutions (including the containers and unikernels) is presented in 
[32]. Using a number of benchmarking applications, the authors compared four 
virtualization solutions, namely KVM (as a hypervisor-based approach), LXC and Docker 
(as containerization approaches), and Osv as a unikernel approach. The considered 
performance aspects include CPU, Memory, Disk I/O, and Network I/O performance. 
The measurements show that dominance of a virtualization solution is not necessarily 
consistent in all the applications. For instance, in two disk performance experiments, 
LXC performs better than Docker in one experiment, and in the other one, the results 
are the other way around. However, it can be generally stated that containers outperform 
VMs in roughly all the experiments. For instance, containers achieve near-native 
performance for disk intensive benchmarks, while KVM’s throughputs for disk write and 
read are approximately a third and a fifth of the native run, respectively. Since the 
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unikernel approach is not included in all the experiments, we cannot reach any 
conclusions about its performance compared to others. Nevertheless, they have shown 
that in memory performance experiments, unikernels perform worse than containers and 
VMs, and in the network performance experiments, they perform better than VMs but 
worse than containers. 
The work presented in [33] compares four hypervisors (Hyper-V, KVM, vSphere, and 
Xen) under hardware-assisted virtualization settings in different use cases. The most 
important outcome of the work is that none of the hypervisors has been found superior 
to the others. Accordingly, effective management of hypervisor diversity with the goal of 
matching applications to the best platform is a significant challenge. The authors point 
out that a cloud environment should support different software and hardware platforms 
to meet various requirements. The authors have also performed experiments to 
measure interference caused by multiple tenants, showing that Hyper-V is sensitive to 
CPU, memory, and network interference. For KVM, although the response times are 
highly variable, none of the interfering benchmarks considerably degrade the 
performance. vSphere is highly sensitive to memory interference, while its sensitivity to 
CPU, disk, and network interference is very low. Finally, Xen’s interference sensitivity 
on memory and network is relatively high compared to the other hypervisors. These 
results also support the fact that there is no dominant hypervisor with superior 
performance in all circumstances. 
The work presented in [34] evaluates the effects of multi-tenancy on the performance of 
different virtualization technologies (VMs and containers) in data center environments. 
The authors compare LXC containers and KVM virtualization and the results show that 
in general, the interference caused by co-located applications is more severe in the case 
of containers. In the case of single-tenant scenario, LXC performance is near the 
performance of bare-metal execution. On the other hand, KVM imposes high 
performance overhead in case of I/O intensive applications. In case of co-located 
applications (i.e., multi-tenancy), the results for CPU intensive workloads show that 
containers are more susceptible to interference. However, in memory-intensive 
workloads, containers offer acceptable isolation, whereas KVM performs better. In disk 
I/O isolation experiments, the latency increases by a factor of 8 for LXC, which implies 
the poor disk isolation in containers. Since the disk I/O performance is not high for VMs 
even in the isolated cases (and therefore enough bandwidth is available for other VMs), 
the latency increases only two times for KVM. These measurements demonstrate that 
isolation is stronger in VMs. Additionally, the authors have studied the impact of 
virtualization solutions’ capabilities on the management and development of 
applications. In particular, they show how the different characteristics of containers and 
VMs affect their management in a cluster. From the resource allocation perspective, 
since VMs somehow share the raw hardware, the resource allocation is also in that 
granularity (e.g., a fixed number of virtual CPUs). However, in the case of containers, 
resource control knobs offered by the OS (e.g., CPU scheduling) are more varied, which 
adds more dimensions to resource allocation. In other words, the resource allocation for 
containers involves allocation of both physical and OS resources. They also point out 
that dynamic resource allocation in VMs is fundamentally a hard problem, on the 
grounds that their virtual hardware is allocated before boot-up, and dynamically change 
their resource during execution requires “device hotplug” support by the guest OS. 
However, soft limits in containers provide a dynamic resource allocation mechanism, 
thereby achieving better performance on overcommitted hosts. Additionally, the authors 
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compared VMs and containers from migration perspective. It is stated that unlike VM 
migration which is mature and widely used in data centers, container migration is more 
challenging and not mature yet. Another comparison between VMs and containers made 
in this work is comparison of their images. It is shown that for the same applications, 
container images are considerably smaller and faster to construct, which enables faster 
deployment and lower storage overhead. 
Several other works exist in the literature which perform such experiments to compare 
the virtualization techniques and solutions; [35] compares Xen and KVM; [36] compares 
KVM and Docker; [37] compares Xen, OpenVZ, and XenServer; [38] performs a 
comparison between Xen, KVM, VirtualBox, and VMWare ESX; [39] compares software 
and hardware techniques for x86 virtualization; and [40] presents a comparison between 
VMs, containers, and unikernels; to name but a few. Additionally, a survey of container-
based performance evaluation is conducted in [41]. However, the outcomes of these 
works are in line with what we discussed above and we therefore do not review them 
here. 
Summary and Conclusions 
Based on the technique used to perform virtualization, the virtualized environment is 
called VM, container, or unikernel. Figure 43 compares the structure and layers of these 
virtualized entities. Two key points can be inferred from this figure: 
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• Container and unikernels do not have a complete guest OS in their software 
stack, making them lighter than VMs. 

• VMs are used to isolate complete systems – including an OS and a number of 
applications running on top of it – whereas containers and unikernels are 
employed to isolate applications. 

Furthermore, we can draw an important conclusion from the results of prior works on the 
comparison of virtualization techniques which is the lack of a predominant virtualization 
solution performing better than other solutions in every circumstance. Even within a 
technique (such as hypervisor-based technique), each solution can only outperforms 
others in a few aspects, but never in all. Accordingly, to demonstrate the trade-offs 
between virtualization solutions, we summaries the outcomes of the prior works in Table 
11. 
 
 

Figure 39. Structural comparison of virtualization solutions. 
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Table 11. Comparison of virtualization solutions characteristics. 

Virtualization 
Technology 

Image Size Boot Time Memory 
Usage 

Isolation Flexibility in 
Resource 
Management 

Performance Programming 
Language 
Restrictions 

Live 
Migration 
Support 

Virtual Machine ~1000 MBs ~3-10 s ~100 MBs High Low The worst No Yes 

Container ~50 MBs ~<1 s ~5 MBs Low High The best No Yes (not 
mature yet) 

Unikernel ~<10 MBs ~<40 ms ~10 MBs High Low Better than 
VMs, worse 
than 
containers 

Yes No 

 

A.2 State-of-the-art in Resource Management 
In a computing infrastructure, at any instance of time, resources must be effectively 
allocated to applications in such a way that their quality requirements are met. The 
dynamic nature of applications, which implies fluctuations in their resource demands, 
and the limited amount of available resources, which indicates that resources must be 
shared among applications, complicate the resource management process. 
Although the infrastructure where resource management is performed span cloud 
infrastructures to stand-alone devices, in this work, we narrow our focus on resource 
management in fog/edge environments. Hong et al. [24] argue that resource 
management in fog/edge environments is challenging, since the applications compete 
for the resources which have limited capacity (e.g., limited power budget) and are 
heterogeneous (e.g., processors with different architectures), and their workloads 
change dynamically. Additionally, they argue that the cloud computing model is not 
practical for using in this paradigm, because it is likely to increase communication 
latencies when scores of devices are connected to the Internet. Consequently, 
applications will be adversely impacted because of the increase in communication 
latencies, and the overall Quality of Service (QoS) and Quality of Experience (QoE) will 
be degraded. Before getting into further discussions, it is worthwhile to make a distinction 
between the edge computing and the fog computing paradigms: 

• A computing model that makes use of resources located at the edge of the 
network is referred to as "edge computing " [42]. Note that there is no single 
accepted definition of "edge" in the literature. There exists a broad definition 
"anything that's not a traditional data center could be the 'edge' to somebody" 
[43], which implies that edge of the network is somewhere nearer than data 
centers to the requestors. 

• A model that makes use of both resources located at the edge of the network 
and the cloud is referred to as "fog computing" [44]. 

In order to study the literature, we review the following aspects of existing resource 
management frameworks. 

A.2.1 Resource Types and Models 
As discussed earlier, in the fog computing model, resources located both at the cloud 
and the edge of network are used to form a computing environment. These resources 
can be categorized under four resource types, namely compute resources, networking 
resources, storage resources, and power resources. In the cloud context, compute 
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resources are a set of Physical Machines (PMs) that are usually partitioned into several 
virtual machines using techniques. Each physical machine has one or more CPUs, 
memories, network interfaces, and I/O devices. However, most of the works only 
consider processing and memory capacity in their compute resource models [3]. The 
PMs located at the cloud must be interconnected with a high-bandwidth network. It is 
shown that the overall performance of cloud services is governed by the communication 
overhead of PMs [3], which emphasizes the importance of managing the network 
resources within a cloud infrastructure. Storage services provided by public cloud 
providers (e.g., Amazon) include various types ranging from virtual disks and database 
services to object stores [3]. In the cloud infrastructures, the power consuming 
components are servers, networking equipment, power distribution instruments, cooling 
appliances, and supporting infrastructure. It is estimated that energy costs account for 
42% of the overall operational costs in data centers [47]. Although devising low-power 
hardware components and efficient application implementations can reduce these costs, 
power-aware resource management can substantially contribute to total cost reduction 
as well. A survey of such power-aware resource management techniques for cloud 
computing systems is presented by Hameed et al. [48]. 
On the other hand, in the edge computing context, Single Board Computers (SBC) and 
commodity products comprise the compute resources [24]. SBCs (e.g., Raspberry Pi) 
are small computers containing processors, memory, network, and storage devices. 
They have been used in some works as fog/edge nodes [49, 50]. Besides the SBCs, 
commodity products (e.g., laptops and smartphones) are also employed as fog/edge 
nodes. Networking resources (i.e., network devices) for fog/edge computing are 
comprised of gateways and routers, WiFi Access Points (APs), and edge racks [24]. 
Hong et al. [51] have proposed an approach where under-utilized laptops (resources 
from public crowds), desktops at the edge of the network, and servers in the cloud are 
utilized to execute an animation rendering service. They have proposed a prediction 
method based on machine-learning techniques to predict the completion time of 
rendering jobs according to available resources. Using a motivational example, they 
have demonstrated that GFLOPS (Giga Floating Point Operations per Second) is not 
enough to abstract computation power. Other factors such as number of cores and clock 
frequency must be included in the model as well. To train their prediction models, they 
have used datasets where CPU, RAM, disk, and network resources have been 
considered [52]. The budgets are described in GHz and number of cores for CPUs, GB 
for memories, read/write throughputs in MB/s for disks, and receive/transmit rates in 
MB/s for network resources. 
Noreikis et al. [53] have proposed a capacity planning solution for hierarchical edge 
cloud consisting of edge nodes and public clouds that considers QoS requirements in 
terms of response delay, and diverse demands for CPU, GPU, and network resources. 
CPU and GPU budgets are described in utilization percentage, and network budgets for 
transmission and receiving are expressed in KBps, indicating the network speed. Chen 
et al. [54] have proposed an offloading framework—called HyFog—that accounts for 
device-to-device and cloud offloading techniques. They have used CPU cycles per unit 
time to describe compute capacity, and the network links (including cellular links and 
device-to-device links) are abstracted using download/upload data rates and 
transmission/receiving power. Wang et al. [55] have proposed the ENORM (Edge NOde 
Resource Management) framework that realizes fog computing by integrating the edge 
of the network in the computing environment. They propose a provisioning and 
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deployment mechanism to integrate an edge node with a cloud server. The proposed 
framework provisions CPU and memory to users. They are described in terms of the 
number of resource units each of which is one core of CPU and 200MB of RAM. 
Liu et al. [56] have proposed an edge computing framework—called ParaDrop—which 
is implemented on WiFi Access Points or other wireless gateways. In the resource 
management part of ParaDrop, the controlled resources include CPU (expressed in 
CPU shares), memory (expressed in maximum allowed memory), and networking (traffic 
shaping is used to restrict the bandwidth). A fog computing architecture has been 
proposed by Gu et al. [57] which uses VMs for a medical cyber-physical system (MCPS). 
The proposed architecture utilizes computational resources in the network edge (e.g., 
base stations) to store and analyze the health information collected from low power 
sensors and actuators. Their research investigates the QoS guaranteed minimum cost 
resource management in fog computing supported MCPS. It is stated that the framework 
manages the computation capacity of base station resources; however, the resource 
types and models are not reported. An elastic real-time surveillance system architecture 
is proposed by Wang et al. [58] where surveillance cameras send images to a distributed 
edge cloud platform. The proposed system launches Virtualized Network Functions 
(VNFs) on the edge servers to execute data processing tasks. Resources are 
provisioned using VMs where resources are described by the number of vCPUs, size of 
RAM, and size of storage. Morabito et al. [59] have proposed the design of an Edge 
Computation Platform which leverages container-based virtualization technologies to 
build an environment for IoT applications. They use single board computers to create 
smart gateways whose CPUs, GPUs, and storage resources are being managed. There 
are no discussions on resource models. 
An architectural framework—called Foggy—is proposed by Santoro et al. [60] which 
offers the functionality of negotiation, scheduling, and workload placement considering 
resource requirements (e.g., CPU, RAM, and disk requirements) and constraints on 
location and access rights. Foggy is designed to operate in Fog environments with 
generally more than three tiers, namely Cloud tier (with high resource capacity), Edge 
Cloudlets tier (with medium resource capacity), Edge Gateways tier (with low resource 
capacity), and Swarm of Things tier (IoT devices). In Foggy, resource refers to any 
computational (such as vCPUs, RAM, and disk), storage or network capacity provided 
by the nodes of the infrastructure. Foggy uses a set of usage profiles for characterizing 
the resources. For computational and storage resources, the following profiles are used: 
General purpose (default profile), Compute optimized, Memory optimized, and Storage 
optimized. For network resources, the considered profiles are Best Effort (default 
profile), Interactive application, Signaling and video streaming, Interactive and real-time 
video. Having focused on performance interference, Shekhar et al. [61] have proposed 
INDICES (INtelligent Deployment for ubiquitous Cloud and Edge Services) framework 
which performs online performance monitoring, performance prediction, network 
performance measurements, and server selection and application migration from the 
cloud to the fog. The architecture model considered in this work contains a Central Data 
Center (CDC) connected to a set of Micro Data Centers (MDCs) which are located at 
the edge. Each MDC comprises a set of computer servers which can be allocated to the 
CDC for its operations at a specified cost. There are no further discussions on types of 
resources and their models. 
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A.2.2 Resource Estimation Models 
In order to meet application quality demands, enough resources must be allocated to 
applications. Accordingly, the required resources for each application should be 
estimated beforehand for enabling efficient resource management. This is commonly 
called as resource demand profiling. In this regard, we study the resource estimation 
techniques employed in the aforementioned works. 
The completion time prediction method proposed by Hong et al. [51] utilizes an 
animation rendering dataset which contains a huge number of records each of which is 
a rendering job from an animation studio. Each record is described by the resource 
usage (including CPU usage in percentage and RAM usage in KBs), the characteristics 
of rendering jobs (e.g., number of frames, number of polygons, and image size in pixels), 
the network conditions (e.g., the time of sending a job), and the completion time. The 
capacity planning solution proposed by Noreikis et al. [53] estimates the minimum 
capacity required for satisfying QoS demands of real-time applications. Their developed 
profiler measures resource usage while executing a task on a computing node. Based 
on the measured usage patterns, resource demands are expressed in terms of CPU and 
GPU utilization (%), network latency (ms), and network bandwidth (kbps). The task 
execution model used in the HyFog framework [54] characterizes the resource 
requirements of a task by the required number of CPU cycles. However, they argue that 
this model can be easily extended to include other resource types. There are no 
discussions on how to obtain the required number of CPU cycles for a task.  
The ENROM framework [55] initializes the applications using a default amount of CPU 
and memory. However, while the application is running, the proposed auto-scaler 
mechanism upscales/downscales the allocated resources dynamically. A number of 
metrics (e.g., round-trip application latency and hardware utilization of CPU and 
memory) are monitored to make scaling decisions at the auto-scaler component. 
Therefore, application resource requirements are not estimated beforehand, and the 
requirements are expressed in terms of application latency (not resource requirements). 
The ParaDrop framework [56] runs the requested services in virtualized environments 
called chutes. Resource requirements for chutes are specified in a config file which is 
necessary for creating chutes. CPU requirement for a chute is specified by a share value 
which indicates a relative share of the CPU resource that a chute gets compared to what 
other chutes get. The maximum amount of memory that a chute is allowed to consume 
is also specified in the config file. It is stated that a strategy based on shares (similar to 
CPU shares) is planned to be implemented for specifying the network requirements. It 
is not discussed in the paper how these requirements are extracted. 
The resource management framework proposed by Gu et al. [57] considers the overall 
expected delay (including communication and processing delays) as application quality 
requirements. Application resource requirements are expressed by storage 
requirements and processing speed of applications; however, units and resource 
estimation methods are not discussed. The three-tier edge computing system 
architecture proposed by Wang et al. [58] expresses application configurations by 
templates in the form of a text file describing the resource assignments including IP 
addresses, bandwidth volumes, compute node flavors, security group and etc. There is 
no discussion on how to determine the resource requirements. In their experimental 
results, as discussed before, the VM resources are described by the number of vCPUs, 
size of RAM, and size of storage. Morabito et al. [59] argue that there may be 
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dissimilarity (e.g., in terms of CPU architecture) in different nodes in a heterogeneous 
environment. Therefore, for each application, different images, where hardware 
requirements (processor architecture, GPU, and storage) and software requirements 
(libraries and operating system) are described, must be provided. It is not explained how 
these requirements are specified. 
Deployment requests in Foggy [60] contain the application component to be deployed 
and a set of optional deployment requirements which are expressed in terms of resource 
requirements and/or specific application needs such as location and access rights. 
Foggy employs a set of profiles to express these requirements. The profiles that are 
used to express application requirements are similar to the ones used to characterize 
the resources, explained in Section 3.2.1. There is no discussion on how to automatically 
determine the deployment requirements. Shekhar et al. [61] argue that the performance 
of an application depends on several factors including: 

• the workload: the workload variation can change the performance, 
• the hardware hosting platform: application performance can vary from one 

hardware platform to another in a heterogeneous environment, 
• co-located applications that cause performance interference: hypervisors do not 

provide enough isolation for two reasons, namely presence of non-partitioned 
shared resources (e.g., cache spaces) and resource overbooking. 

In their proposed framework (INDICES) they run applications in a fixed VM configuration 
(e.g., 2 GB memory, either 1 or 2 VCPUs). However, according to the reasons 
mentioned above, this fix configuration may lead to various performance levels. They 
leverage their built performance models to determine whether running an application on 
a platform causes SLO (Service-Level Objective) violations or not. Therefore, they only 
consider performance requirements (not resource requirements). 

A.2.3 Resource Provisioning Techniques 
There is no concrete definition of resource provisioning in the literature. In some works, 
it is used to describe the whole resource management process, while in some other 
works, it refers to the resource allocation procedure. In this section, we want to study 
how the resources are provisioned (i.e., provided) to applications. 
The multimedia fog computing platform proposed by Hong et al. [51] utilizes resources 
from public crowds (e.g., laptops), desktops at the edge of the network, and servers in 
the cloud to execute animation renderings. Although the available resource dataset they 
have used to train their models contains resources in VMs, it is not clarified that how the 
resources are provisioned to users. Noreikis et al. [53] employ Docker containers to 
provide virtual resources to users in their capacity planning solution. In the HyFog [54] 
framework, applications tasks can be executed on either mobile devices or cloud 
servers. Resources in the former case are provided using VMs; however, resource 
provisioning in devices is not explained. The ENORM framework [55] leverages edge 
nodes to host servers offloaded from cloud servers. It is argued that edge nodes have 
limited hardware resources, which makes the containers more appropriate for providing 
resources to users. LXC containers are used in this framework. ParaDrop WiFi APs [56] 
are implemented on SBCs whose resources are provisioned in containers (Docker 
containers in their current implementation) due to their lightweight nature. Gu et al. 
employ VMs to provision base station resources. The surveillance system architecture 
proposed by Wang et al. [58] launches a group of VMs in distributed edge cloud servers 
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to provide resources for surveillance tasks. Lightweight characteristics of container-
based virtualization are leveraged by Morabito et al. [59] to provision resources in their 
proposed IoT gateways. 
It can be concluded from the studied works that virtualization plays a significant role in 
resource provisioning, and the virtualization technique for each solution is decided 
based on the capabilities of employed platforms. 

A.2.4 Resource Allocation Strategies 
In this part, we study the policies used to allocate resources to applications and map 
applications on resources. Hong et al. [51] decide where (i.e., which node) to run 
rendering jobs based on estimated available resources and predicted completion time 
of jobs on each node. The completion time is predicted using state-of-the-art machine 
learning algorithms. The details of employed decision-making policies are not discussed. 
The solution proposed by Noreikis et al. [53] maps long-running and latency insensitive 
tasks on the cloud and tasks with the shortest tolerable response delay on edge nodes. 
Additionally, tasks with complementary resource demands are bundled together and 
mapped on the same node, leading to better resource utilization. They have used the 
Knapsack algorithm to perform the optimization. In the HyFog framework [54], task 
offloading decisions are made using a three-layer graph-matching algorithm. The three-
layer graph is constructed by taking the offloading space (mobiles, edge nodes, and the 
cloud) into account. The problem of minimizing the total task execution cost (including 
the energy cost per CPU cycle and transmission/receiving power costs) is mapped onto 
the minimum weight-matching problem over the constructed graph, and it is solved using 
the Edmonds’s Blossom algorithm. 
The ENORM framework [55] offers several mechanisms for resource management, 
including handshaking, deployment, auto-scaling, and termination mechanisms. The 
handshaking is performed between a cloud manager and edge nodes, and it is used to 
select a node (based on the available free resources on nodes) for application 
deployment. The auto-scaling mechanism periodically scales the resources allocated to 
applications whose latency requirements are not met. The termination mechanism 
terminates an edge service when either it has been idle for a long period or its QoS 
requirements cannot be satisfied by an edge server deployment. The ParaDrop 
framework [56] does not provide any resource allocation policies. Rather, the user 
selects an edge node (i.e., WiFi AP) to deploy its application. Gu et al. [57] investigate 
QoS guaranteed minimum cost resource management in fog computing supported 
MCPS. They formulate the cost minimization problem in a form of mixed-integer 
nonlinear programming (MINLP), and they linearize it as mixed-integer linear 
programming (MILP) problem to cope with the high complexity of solving MINLP. Further 
more, they propose a low-complexity two-phase LP-based heuristic algorithm to solve 
the MILP problem. In their problem formulation they consider four constraints, namely 
1) user association constraints (each user must be associated with a base station, and 
a subcarrier in the BS must be allocated to the user), 2) task distribution constraints (the 
application data uploaded to a BS can be distributed to other BSs to get processed), 3) 
VM placement constraints (VMs must be deployed on BSs, and their resource 
requirements must not exceed the capacity of BSs), and 4) QoS constraints (the overall 
expected delay, including communication and processing delay, shall not exceed the 
application delay constraint). The total cost they seek to minimize includes the total VM 
deployment cost, uploading cost, and inter-BS communication cost. 
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Wang et al. [58] offer an elastic resource allocation mechanism in their surveillance 
system where computing resources are reallocated when emergency events happen. 
To do so, at any point in time, the closest edge nodes to the tracked object are selected 
to run surveillance tasks. When resource shortage happens, a part of the workload is 
transferred to another node whose selection depends on its distance to the monitor that 
captures the object’s video. It can be implied that their approach minimizes the 
deployment costs by minimizing communication latencies. In the Foggy framework [60], 
to map applications to edge nodes, the orchestrator filters the nodes that can satisfy 
application requirements. Then, it sorts the filtered nodes according to a priority function 
whose details are not discussed. Subsequently, the node with the highest rank will be 
chosen to deploy the application. The objective of the INDICES framework [61] is to 
assure the SLOs (i.e., response times) for all the applications (by identifying SLO 
violations and migrating applications from the cloud to edge servers) while minimizing 
the overall deployment cost. To identify the SLO violations, application execution times 
are estimated using performance and interference profiles. An interference profile of an 
application identifies the degree to which that application will degrade the performance 
of other running applications on the host—called pressure—and how much its own 
performance will degrade due to interference from other applications—called sensitivity. 
Accordingly, the framework offers a performance interference-aware server selection 
algorithm where the SLO-violated applications are migrated to the edge nodes in such 
a way that the so-called pressure and sensitivity do not cause SLO violations, and 
furthermore, the overall deployment cost is minimized. The optimization problem is 
solved using a heuristic-based algorithm since the problem is an NP-Hard one. 

A.2.5 Resource Management Architectures 
In this section, we study the architecture introduced by the prior works to perform 
resource management. The framework proposed by Hong et al. [51] has three 
components, namely an available resource predictor, a completion time predictor, and 
a job scheduler. The job scheduler decides where to deploy a job based on the 
information provided by the resource predictor and completion time predictor. The 
ENORM framework [55] works across three tiers, namely the cloud tier, the edge node 
tier, and the user device tier. The cloud tier is where the application servers are located, 
and a cloud server manager runs on each application server. A cloud server manager 
sends requests to edge nodes, deploys services on edge nodes, and updates the global 
view of the application server based on the deployments. Each edge node has several 
components to receive requests from the cloud server manager, negotiate with it, deploy 
applications upon accepted requests, monitor resources and applications, and perform 
the auto-scaling mechanism.  
The ParaDrop framework [56] has two main resource management agents, namely the 
ParaDrop backend and the ParaDrop daemon. The ParaDrop backend manages all the 
resources of the platform in a centralized manner and provides APIs for users to deploy 
services on the gateways. The ParaDrop daemon runs on each Access Point to perform 
all the functions required by the ParaDrop platform, including registering the AP to the 
backend, monitoring the status of AP and reporting to the backend, resource and 
process management, and receiving RPCs (Remote Procedure Calls) and messages 
from the backend and performing lifecycle management of chutes (i.e., application 
containers) accordingly. The architecture proposed by Wang et al. [58] consists of three 
tiers, namely applications tier, edge computing tier, and data tier. The applications tier 
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contains resource requirements of tasks, plans resource allocations and configurations, 
and monitors the running status of the applications. The edge computing tier contains 
an edge control node which performs resource orchestration (to satisfy resource 
requirements of tasks) and a SDN controller which monitors, configures, and manages 
VMs. The data tier contains terminal monitors that collect and upload real-time video 
data to the nearest available compute node. 
The architecture proposed by Morabito et al. [59] contains an IoT Application 
Orchestrator which determines which software (i.e., application) is used for processing 
the data of a specific device as well as the best location (data center or gateway) for 
deploying it. It is stated that the orchestrator takes the hardware requirements 
(processor architecture, GPU, storage) and software requirements (libraries, operating 
system) of processing software into account during its decision makings. Foggy [60] is 
an architectural framework which offers the functionality of negotiation, scheduling, and 
workload placement. The management architecture is composed of an inventory, a 
negotiator, and an orchestrator. The inventory maintains the status of the infrastructure 
(i.e., available resources and their location). The negotiator decides whether to accept 
or reject deployment requests based on the status of the infrastructure. For the accepted 
deployment requests, the orchestrator deploys application components on the node that 
best satisfies the deployment requirements. 
The architecture model considered in the INDICES framework [61] contains a Central 
Data Center (CDC) connected to a set of Micro Data Centers (MDCs) which are located 
at the edge. Each MDC comprises a set of computer servers which can be allocated to 
the CDC for its operations at a specified cost. A global manager on the CDC is 
responsible for detecting and mitigating global SLO violations. On each MDC, one of its 
servers acts as local manager which is responsible for data collection, performance 
estimation, latency measurements, and MDC-level decision making. During run-time, 
the global manager identifies the SLO violations, and the local managers decide where 
to migrate the SLO-violated applications. The works that are not discussed in this section 
have not made a clear discussion about their architecture. 

A.2.6 Summary and Conclusions 
The reviewed techniques are summarized in Table 12.  
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Table 12. Summary of reviewed resource management works. 
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