

ECSEL2017-2-783162
FitOptiVis

From the cloud to the edge - smart IntegraTion and OPtimisation Technologies for
highly efficient Image and VIdeo processing Systems

Deliverable: D4.3 Monitoring, profiling, measuring and
reconfiguration support for real time quality and

resource management

Due date of deliverable: 31-05-2020
Actual submission date: 31-05-2020

Start date of Project: 01 June 2018 Duration: 36 months

Responsible WP4: Tampere University (of Technology)

Revision: draft

Dissemination level

PU Public

PP Restricted to other programme participants (including the Commission
Service

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (excluding the
Commission Services)

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 2 of 88

DOCUMENT INFO
Authors (alphabetical order)

Author Company E-mail
Francisco Barranco UGR fbarranco@ugr.es

Lubomír Bulej CUNI lubomir.bulej@mff.cuni.cz

Guillermo Amat ITI gamat@iti.es

Tiziana Fanni UNISS tfanni@uniss.it

Dip Goswami TUE d.goswami@tue.nl

Keijo Haataja HURJA keijo.haataja@hurja.fi

Pekka Jääskeläinen TUT pekka.jaaskelainen@tuni.fi

Jiří Kadlec UTIA kadlec@utia.cas.cz

Francesca Palumbo UNISS fpalumbo@uniss.it

Jukka Saarinen NOKIA jukka.saarinen@nokia.com

Raúl Santos de la Cámarra HIB rsantos@hi-iberia.es

Pablo Sánchez UC sanchez@teisa.unican.es

Carlo Sau UNICA carlo.sau@diee.unica.it

Shayan Tabatabaei Nikkhah TUE s.tabatabaei.nikkhah@tue.nl

Giacomo Valente UNIVAQ giacomo.valente@univaq.it

Luis Medina Valdés 7SOLS luis.medina@sevensols.com

Document history

Version Date Change
v1.0 22-05-2020 Final deliverable for EU review.

Document data

Keywords runtime platforms, runtime reconfiguration, runtime
monitoring

Editor Address data Name: Giacomo Valente
Partner: UNIVAQ
Email giacomo.valente@univaq.it
Phone: +393490685728

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 3 of 88

Table of Contents
DOCUMENT INFO ... 2

TABLE OF ACRONYMS ... 6

 EXECUTIVE SUMMARY ... 7

 INTRODUCTION ... 8

 RUNTIME RECONFIGURATION .. 10

3.1 Overview .. 10

3.2 Dynamic Reconfiguration in CompSOC .. 13

3.3 Dynamic Reconfiguration using Multi-Dataflow Composer 16

3.4 Reconfiguration in Nvidia Jetson embedded devices 18

3.5 Reconfiguration of Time Sensitive Network (TSN) 21

3.6 RIE-based reconfiguration method .. 23

 RUNTIME MONITORING, PROFILING AND MEASURING 28

4.1 Reference Platform for monitoring .. 28

4.2 Enabling Solutions to perform monitoring in FitOptiVis 29
4.2.1 FIVIS data storage, visualization and analytics platform 29

4.2.1.1 Overview ... 30
4.2.1.2 Architecture ... 30
4.2.1.3 Data Model .. 32
4.2.1.4 Data Server Interface... 33
4.2.1.5 Data Processing .. 35
4.2.1.6 Client Interface .. 36
4.2.1.7 System Status ... 37

4.2.2 DSL extension to express monitoring requirements 38
4.2.3 AIPHS framework to build custom edge monitoring systems 39

4.2.3.1 Overview ... 39
4.2.3.2 Monitoring system composition .. 39
4.2.3.3 Interface .. 41

4.3 Instances .. 42
4.3.1 Monitoring in 3D industrial inspection system .. 42

Monitoring Requirements .. 42
Unit Under Monitoring ... 42
Monitoring Infrastructure .. 43
Data Storage, Analytics and Visualization ... 43

4.3.2 Heterogeneous Distributed Computing Adaptation Monitoring 44
Monitoring Requirements .. 44
Unit Under Monitoring ... 45

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 4 of 88

Monitoring Infrastructure .. 45
Data Storage, Analytics and Visualization ... 45

4.3.3 Monitoring systems for reconfiguration for Habit Tracking and Smart
Grid 46

Monitoring Requirements .. 46
Units Under Monitoring .. 47
Monitoring Infrastructure .. 48
Data Storage, Analytics and Visualization ... 53

4.3.4 Monitoring capabilities for object recognition in space applications 55
Monitoring Requirements .. 56
Unit Under Monitoring ... 56
Monitoring Infrastructure .. 57

4.3.5 Monitoring of 8xSIMD Floating point Accelerators 57
Monitoring Requirements .. 58
Unit Under Monitoring ... 58
Monitoring Infrastructure .. 61

4.3.6 Monitoring of V-PCC in Virtual Reality ... 63
Monitoring Requirements .. 63
Units Under Monitoring .. 65
Monitoring infrastructure .. 67

4.3.7 Monitoring in Salmi-Care System .. 67
Monitoring Requirements .. 67
Unit Under Monitoring ... 68
Monitoring Infrastructure .. 68
Data Storage, Analytics and Visualization ... 70

4.3.8 TSN support for concurrent monitoring of multiple heterogenous
systems ... 70

Monitoring infrastructures provided by TSN ... 70
TSN internal monitoring ... 70
Unit Under Monitoring ... 71
Monitoring Infrastructure: The Timestamping Unit (TSU) 71
Data Storage, Analytics and Visualization ... 74

4.3.9 Monitoring systems for localization in space applications 74
Monitoring Requirements .. 75
Unit Under Monitoring ... 75
Monitoring Infrastructure and Monitoring Processor .. 75

4.3.10 Pose and facial recognition in Habit Tracking with edge-cloud
adaptivity ... 76

Monitoring Requirements .. 76
Unit Under Monitoring ... 76
Monitoring Infrastructure .. 77
Data Storage, Analytics and Visualization ... 78

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 5 of 88

4.3.11 Monitor in Processor-Coprocessor systems .. 78
Monitoring Requirements .. 79
Unit Under Monitoring ... 79
Monitoring Infrastructure .. 80
Data Storage, Analytics and Visualization ... 81

 CONCLUSIONS .. 82

REFERENCES .. 83

APPENDIX – EXAMPLE CODES .. 85

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 6 of 88

Table of Acronyms

Acronym Meaning
 V-PCC video-based point cloud compression

TSN Time Sensitive Networking

AR Augmented reality

VR Virtual Reality

MPSoC Multi-Processor System on Chip

SEM IP Soft Error Mitigation IP

VI/Os Virtual Input / Output (s)

QRM Quality and Resource Management

TSN Time Sensitive Network

DSL Domain Specific Language

RIE Runtime reconfiguration Implementation
of Embedded systems

gPTP generalized Precision Time Protocol

BMCA Best Master Clock Algorithm

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 7 of 88

 Executive Summary
This report represents deliverable D4.3, one of the outcomes of Task 4.2 and Task 4.3
in the WP4 of the FitOptiVis project. The main objective of WP4 is to deal with the
complexity of application runtime management while considering a diverse set of
heterogeneous platform components and configurations.
Preliminary achievements of Tasks T4.2-T4.4 until the end of project year 2 are reported
in this document. This includes developments in monitoring, profiling and measuring
techniques and reconfigurability support.
This first iteration deliverable provides an overview of runtime reconfiguration and
runtime monitoring mechanisms: these technologies span different levels of abstraction
and serve to satisfy applications with diverse set of requirements. Specifically, the
deliverable is split in two parts: in the first part, an abstract view of reconfiguration
mechanisms, followed by specific instances, is reported. In the second part, an abstract
view of the monitoring mechanisms, followed by specific instances, is reported. A
second iteration of this deliverable will be done as a D4.4 due M30.
The content of this Deliverable contributes to MS6 (Second release of the virtual
platform, components and methods. Partial demonstrators release.).

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 8 of 88

 Introduction
Work package 4 addresses Objective 3 of the FitOptiVis project:

Objective 3: Real-time multi-objective combinatorial optimisation; data and process distribution;
run-time adaptation through virtualization; run-time quality and resource management; energy
driven adaptations; workload (re-)distribution; support for run-time upgrades.

In WP4, the consortium develops techniques for run-time resource management within
the system architecture template outlined in WP2. There are two key technology
enablers for successful realization of runtime management; measurement/ monitoring,
and reconfiguration mechanisms. These technologies are mainly investigated in the
Tasks 4.2 and Task 4.3.
This deliverable reports on the outcomes of Task 4.2 and Task 4.3 in the first two years
of the project. Task 4.2 focuses on providing mechanisms for the constant monitoring of
dynamic phenomena to adapt to changing conditions at runtime. Task 4.3 focuses on
developing mechanisms for the system reconfigurations at various abstraction levels,
which is a key enabler in the quality and resource management framework. The
deliverable is organized as follows.
In Chapter 3, we report of the reconfiguration mechanisms developed by various
partners within the FitOptiVis project. Section 3.1 provides an overview of the three main
categories of reconfiguration mechanisms being considered in the FitOptiVis project –
adding/removing components, changing the component configuration, and changing the
component compositions. It further shows an abstract view on how these mechanisms
will be used the QRM framework.
Section 3.2 presents a specific instance of the reconfiguration mechanisms realized on
the CompSOC platform. The reported work realized the first and the third type of
reconfiguration mechanisms. Section 3.3 presents a Multi-Dataflow Composer (MDC)
tool-based reconfiguration mechanism that allows for quality and budget adaptation in
runtime and falls under second category of reconfiguration (i.e., changing the
component configuration). Section 3.4 presents a reconfiguration mechanism for
changing quality and budget (i.e., changing the component configuration) in runtime on
Nvidia Jetson embedded devices. In Section 3.5, we describe a reconfiguration
mechanism to adapt synchronization setting of a TSN and in essence, to reconfigure in
terms of quality (i.e., quality of service). Finally, in Section 3.6, we present a RIE (of
Embedded systems) based reconfiguration library which provides a general DSL
framework for component implementation and reconfigurations.
In Chapter 4, the report provides the description of monitoring, profiling and measuring
support developed within the FitOptiVis project, and also reports preliminary practical
setups related to FitOptiVis use cases. To satisfy the diverse set of requirements found
in FitOptiVis use cases, multiple concrete platforms are needed, each tailored to serve
different types of requirements. In this regard, monitoring techniques can span at
different levels, from cloud to edge; moreover, for each level a monitor can be software
of hardware, albeit mainly requiring the synergy of both. In FitOptiVis, we aim to unify
on the level of concepts, principles, and abstractions to find and extract commonalities
found in different domains: for this reason, in Section 4.1, a reference platform for
monitoring systems in FitOptiVis is reported; it allows to have a reference structure to
describe the monitoring systems developed as part of the FitOptiVis platform.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 9 of 88

In Section 4.2, three enabling solutions to implement monitoring actions are reported:
FIVIS (Section 4.2.1), that is a common data storage, visualization, and analysis
platform, an extension to DSL (Section 4.2.2) developed in WP2 to express monitoring
requirements, and AIPHS (Section 4.2.3), a framework to implement custom monitoring
systems for reconfigurable platforms.
In Section 4.3, instances of monitoring systems constituting the FitOptiVis platform are
described, following the proposed reference platform. These instances make preliminary
usage of enabling solutions, as highlighted in the report. In particular, some monitoring
system instances target cloud-edge scenarios, such as 3D industrial inspection system
(Section 4.3.1), Habit Tracking for elderly people (Section 4.3.3 and Section 4.3.10),
Smart Grid (Section 4.3.3), Virtual and Augmented Reality (Section 4.3.6 and Section
4.3.7). Other monitoring system instances target edge scenarios, allowing also the
communication of data with the cloud, such as monitor for object recognition and
localization in space (Section 4.3.4 and Section 4.3.9) and monitor for FPGA-based
coprocessors (Section 4.3.8 and Section 4.3.11). Finally, a monitor for the cloud-edge
interconnection is proposed, targeting Time Sensitive Networks (Section 4.3.8). As
integration, an Appendix reporting some example codes related to monitor instances is
provided.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 10 of 88

 Runtime reconfiguration
3.1 Overview
We define system configuration as the set of components a system is composed of, their
configurations (specified by their parameter set-points), and their compositions. In fact,
such a composition is another component under the FitOptiVis component framework.
Subsequently, we define reconfiguration as an action or a set of actions leading to a
change(s) in system configuration. Therefore, based on the impact of actions, we
categorize them into three classes as follows (see Figure 1):
• Actions adding/removing components: These actions add/removecomponents

to/from the system. A component can be one of the following entities:
• Application
• Virtual Resource (VR)/Virtual Execution Platform (VEP)
• Resource/Execution Platform (EP)
• Deployed Application (application + VEP)
• Hosted VEP (VEP + EP)
These actions are triggered by users manually, automatically by Quality and
Resource Management (QRM) components, or via custom mechanisms from the
applications themselves.
Some examples are:
 Adding a stream in the Multi-Source Streaming use case which is done by a

surgeon. This adds either an application or a deployed application to the
system.

 Hot plugging a hardware component adds a resource to the system.
 Creating a VEP by QRM components (e.g., hypervisor) to deploy an

application. Based on budget requirements of an application, hypervisor
creates a VEP to deploy the application.

 Spawning an OpenCL kernel by an application. When an OpenCL application
calls a kernel, it adds another task to the system which requires certain
budget (e.g., an Nvidia GPU with at least a certain compute power) to
execute. Following the kernel call, QRM components create a VEP to deploy
and execute the kernel.

 Modify the component implementation in order to use efficiently a particular
execution resource. A component could be implemented in a GPU with a
particular algorithm but an FPGA implementation could require a different
approach.

• Actions changing component configurations: Configurations of components are
defined by set-points their parameters are set at. In general, a change in parameter
set-points results in a change(s) to the following component properties:
• Inputs/outputs
• Required/provided budget
• Qualities

These actions are triggered either by users, QRM components or applications.
Some examples are:

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 11 of 88

 Changing output resolution of a video stream on surgeon’s demand. This
affects required budget of the stream (e.g., a higher resolution requires more
processing power, network bandwidth, and screen pixels to process,
transmit, and display a stream).

Execution Platform (EP)

Resource Resource Resource

Hosts

Deployed Application

Virtual Execution Platform (VEP)

VR VR VR

Application

Task Task Task

Deploys on

Hosted VEP

User

Quality and Resource
Management (QRM)

Components

Parameters

Compositions

Figure 1: Overview of reconfiguration categories considered under FitOptiVis

Detecting workload transitions and asking for more/less budget. Based on input
characteristics (e.g., framerate, resolution, number of streams, number of objects
in a video), applications change their resource requirements, which is followed
by reconfiguration of the VEP on which the application is deployed (done by QRM
components).

 Reducing voltage/frequency of an overheated processor by QRM components.
 Changing topology of a DNN when a different recognition accuracy is needed.

This needs to reconfigure the recognition task as well as the VEP on which it is
deployed, since the new topology may need more or different resources (e.g.,
GPU instead of CPU) to execute within the same time.
Switching profiles on Jetson TX2 platform. QRM components can switch
performance modes of Jetson TX2 to optimize system power consumption.

• Actions changing component compositions: Compositions are vertical,
horizontal, or free. Vertical compositions have to do with budget connections and are
either deployments (application-to-VEP connections) or hosting (EP-to-VEP
connections):

o Deployments are established by i) finding application configurations whose
required budgets are matched with a VEP’s provided budget (i.e., budget
matching), ii) selecting one of the matched configurations, and iii) installing
the chosen configuration.

o A hosting is binding (i.e., mapping) a VEP to physical resources in EP. This
is also done by i) finding EP resources whose provided budgets are matched

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 12 of 88

with the VEP’s required budget, ii) selecting the best mapping, and iii) binding
the VEP on the chosen resources.

Figure 2: Block diagram of the proposed QRM architecture in CompSOC

Horizontal compositions connect inputs and outputs (e.g., connecting outputs of a task
to inputs of another one). Free compositions connect neither input/outputs nor
provided/required budgets. Rather, they are done to constrain the way a set of
components can be composed to other components (e.g., a processor and a memory
which are coupled together by an interconnect can be only used together).
The actions can establish, modify, or stop connections and are triggered by users QRM
components, or applications.
Examples are:
 Manual mapping/unmapping VEPs done by users.
 Mappings/unmappings done by QRM components to optimize costs, resource

utilization (e.g., load balancing), reliability, etc.
 Removing a displayed video stream from the screen.
 Reconfiguration of a crossbar changing the resources that are connected to it,

which changes their free composition.
 Reconfiguration topology of a task graph, which changes horizontal

compositions (e.g., changing the order of filters in an image processing
application).

In the following, we describe a number of reconfiguration mechanisms developed using
the above three categories of actions

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 13 of 88

3.2 Dynamic Reconfiguration in CompSOC
We employ the QRM architecture depicted in Figure 2 to perform dynamic
reconfiguration in CompSOC platform. The architecture is designed in such a way that
performing any type of reconfiguration action is possible. Details of this architecture are
reported in D4.2. Initially, we have implemented an application deployment mechanism
where the first and third category of actions are being used, which are adding/removing
components and changing component compositions.
We assume the deployment command is issued by the end user. In other words, the
user decides to execute/stop an application. The following steps are performed to deploy
(i.e., execute) an application:

• User sends a command to the Orchestrator which contains the identifier of an
application followed by its quality constraints:

run_app <app_id> <quality_id> <minimum_quality> <quality_id>
<minimum_quality> ...

• The Orchestrator queries the Application Bundles Database to obtain the
application’s bundle. If the bundle is not stored in the database, the deployment
process stops. Bundles are stored in JSON files and the following pattern is used
to make bundles:

{
 "id": "<component id>",
 "configurations":
 [
 {
 "id": "<configuration id>",
 "parameters":
 [
 {"<parameter_id>": <parameter_value>},
 …
],
 "qualities":
 [
 {"<quality_id>": <quality_value>},
 …
],
 "required_budget":
 [
 {
 "cpu": {"cycles": <#cycles>, "period":<period in seconds>},
 "local_memory": <size in bytes>,
 "shared_memory_1": <size in bytes>,
 "shared_memory_2": <size in bytes>
 },
 …

],
 "provided_budget":
 [
 {
 "cpu": {"cycles": <#cycles>, "period":<period in seconds>,
"clock":<frequency in Hertz>},
 "local_memory": <size in bytes>,
 "shared_memory_1": <size in bytes>,
 "shared_memory_2": <size in bytes>

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 14 of 88

 },
 …
],
 "initial_state":
 [
 {"src": "<hex file address>"},
 …
]

 },
…

]
}

The pattern is consistent with FitOptiVis component model proposed in WP2. For
our initial implementation, we have used a simple budget model to describe budgets
required by applications and provided by the Execution Platform. The budgets are
specialized for a CompSoC instance that is composed of multiple tiles (3 in this case)
connected to each other using shared memory instances. Each tile has its own local
instruction/data memory. The user can add a bundle to the database using the
following command:

add_bundle <bundle_json_file>

If the bundle is found, the Orchestrator asks the Broker to find the best application
configuration and its mapping by sending a command containing the application
bundle and quality constraints. The best configuration is the one that meets the
quality constraints and has the minimum deployment cost. Here we use resource
usage as the deployment cost.

• To find the best application configuration and its mapping, the Broker needs to
know the platform state. Accordingly, the Broker asks the Execution Platform
Manager (EPM) to report its current state.

• Upon the Broker’s command, the EPM queries the Execution Platform Database
and sends Local Execution Platform bundles to the Broker. These bundles follow
the same pattern explained before.

• After obtaining the application and LEP bundles, the Broker performs Pareto
optimization to find the best application configuration and mapping. To do so, we
employ the Pareto Calculator tool (http://www.es.ele.tue.nl/pareto/calc/). Note
that during the optimization, the Broker must check if the budget required by the
application matches the budget provided by the EP. The budget matching
framework discussed in D4.2 is used for this purpose. Refer to D4.2 for the
details.

• Once the optimization is done, the Broker sends the identifier of the best
application configuration, the identifier of the LEP to deploy the application on,
and the LEP’s configuration identifier to the Orchestrator. Note that the platform
may also have multiple configurations (e.g., low power mode, normal mode,
high-performance mode) and the Broker selects the best one as well.

• Upon receiving the optimization results, the Orchestrator asks the EPM to create
a Virtual Execution Platform (VEP) and load the application. Accordingly, it sends
the bundle of the selected application configuration, the selected LEP id, and its
configuration id to the EPM. Since each VEP is managed by a Virtual Execution
Platform Manager (VEPM), the Orchestrator sends the VEPM’s bundle alongside
the aforementioned bundles and identifiers.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 15 of 88

• The EPM first creates a VEP to load a VEPM. The creation of a VEP starts with
reserving its required budget. This is done by updating the EPDB and VEPDB,
so that the reserved budget is subtracted from the provided budget. After the
reservation, the Orchestrator asks the LEPMs to allocate budgets and create a
VEP. Each resource has a Resource Manager, which is part of the microkernel,
that does budget allocation and virtual resource creation. LEPMs employ the API
provided by the microkernel to create VEPs. Once a VEP for the VEPM is
created, the EPM asks the LEPMs to load and run the VEPM. This is done by
sending a hex file to the LEPMs.

• Once the VEPM is deployed, the EPM first reserves the budget required by the
application, and then it sends the application configuration bundle to the VEPM.

• The VEPM follows the steps similar to what the EPM takes (to create a VEP and
load an application) to create a VEP for the application. Once the VEP is created,
the VEPM loads and starts the application.

The sequence diagram of application deployment is shown in Figure 3. For stopping and
removing a running application, the “brokering” step is bypassed, and the Orchestrator
directly asks the EPM to stop an application. The EPM first makes sure that the budgets
are deallocated and VEPs are destroyed. Then, it releases the reserved budgets by
updating the databases.

Figure 3 Sequence diagram of application deployment

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 16 of 88

3.3 Dynamic Reconfiguration using Multi-Dataflow Composer
The Multi-Dataflow Composer (MDC) tool, from UNISS and UNICA, starting from an
input set of dataflow specifications, is able to generate Coarse-Grain Virtual
Reconfigurable accelerators, able to execute the different functionalities specified with
the dataflows. This belongs to the second type of action to change the configuration by
modifying budget and quality of a component in the runtime. It does not only offer the
support for the deployment of Xilinx compliant IPs, ready to be used in a processor-
coprocessor system, but also the support for their management at run-time.
The Coarse-Grain Reconfiguration offered by MDC is virtual in the sense that resources
are always available in the accelerator, and they are multiplexed in time according to the
identifier (ID) of the selected operation, to be properly driven by the user. So that,
resource occupancy efficiency will be not very high in the resulting reconfigurable
accelerator (resources and connections are not all reused and reconfigured among
different configuration), but reconfiguration can be achieved very quickly, ideally in a
single clock cycle, due to the limited set of configuration points.
Reconfiguration, and in turn possible supported operations, are of two main types:

• Functional-oriented (see Figure 4) – the accelerator offers different functionalities
(e.g. different image processing algorithms).

Figure 4: Functional-oriented reconfiguration

An example of functional-oriented reconfiguration where MDC has been successfully
adopted is for neural signal processing [CAR13]. In this case, an algorithm for the
denoising of a neural signal coming from the peripheral nervous system has been rolled
and split into different sub-operations, these latter modeled as dataflow graphs. Then, a
dynamic reconfigurable accelerator for such sub-operations has been assembled by
MDC, resulting in substantial benefits in terms of resources and power consumption. As
depicted in Figure 5, MDC dynamic reconfiguration (blue bar) allows saving about 40%
area and power with respect to the corresponding non reconfigurable system where all
the sub-operation graphs are instantiated in parallel (red bar). Moreover, it saves more
than 86% of the same metrics if an unrolled implementation, where the denoising step

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 17 of 88

is not split into sub-operations (green bar).

Figure 5: Area and power consumption histograms of the MDC generated denoiser (MDC Global Kernel)

with respect to the corresponding non-reconfigurable denoiser (Static Global Kernel) and with respect to a
unrolled atomic denoiser implementation (Cascaded WD).

• Working point-oriented (see Figure 6) – the accelerator is able to execute the same

functionality but with different trade-offs in terms of non-functional metrics (e.g.
different image quality vs. power consumption profiles in encoding/decoding
algorithms).

Figure 6: Working point-oriented reconfiguration

An example of working point-oriented reconfiguration achieved through MDC is
in the field of video coding [SAU17]. In this case, the fractional pixel interpolation
filters adopted for motion estimation/compensation in the HEVC codec have
been considered. In particular, approximate computing has been applied at the
algorithm level to derive approximate filters by using a reduced number of taps,
with respect to legacy values. For instance, considering the luma color
component, two approximate filters have been derived by adopting 5 and 3 taps
with respect to the legacy 8/7 ones. These filters have been modelled as dataflow
graphs and processed by MDC in order to provide a reconfigurable filter able to
switch among the different versions, from legacy to approximated. As depicted
in Figure 7, the obtained reconfigurable filter has different working points offering
a different trade-off between quality and energy consumption. In particular, in
terms of energy consumption, it is possible to have up to 27% savings with

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 18 of 88

respect to the standalone legacy implementation, by employing only 3 taps
instead of 8.

Figure 7 Reconfigurable HEVC interpolation filter: the supported working points provide different energy

versus quality (Inv. proportional to # of taps) trade-off.

3.4 Reconfiguration in Nvidia Jetson embedded devices
UC3 (Habit tracking) and UC9 (Smart grid) use the NVidia Jetson embedded devices
Jetson Xavier and Jetson TX2. These Nvidia® devices support runtime adaptation for
example, varying the operating frequency of the GPU and ARM-CPUs, or the number
of active GPU cores. This adaptation enables energy consumption vs time performance
trade-offs, also in terms of hardware requirements.
In this case, the reconfiguration takes place by selecting different alternatives pre-
defined for some components or modifying provided budgets. For example, the
reduction or increase in the budget provided by Jetson platforms to the application
components that require them. This reconfiguration is activated by the system after
monitoring power consumption over a period of time and when some components
require a higher or lower quantity of resources provided by the platform in terms of
compute capability.

Habit tracking (UC3)
Regarding UC3, we do reconfiguration to robustify the confidence for an inferred critical
action. In order to improve the confidence, apart from using the RGB-input video stream,
an Optical Flow stream is also analysed. Optical Flow comprises information about
speed and angle of the movement of pixels between frames. This mid-level cue is fed
to a neural network that is capable to recognize actions from this spatio-temporal flow.
Thus, the reconfiguration follows the dataflow represented in Figure 8.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 19 of 88

Figure 8: Diagram of tasks involved in action recognition

For instance, if we detect that the active model cannot distinguish between two actions
for a period of time or we want to make sure that a person has fallen down and now is
lying on the floor, we use an alternative with a more complex model that takes the RGB-
stream and the OpticalFlow stream and infers a new label based on the results of a
neural model that takes both.
Estimating optical flow from a video stream is a resource-intensive task even when
computed by the GPU. For this reason, we have planned to compute this using pocl-
remote from TUT, offloading the optical flow processing to the cloud server. Thanks to
pocl-remote, the resources of the cloud are seen as a local resource for the software
application. In other words, this framework allows us to do calculations on an external
GPU over the network in a transparent way using OpenCL. Considering that the Jetson
devices have a limited amount of hardware resources (Jetson Xavier allocates 512
CUDA cores) and the GPU in the Jetson devices will be used to do the inference of the
neural network models. The pocl-remote framework offers us a way to accelerate
computation and reduce power consumption on the embedded devices. Our external
GPU in the cloud is an RTX2080Ti with 4096 CUDA cores.
After some initial tests of using pocl-remote between the Jetson devices and the PC with
the powerful GPU, we have observed an improvement in the performance of 50% in
comparison of using the Jetson GPU when it is free and we are not doing inferences. In
addition, we can see a significant improvement if we do the estimation through pocl-
remote compared to using the ARM-CPUs. This is shown in Figure 9. Processing time
improvement is about 12x estimating Optical Flow through pocl-remote compared to
using the Jetson TX2 edge platform.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 20 of 88

Figure 9: Compare time required to estimate Optical Flow TV-L1

In summary, pocl-remote speeds up computation of the Optical Flow, decreasing the
amount of resources used on the Jetson edge device and consequently the energy
consumption at the edge.
Specific alternatives for the components and other reconfiguration actions are also
summarized in Deliverable 5.2.
Smart Grid
Regarding UC9 (Smart-Grid), the video surveillance system resulting from our
collaboration is dynamically adaptable. The workflow of the system changes taking into
account the events that occur in the monitored facility and the logic of the program itself.
So, for example, when the HumanDetector sub-component does not detect any target
in the scene, the rest of the tasks included in the other sub-components of the system
are not executed (green area in Figure 10). However, if it detects one or more targets,
the tracking of these targets is carried out by the Tracker sub-component (blue area in
Figure 10). Also, the execution of this other sub-component can trigger the generation
of an alarm through the AlarmGenerator sub-component (red area in Figure 10). More
details are given in Deliverable 5.2.

Figure 10: Smart-Grid surveillance system component composition

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 21 of 88

3.5 Reconfiguration of Time Sensitive Network (TSN)
Accurate and reliable time synchronization is key for guaranteeing deterministic Quality
of Service in the presence of mixed critical traffics. Time synchronization is required not
only in the end processing nodes, but also on the time-aware traffic shapers present on
the forwarding nodes, to provide deterministic delivery. Early fault detection and fast
switchover is required to minimize determinism violations.
The generalized Precision Time Protocol (gPTP) defined on the IEEE 802.1AS defines
protocol mechanisms to provide continuous monitoring of the synchronization status and
overcome network eventualities, such link or node failures, including the grandmaster or
network time reference.
The monitoring mechanisms are described on Section 4.3.8. This section will discuss
how these monitors are applied to adapt the behaviour of time-aware stations, starting
from each individual active interface (port role). These mechanisms conform with the so-
called Best Master Clock Algorithm (BMCA).
The Best Master Clock Algorithm
The BMCA determines the grandmaster (network time reference), as well as the
behaviour of each time-aware station to spread the synchronization information along
the network. As the breakup of this chain may imply determinism violations, the IEEE
802.1AS states that every TSN station must execute the BMCA periodically and be
ready to replace the current grandmaster and provide synchronization to their peers in
case of failure.
To this end, each time-aware station periodically compares itself with the grandmasters
elected by their peers. The grandmaster eligibility is evaluated according to six
attributes, namely the best master selection information, in the sequence listed on the
Table 1.

Table 1: Best master selection information.

Attribute name Short description

priority1 Most-significant priority declaration in the execution of
the best master clock algorithm.
Lowest values take precedence. Although all values are
allowed, 0 and 255 are forbidden under normal operation

ClockClass Traceability of the synchronized time (timing from GPS,
Atomic clock, internal oscillator).

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 22 of 88

ClockAccuracy Expected time accuracy

offsetScaledLogVariance Representation of an estimate of the PTP variance

priority2 Least-significant priority declaration in the execution
of the best master clock algorithm

Clock Identity The clock Identity is an 8-octet stream providing unique
identification of the current node.

These attributes can be classified as administrative or descriptive. Whereas descriptive
parameters provide information regarding the precision capability, the administrative
ones (priority1 and priority2) can be arbitrarily set and allow the control of BMCA for a
given network
The attributes of the elected grandmaster are propagated to the remote peers by means
of Announce messages. Besides, each node participating on the election registers itself
on the pathTrace field, conforming the time-synchronization spanning tree, which is the
route followed by the synchronization information (see Figure 11).

Figure 11: Announce message exchange and Best Master Clock election

Besides, the Announce message propagation indicates the availability of the time-aware
nodes present on the time-synchronization spanning tree. The Announce message is
discarded after a given timeout (typically three times the configured announce message
periodicity). The announce messages is not sent and not considered on reception if the
propagation delay measurement is not completed successfully (i.e. asCapable flag is
not true). Consequently, a link or node failure along the time-synchronization spanning
tree results on its reconfiguration and eventually, on the election of a new grandmaster.
The BMCA also should configure the port role on each active interface according to the
resulted time-spanning tree. IEEE 802.1AS defines the roles reported in Table 2.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 23 of 88

Table 2: Roles defined by IEEE 802.1AS

Role Explanation

Master Active interface sourcing synchronization information.

Slave Active interface receiving and processing synchronization information

Passive Active interface receiving synchronization information and backing the
slave interface

Disabled Non active interface or not available (PHY layer reporting disconnected
status)

Note that there is only one Slave Port on each interface, which corresponds to the
interface with the shortest time-synchronization spanning tree. The Passive ports have
longer spanning trees and back the Slave Port in case of network failure. This way, gPTP
takes advantage of redundant network topologies. Master ports are present in the
grandmaster and intermediate bridges and are responsible for spreading the
synchronization information to attached peers.

3.6 RIE-based reconfiguration method
RIE (Runtime reconfiguration Implementation of Embedded systems) is a component-
based implementation methodology. It allows creating C++ components from an
extension of the DSL language (SDSL, Service-oriented DSL) that was proposed on
WP2. A generator creates a C++ implementation template in which components are
implemented as classes that make use of the RIE library. RIE provides run-time
reconfiguration capabilities that allow managing component implementations and
configurations at runtime. Reconfiguration decisions are taken depending on some
qualities that are traced at runtime.
In the RIE-based methodology, a component may have several set points that define
different implementations and configuration parameters. Every component is modelled
with a C++ base class that define the component interfaces. All component
implementations derive from this base class and share the same interfaces (provided
and required services) and configuration parameters. The RIE library includes several
methods that allows access at runtime to the components and modify their set points.
Each component may have different alternatives or implementations that can be
exchanged at runtime. Each of these implementations represent a different component
mapping of the application into a physical platform, this vertical composition may be
changed dynamically in response to a monitoring result.

Figure 12. RIE Methodology

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 24 of 88

In Figure 13, the RIE
implementation strategy is shown. The RIE library provides the main infrastructure. For
example, the methods that allow modifying the component allocation or accessing the
component parameters are defined in this library. The basic components are derived
from the RIE library classes. A basic component defines the interfaces and common
parameters and qualities of a component. All the implementations of the basic
component will share the same interfaces and common parameters/qualities. All the
implementation are derived from this basic component. These implementations could
provide different algorithms or specific implementations for a particular hardware
resource. They could also have specific parameters or qualities. For example, a Camera
component could be a basic component. This component could have several
implementations (USB camera, Hardware camera, etc) that are derived from the base
components and share the same interfaces. The base component and its
implementations share a configuration list, a JSON string with all recognized component
configuration. This list can be modified at runtime and new component implementations
could be included. An example of camera configuration is:

Camera_configuration = [
 { "s0", {"RIE_Impl":"Camera","fps":30," RGB_W ":640, …

{ "s1", {"RIE_Impl":"CameraUSB","fps":30," RGB_W ":640, …
{ "s2" ,{"RIE_Impl":"CameraHW",…

The list defines three set points (s0, s1 and s2). At runtime, the RIE library provides a
method (reconfigure) that allows modifying the component set point and parameters.
Some component parameters are defined in the RIE methodology. For example, the
“RIE_Impl” parameter defines the derived class that will implement the basic component
in a particular set point. The RIE reconfiguration process includes four stages:

1. Initialisation. The RIE library provides a method (reconfiguration) that allows
initializing the reconfiguration process. This method is executed by the runtime

Figure 13: RIE implementation strategy

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 25 of 88

manager that could be a system component (self-reconfiguration). The runtime
manager selects the new system configuration.

2. Place the system in a safe state. The RIE infrastructure accesses all the system
components and executes a component specific stop instruction. This instruction
forces the component to change its state. This process could require some time
because some components could need time to finish the current task. For this
reason, the RIE library checks the component state until all the components are
in a safe state.

3. Component reconfiguration. Taking into account the system hierarchy, the RIE
library modifies the parameters and implementations of the system components.

4. System resume. After system reconfiguration, the RIE library sends a component
specific command (resume) in order to re-initialize the component operation.

RIE also supports edge component implementations. In this case, the component
configuration has to include three parameters:

• RIE_Impl: This parameter defines the local implementation of the remote
component. This implementation is a wrapper that includes the local
infrastructure that is required to execute remote procedures. The current RIE
version supports a socket-based local infrastructure although the new version
will provide a grpc (https://grpc.io/) services.

• RIE_RemoteSetPoint: Set point of the remote component.
• RIE_URL: The component configuration does not define the remote server that

will provide the component services. The configuration only includes a label
(RIE_URL) that has to be defined at runtime. During reconfiguration, the RIE
library uses this label to find the remote server that will provide the service.

In the case of remote/edge components, the component reconfiguration process
requires seven additional steps:

1. When the local component is in a safe state, the local implementation is modified.
The new local component implementation is an instance of a wrapper component
that is used by all possible remote/edge implementations.

2. The RIE library read the RIE_URL parameter and requires from the Component
Implementation Server (CIS) all the information related with the RIE_URL
parameter. In the RIE methodology, the CIS server has a similar role to a DNS
server. The CIS server defines the URL of the server that will provide the
component services as well as the component name in the remote server.

3. The local RIE infrastructure requires to the remote RIE infrastructure information
about the remote component.

4. The local provided services are connected to the remote component services.
5. The remote required services are connected to the local component required

services.
6. The remote component is reconfigured to the set point that is defined in the

RIE_RemoteSetPoint parameter.
7. The remote component is included in the component list of the local system.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 26 of 88

An SDSL example is shown below (see Figure 14 and Figure 15), where a Camera
component has 2 different set-points with different implementations and different
configuration parameters (fps, latency, …) which will be monitored to analyse if
reconfiguration must be taken.

In this

example they can be observed component parameters as well as qualities (associated
to monitor parameters).
A component can also have different functional implementations, so a component can
be replaced by another one sharing common interfaces. An SDSL example description
is shown below, where a component ImgProc has 2 different functional implementation
Rgb2gray and Sobeledge, they have the same interfaces but different functionality, so
one can be replaced by the other one.

Figure 14: Camera component

Figure 15: Different set-points for the Camera component

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 27 of 88

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 28 of 88

 Runtime Monitoring, Profiling and Measuring
This chapter describes the monitoring, profiling and measuring support developed within
the FitOptiVis project, and also reports preliminary practical setups related to FitOptiVis
use cases. First, a reference platform for monitoring systems in FitOptiVis is proposed:
this platform allows to highlight how specific monitoring requirements are going to be
addressed from partners. Then, some enabling solutions to perform monitoring in
FitOptiVis are described: they came out after the analysis of requirements coming from
use-case providers, WP3 (monitor to refine design-time models) and WP4 (monitor for
runtime management), and their goal is to support on the development of monitoring
systems. Finally, instances of monitoring systems constituting the FitOptiVis platform
are described, following the proposed reference platform.

4.1 Reference Platform for monitoring
With the goal to properly identify the monitoring techniques developed within the
FitOptiVis project, a reference architecture of a cloud-edge computing system has been
considered, shown in Figure 16. In this type of architectures, monitoring techniques can
span at different levels, from cloud to edge; moreover, for each level a monitor can be
software of hardware, albeit mainly requiring the synergy of both. This means that the
development of monitoring systems in FitOptiVis scenarios, and corresponding system-
level services, involves several trade-offs from architectural point of view.

Figure 16: A reference architecture for Cloud-Edge computing systems [ZAN18]

For these reasons, a reference model of a monitoring action has been developed, with
the sake of clarity. It is reported in Figure 17 and shows the actors involved in a
monitoring action. Independently on how many layers are involved, some components
can be always identified: a Unit Under Monitoring (UUM), a monitoring infrastructure that
extracts raw information from the UUM by means of hardware/software mechanisms,

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 29 of 88

and a Data Storage, Analytics and Visualization part that organizes, filters and parses
the raw information to obtain the monitoring information.

Figure 17: Reference model of a monitoring action.

4.2 Enabling Solutions to perform monitoring in FitOptiVis
In the context of Task 4.2, basing on the requirements provided by (i) Use case
providers, (ii) WP3 tasks (related to design methods refinement using runtime
information) and (iii) WP4 tasks (related to runtime actions starting from runtime
information), some solutions have been identified and developed in order to support on
the construction of monitoring systems.
In particular, CUNI developed FIVIS, a common data storage, visualization, and analysis
platform. UC developed an extension to DSL that allows the expression of monitoring
requirements during the model creation using the DSL [D2.1]. UNIVAQ, UNISS and
UNICA developed AIPHS, a framework to build custom monitoring systems at the edge.
This section reports details about these enabling solutions.

4.2.1 FIVIS data storage, visualization and analytics platform
Monitoring is one of the key components of adaptive systems based on the MAPE-k
loop paradigm, because it provides basis for adaptation decisions. In general, monitoring
requires the ability to periodically store a system-specific set of metrics associated with
a point in time or with an observable state of a system, and to present the collected data
to consumers.
In the simplest form, the data can be consumed in visual form through plots and domain-
specific dashboards and adaptation can be driven by human decisions. Alternatively,

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 30 of 88

and more in line with MAPE-k paradigm, the data can be processed and analysed by a
machine and reacted to in an autonomous fashion, which requires the monitoring system
to also support external access to the stored data and support time-based queries to
allow the data to be analysed and acted upon.
Depending on the frequency and the amount of data stored for each observation, the
amount of data matching a particular query may become too large to send (potentially
repeatedly) to clients across network for analysis. A monitoring system should therefore
support some form of scalable data analytics to avoid transporting huge amounts of data
to clients and instead transport only aggregate analysis results.
To this end, CUNI is building a common data storage, visualization, and analysis
platform, FIVIS, which will provide partners with the ability to store data in a central
location, build custom dashboards, execute analytic tasks, and query both data and
analysis results.

4.2.1.1 Overview
The FIVIS system provides support for aggregating data from multiple sources and
enables executing customized analyses on the data to provide content for customized
dashboards and reports consumed by humans, as well as transformed data streams
suitable for consumption by machine, e.g., components responsible for adaptation of the
monitored system. To aid with creating custom visualizations, the system provides
predefined widgets for displaying data using different types of charts (line chart, bar
chart, pie chart, legend) and other elements (time range selector, data access).
Additional types of charts for statistical visualizations are envisioned (XY chart, violin
plot, box plot). Specific visualizations are created through a web-based interface
provided by the system.
The system is intended to interact with different kinds of users. An end user is a
consumer of custom visualizations and reports embedded in a use-case specific user
interface panel. An end user is expected to select or change domain-specific parameters
of the visual outputs, but not to define new visualizations. These are defined by an
administrator (use-case or partner specific) by configuring and deploying panels into the
use-case specific user interface, choosing which data sets to display in which panel. No
programming skills are necessary. The final type of user is a contractor, who is
responsible for creating visualization templates. These templates instantiate widgets
and other elements that make up a particular panel. Each template is a snippet of
JavaScript code which binds all the elements of a panel together. A contractor is
expected to possess a basic knowledge of web development technologies, such as
JavaScript, HTML, and CSS.

4.2.1.2 Architecture
The architecture of the system is shown in Figure 18. The system consists of a server
part hosted on the system provider’s infrastructure and a client part, which executes in
a web browser.
The server part is responsible for managing the data and for providing API endpoints for
different tasks and users. A data entry API endpoint (Data Sink) allows external systems

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 31 of 88

to store (push) signal data into the system. Alternatively, the system can use an
application-specific data pump to pull data from an external system.
Signal data represents master data obtained through observation. The system keeps
the master data in a MySQL database, but generally works only with data in a temporary
storage provided by the ElasticSearch framework. All master data are initially indexed
by ElasticSearch, but all data derived from the master data (filtered or smoothed data,
trends, etc.) are only kept in the temporary storage.
To ensure that the visualization widgets in the client remain responsive when dealing
with large data sets, the system needs to avoid sending all the data matching a query to
the client for rendering. Instead, the system computes all aggregates on the server side
and only sends to the client data points that will be actually visible. This requires
computing a significant number of aggregates in a short time (in response to information
about the user’s viewport and selected data).
To this end, the system uses a combination of the ElasticSearch framework, which
serves as a distributed noSQL database providing near real-time searches and
aggregates, and the Spark framework, which provides scalable computational platform
for data analytics. Analytic data can be included in visualizations and even though they
can be always recomputed from master sensor data, they are kept in ElasticSearch to
improve performance. Using ElasticSearch and Spark allows scaling the computational
resources as necessary to provide smooth user experience.

Figure 18: Architecture of the FIVIS system

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 32 of 88

4.2.1.3 Data Model
The system defines a simple meta-model for sensor data, i.e., the data stored
persistently in a database. The meta-model is shown in Figure 19 below. The data are
conceptually organized into uniquely identified signal sets. Each signal set groups one
or more signals, where each signal represents a stream of typed values from a sensor.
Each signal set is described by a schema, which contains an ordered set of signal
descriptors, one for each signal. A signal descriptor captures signal name and the type
of values produced. The system currently supports logical (Boolean), numeric (Integer,
Double), textual (String) and temporal (DateTime) values.
Actual data are stored in records, each of which contains an ordered set of typed values.
The ordering of values corresponds to the ordering of signals in the schema. The system
does not interpret the data in any way; the only requirement is that each entry has a
unique identifier with a defined (ASCII) ordering. This allows the system to keep track of
sensor data to determine if and where new records were inserted. This is necessary for
proper scheduling of data analysis tasks – if new sensor data are appended to the
existing data, the system may only need to schedule incremental analysis of the new
data. If (for some reason) data are inserted in the middle of existing data, the system
may need to recompute the analyses for all data.
Any other interpretation of the data (including whether the data represent a time-series
or just a sequence of values without any notion of time) is left to the analysis tasks and
the visualizations.

Figure 19: Meta-model of master (sensor) data in persistent storage

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 33 of 88

4.2.1.4 Data Server Interface
The Data Server part of the system provides an interface for data entry. Two modes of
operation are envisioned (but only one is implemented so far):

• Push mode. This mode allows an application to push sensor data to the system
in form of JSON payload transmitted through a REST endpoint. The frequency
of updates and the amount of data transmitted is determined by the application
(device) and typically depends on the capacity of internal buffers, connectivity,
and available processing capacity.

• Pull mode. This mode is intended for devices that cannot push data to a REST
endpoint, either because they completely lack a network stack, or because they
do not have sufficient resources to issue an HTTP request with JSON payload.
In this case, we envision the system to poll the device through a remote agent
which would be responsible for obtaining the data from the device locally, in a
device-specific fashion, and converting it to the expected JSON payload. No
device-specific data formats or agents have been defined so far. Partners
interested in using the system in this mode should contact the system provider
(CUNI) for assistance.

Signal Data Payload
The JSON document with sensor data is represented either by a single payload object,
or an array of such objects. A payload object is a dictionary with four keys, some of
which can be optional under some circumstances:

• partnerId: string, identifies a particular partner. This field is required.
• signalSetId: string, identifies the signal set to which to store the data. The value

of signalSetId together with partnerId make up a unique identifier (in the form
"partnerId:signalSetId") of a signal set in the system. This field is required.

• schema: object, defines the name and type of data for each signal in a signal set.
Schema is an object with named slots, where the name of a slot corresponds to
signal name and the string value of a slot denotes the signal type (currently one
of boolean, integer, double, string, and datetime). This field can be omitted (in some
cases).

o Including the schema with each payload object allows adding new signals
to the signal set on demand. However, leaving out an existing signal will
cause the server to reject the payload to avoid deleting signal data by
accident.

o The schema object can be omitted if there is no need to add new signals
to the signal set. However, in most cases, including the schema object in
the payload should not cause noticeable overhead and allows to capture
the state of migration when extending the signal set.

• data: object[], which contains records with signal values. Data is a collection of
objects, each representing a single record with signal values. Each record object
has named slots, with slot names corresponding to signal names, and slot values
holding signal values. Each record must have a slot named id, which represents
a record’s unique identifier. The identifier is free-form and providing the identifiers
is the responsibility of the application. The only requirement is that ASCII
ordering is well defined on the identifier, because the system uses it to establish
record ordering.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 34 of 88

The following listing shows an example of sensor data payload in the JSON format. The
schema defines four signals with different types, and provides two data records which
provide a record identifier in addition to signal values:
{
 "partnerId": "XXXX",
 "signalSetId": "YYYY",
 "schema": {
 "ts": "datetime",
 "sig1": "integer",
 "sig2": "double",
 "sig3": "boolean"
},
 "data": [
 {
 "id": "0001", "ts" : "2019-02-20T18:25:43.511Z",
 "sig1": 12, "sig2": 34.2, "sig3": true
 },
 "id": "0002", "ts" : "2019-02-20T18:25:44.000Z",
 "sig1": 12, "sig2": 34.2, "sig3": true
 }
]
}

Posting Signal Data
Signal data has to be posted to a REST endpoint. The URL of the endpoint is determined
by the system operator. The system is currently operated by CUNI, but by the end of the
project, we aim to provide a virtualized appliance that can be run by any partner privately
The Content-Type header of the POST request should be set to application/json and the
request should contain an access-token header with a token that can be generated/reset
in the client user interface of the FIVIS system. The following listing shows the payload
from the example above being posted to the system using the curl utility:
curl https://api.FIVIS.smartarch.cz/api/signals
 --request POST \
 --header "Content-Type: application/json" \
 --header 'access-token: 8e3f4bf6bec954b40a0ec08ab0dc0c11d0d18fed'
 --data ‘{
 "partnerId": "cuni",
 "signalSetId": "test",
 "schema": {
 "ts": "datetime",
 "sig1": "integer",
 "sig2": "double",
 "sig3": "boolean"
 },
 "data": [
 {
 "id": "0001", "ts" : "2019-02-20T18:25:43.511Z",
 "sig1": 12, "sig2": 34.2, "sig3": true
 },
 {
 "id": "0002", "ts" : "2019-02-20T18:25:44.000Z",
 "sig1": 12, "sig2": 34.2, "sig3": true
 }
]
}’

For embedded devices with limited support for shell or Python, a simple FIVIS client
library utilizing libcurl and an example CPU monitoring application supporting
batched/delayed data transmission has been made available at GitHub:
https://github.com/d-iii-s/FIVIS-client

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 35 of 88

Alternatively, a plugin to the Telegraf system agent is under development, which allows
monitoring data to be sent to FIVIS in addition to other data storage, analysis, and
visualization systems.
Computed Signals
A signal set can contain additional signals that are computed from other signals in the
same record. This is useful for rudimentary filtering, e.g., for clamping or filtering values
that exceed reasonable range, or for fixing data that are known to be broken in a certain
time period. This approach allows leaving the master data intact, yet visualizes correct
data.
For example, lateral and longitudinal acceleration calculated from GPS data can
produce signals with high variability. If this is a problem for subsequent analysis or
visualization, one solution would be to average the calculated acceleration over a longer
time period, or clamp/filter out values that don’t make sense. If we are dealing with GPS
data from a car, we can reasonably assume that any kind of acceleration outside the
range of [-2.0, 2.0] G is extremely unlikely for a normal car with normal tires, and we can
therefore clamp or filter out such values.
To do that (while keeping the master data intact), we can create an additional signal of
type Painless Script, and define an expression which produces the value of the signal
based on the other signal values in the same record. In Painless Script, the document
values (in our case the record containing signal values) can be accessed from a
dictionary object named doc.
To clamp values to a specific range, we could use the following script:
return Math.min(Math.max(doc.{{lat_acc_g}}.value, -2.0), 2.0)

Alternatively, we could filter out values outside a given range using the following script:
def value = doc.{{lat_acc_g}}.value;
return (-2.0 < value && value < 2.0) ? value : null;

4.2.1.5 Data Processing
The IVIS framework underneath FIVIS provides the concepts of tasks and jobs to enable
additional data processing. These make it possible to write custom programs which
process existing data, or gather additional data from other resources. The framework
provides a basic UI for coding, and a mechanism for job activation.
Tasks
A task is an element containing code, files and the definition of parameters. Each task
has a type, and is handled according to that type. Two tasks differing in type may use
different libraries, or completely different programming languages. A task is not directly
executable – it represents a template computation on a certain type of data, but does
not define where the data comes from. Instead, it defines parameters which allow
passing this information into a task, and these are configured in the context of a job.
Jobs
A job holds the configuration parameters for a task, i.e., it instantiates the computational
template defined by a task. Multiple jobs can utilize the same task with different
parameters. A job can be activated either manually, or triggered automatically.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 36 of 88

The framework provides the following triggers for job activation:

• Periodic trigger, which allows running jobs repeatedly with a set period, and
• Signal set trigger, which allows running jobs whenever new data is added to a

given signal set.
The execution of jobs can be moderated by specifying additional conditions:

• Minimal interval, which ensures that a job only runs when a set interval since
last run has elapsed, and

• Delay, which delays the execution of a job for a set interval after it was triggered.

4.2.1.6 Client Interface
The FIVIS system provides means for creating custom data visualizations built using
web technologies. These visualizations can be embedded in any web application, and
they can be also displayed in directly in the client user interface, organized into
dashboards. To enable parametrization and reuse, the visualizations are built using the
following concepts.
Workspace
A workspace is a top-level concept which groups related panels and their configuration.
The framework provides UI elements to navigate to the workspace and to the panels it
defines. The framework cannot display any data without a workspace with panels.
Panel
A panel is an element that provides a particular view of data in a particular workspace.
Technically, a panel holds configuration parameters (if any) for an instance of a
visualization template, which does the actual rendering. All panel parameters (including
its name and description) are specific to a particular workspace. A workspace without
panels does not display anything.
Template
A template is the most important element of the visualization framework because it does
the actual rendering. In contrast, workspaces and panels are just containers. A template
defines how to display data with a particular structure. Technically, a template is a
React.Component which can receive parameters and defines how to visualize the data.
React component can also keep state information and modify the visualization in
response to state changes.
The framework provides a number of predefined components to enable rapid
development of simple dashboards. Some components provide support for plotting of
data from the ElasticSearch backend, while other components provide UI elements that
can be used for selecting signals or time ranges to be displayed. When using the
predefined components, most of the template code usually deals with constructing
configuration objects which tell the components which data to display and/or where to
store their state (in case of stateful components).

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 37 of 88

External Parameters
Visualization templates are necessarily going to be tailored to specific use cases. It often
requires making assumptions about the kind of signals found in a signal set. These
assumptions will be usually encoded in the template code, but in general developers
should strive to make templates as flexible as possible.
To enable such flexibility, templates can accept external configuration parameters which
are associated with an instance of a template in a particular panel of a particular
workspace. This allows using a single template to display signal data from different
signal sets, as long as the signal data can be interpreted in the same way. The names
of the signal sets and the signal names can be provided from outside to make templates
independent of data storage and management concerns. Similarly, external parameters
can be used to control certain aspects of a component’s output, e.g., a message to
display, or a color to use.
Template parameters are described by a JSON snippet which contains an array of
parameter specifier objects, one per template parameter. When instantiating a template
in a particular workspace panel, the framework provides a simple editor for each
template parameter so that the template can be provided with parameter values specific
to that particular template instance.
Further details related to definition of template parameters and accessing them from
template code will be available in technical documentation which is under development.
Plotting Components
The client part of the system provides a number of predefined plotting components.
These are intended to be used in templates to visualize different kinds of data, while the
role of the templates is to handle the configuration of and interaction with the plotting
components.
The system currently provides plotting components to support the following charts:

• Line charts
• Area charts
• Pie charts
• Histograms

Creating new plotting components requires extending the underlying framework.
Support for additional chart types, such as violin plots, are under development.
The system also provides a set of auxiliary user interface components which allow the
user to select a time range, define chart legends, and pick signal sets, signals, and
colors.

4.2.1.7 System Status
The system is currently in a prototype stage, with both human-machine and machine-
machine interfaces still under development. An instance hosted by CUNI has been set
up and allows interested partners to store sensor data (push mode) in the system
through a REST endpoint. Application-specific data pumps (pull mode) are not yet
supported. CUNI works with interested partners on development of initial visualization
templates and panels suitable for particular use cases.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 38 of 88

4.2.2 DSL extension to express monitoring requirements
UC has extended the QRML DSL developed in FitOptiVis (reported in D2.1) in order to
support monitoring requirements. The main objective is to provide automatic monitor
code generation from DSL extension SDSL.
The DSL extension includes a new language feature (monitor) that allows defining
monitors. The monitor definition is independent from a particular component; the same
monitor type can be used in several components.
The monitor type declaration identifies the monitor and defines two fields:

• Provider: This field allows identifying the agent that provides the traces and it
depends on the tracing implementation. For example, in FIVIS the provider is the
FitOptiVis partner.

• Event: list of signals traced by the monitor.
Figure 20 provides an example of a monitor declaration (VideoTrace) using SDSL.This
declaration is oriented to a FIVIS implementation.

In this case, the monitor
(VideoTrace) includes a trace provider (unican) that is a FitOptiVis partner name. This
is a FIVIS constraint but it is not required in other implementations such as lttng. The
example also includes an event (Performances), although the language supports an
arbitrary number of them. The event declaration defines the type of every signal that will
be monitored. It is interesting to highlight that the component name (“Comp” signal of
“undef” type because string is not a DSL supported type) and the time in which the event
is captured (timeStamp) are included in the event signal list for FIVIS-oriented monitor
generation.
The monitor types are instantiated in the components. For example, Figure 21 includes
a monitor (monitor1) in the “Display” component. The “usesmonitor” reserved word is
used to declare the instance. The monitor signals (EstimatedFps. performances.
monitor1 and Latency. perfomances. monitor1) are associated to the monitored
component qualities (EstimatedFps and Latency). The FIVIS oriented signals (Comp
and timestamp) are not associated to component qualities because the generator
produces specific code for them. Additionally, the generator provides a method
(trace_Performances) that allows reporting the event signals from the user code to the
tracer. This methodology allows tracing user-defined parameters. In order to trace

Figure 20: Example of SDSL monitor description

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 39 of 88

platform parameters (e.g. percentage of used CPU), a specific platform monitoring
component is normally required.

Figure 21: Example of monitor instance in a component

4.2.3 AIPHS framework to build custom edge monitoring systems

4.2.3.1 Overview
In this section, an enabling solution targeting edge-computing devices is presented.
Specifically, a framework to support in the runtime monitoring part of the MAPE-K loop
is proposed: AIPHS (acronym of AdaptIve Potential Hardware Profiling System) allows
the generation of monitoring systems targeting architectures implemented on FPGAs.
AIPHS starts from a basic library of elements [D5.1], takes as input the monitoring
requirements and the hardware architecture, providing as output a monitored system.

4.2.3.2 Monitoring system composition
AIPHS is based on a library of hardware elements written in VHDL. Basing on monitoring
requirements, the framework generates a number of hardware monitors, distributed
within the hardware architecture. The framework allows to generate monitoring systems
that satisfy different requirements, expressed by means of metrics. The list of currently
supported metrics is reported in D5.1.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 40 of 88

Figure 22: Monitor generation in AIPHS

The monitoring systems automatically generated by AIPHS are based on a number of
sniffers (S) distributed within the hardware architecture of the system under monitoring.
The generation of monitoring systems is reported in Figure 22: each sniffer is built by
using IP-cores part of three different libraries. In particular, each sniffer has a nucleus,
an adapter, and a global monitor interface (GMI). The adapter takes input from
monitored interconnections (interconnection dependent signals) and feeds the nucleus
with interconnection independent signals. In turn, the nucleus processes its inputs
through two elements, namely event monitor and time monitor, that perform the
monitoring action. They are both highly configurable and the nucleus results are written
on a set of registers. Finally, the GMI is able to communicate with the information
collector.
By taking as input the metrics to be monitored and the target hardware of the unit under
monitoring, the framework automatically:

1) builds the first part of the sniffers by using the content of the LIB_NUCLEUS
library;

2) builds the adapter and the GMI by using, respectively, the content of LIB_ADAP
and LIB_GM libraries.

The current composition of the three libraries is reported in Table 3.

Table 3: Current composition of AIPHS libraries.

Library Elements
LIB_NUCLEUS Event Monitor Unit, Time Monitor Unit

LIB_GM (i.e., how to send monitor results) Xilinx FSL [XIL12], AMBA APB
[ARM10], AMBA AXI [ARM19]

LIB_ADAPT (i.e., what can be monitored) Xilinx LMB [XIL16], Xilinx FSL [XIL12],
AMBA APB [ARM10], AMBA AHB

[ARM12], AMBA AXI [ARM19]

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 41 of 88

4.2.3.3 Interface
AIPHS is provided with bare-metal APIs to interact with the generated monitors. In the
next future, Linux based APIs will be provided. Automatic parsing of the logs produced
by the monitors built using AIPHS by using the Common Trace Format [CTF20] will be
also provided.
The log file structure of the raw information exhibits a similar structure to the one
reported in the work in [KOR13]:

Table 4: Structure of event instances of the monitoring systems generated by AIPHS

EVENT_ATTRIBUTE EVENT_ID EVENT_INFO

Each field is further customizable, depending on the application.
Example of application of AIPHS generated monitoring systems to an indoor localization
algorithm, executing on Leon3 processors, is reported in Figure 23. Two sniffers are
generated: s1 monitors the runtime execution of the application running on top of Linux
user space (s1 is generated with NUCLEUS=Event Monitor Unit, GMI=AMBA APB,
ADAPTER=AMBA AHB), while s2 monitors the correct behaviour of AMBA AHB system
bus, triggering issues toward the external (s2 is generated with NUCLEUS=Event
Monitor Unit and Time Monitor Unit, GMI=AMBA APB, ADAPTER=AMBA AHB). The
monitoring information are sent to Leon3 processors.

Figure 23: AIPHS generated monitors on Leon3 based platform.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 42 of 88

4.3 Instances
The development of monitoring systems in FitOptiVis scenarios, and corresponding
system-level services, involves several trade-offs from architectural point of view. In this
section, the monitoring solutions developed in Task 4.2 to satisfy the different
requirements are reported.

4.3.1 Monitoring in 3D industrial inspection system
ITI is developing a 3D Industrial Inspection system which is designed to use sixteen
edge computer boards connected to the same number of cameras. In order to manage
the state of this hardware, a plugin for Telegraf, an agent that collects time series data,
is being created. Each required device or application will push information to the
monitoring software hosted in a central server (FIVIS). This server receives the events,
stores them, and shows the data through a graphical environment.

Monitoring Requirements
The 3D Industrial Inspection use case developed by ITI (Zero Gravity 3D) requires a
monitoring system at the edge, featuring a minimal intrusiveness and very small
bandwidth consumption. The level of intrusiveness depends on the time interval of
monitoring events, however, even with a small interval, the intrusiveness should be
minimal. As a general requirement, monitoring must not affect memory and timing
performance at the edge. In other words, this process must not delay in any way the
tasks performed on the edge capturer. This restriction can be partially avoided dividing
the monitoring application into two parts. First, the client-side agent which is responsible
of pushing events. This program accomplishes the minimal and non-intrusive
requirements. Secondly, the server-side, which can be installed on a different dedicated
computer, is in charge of storing the received data and providing the graphical user
interface.

Regarding the information to be gathered, Zero Gravity 3D collects the following data
for monitoring its state:

• Network bandwidth.
• Throughput, measured as parts per minute.
• CPU load.
• Memory usage.

Unit Under Monitoring
ITI’s Zero Gravity 3D is built including sixteen edge computing boards. These devices
must be monitored in a non-intrusive way and all the data produced must be sent to a
central storage to be interpreted.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 43 of 88

Monitoring Infrastructure
Telegraf is a monitoring agent that collects data from different sources such as services
like databases or web servers and computer built-in sensors. Using Telegraf plugins,
data can be filtered, transformed, decorated and finally stored on a file or sent to a
database or any other software. Ideally, the data can be transmitted to a server providing
storage and computational resources to host an application offering a graphical user
interface. This agent software has been installed on all the sixteen edge boards of the
3D Industrial Inspection Case and ITI has created a plugin for sending data to FIVIS, the
software that plays the role of the aforementioned storage server (see Figure 24). The
plugin is based on a Telegraf Json serializer so, it will be consistent with Telegraf
architecture and provides the serialization of data into a JSON document which is
compatible with FIVIS.

Figure 24 Telegraf data flow

This monitoring scenario can be extended to other use cases of FitOptiVis. The agent
and its plugin can be installed on almost any device capable of running Linux and, in this
way, the device will send the information collected by Telegraf to FIVIS.

Data Storage, Analytics and Visualization
FIVIS is the monitoring tool featuring the storage capability indicated above and the
creation of dashboards from stored data. As said before, ITI has developed a standard
Telegraf plugin which can be installed easily on any device capable of running Linux.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 44 of 88

This solution provides a way to send data to FIVIS monitoring tool (see Figure 25)
reducing the development effort and giving access to many data sources such as
databases, network, CPU, memory usage and board sensors.

Figure 25 Telegraf plugin block diagram

4.3.2 Heterogeneous Distributed Computing Adaptation Monitoring
In the OpenCL-based heterogeneous distributed software stack, runtime monitoring
data will be exposed to the application developer or the adaptation layer via an OpenCL
device layer extension under development. Its completion targets the Deliverable D4.4
due in M30. This data will be used by the adaptation layer to choose different target
devices (local or remote) and kernel variations (use a simpler algorithm with worse
quality results or a more complex one with better results). In case of changes in
condition.

Monitoring Requirements
Since the FitOptiVis software stack is a distributed stack which includes heterogeneous
platforms with various type of devices having different characteristic, optimizing the
computation globally is challenging. Therefore, it is crucial to produce accurate and
interference free profiling data of the application execution globally within the distributed
context.
So far during the design of the adaptation layer on top of the pocl-remote, we have
identified the following data one needs to monitor to drive automatic adaptation and
reconfiguration:

• Compute clusters in the close proximity: probing that happens whenever
network connectivity changes in a roaming situation. This is to discover available
compute resources to remotely offload computation to. After “the platform
discovery”, the information of the found remote devices is given using standard
device queries of the OpenCL API. This information can be used to assess if a
more complex algorithm could be executed beneficially in the remote node.

• Network condition (latency, bandwidth) to the connected compute cluster. This
information is used to drive the adaptation algorithm that figures out if offloading
to the remote compute node is beneficial and can be done within the latency
requirements of the application.

• Device occupancy. In the first version, this only gives information of availability
of the device for the remote ones. No resource sharing in the remote is yet
supported. However, for the local devices, monitoring of the local devices

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 45 of 88

(CPU/GPU utilization) is needed since it also drives the decision of when
offloading is feasible or not.

Unit Under Monitoring
The distributed heterogeneous software runtime encompasses the whole execution
environment, both locally and in the optional remote servers. The monitoring system
thus executes in the “host” (the local device) fully, or partially, in case there are remote
resources that are being monitored. In that case the remote driver or the pocl-daemon
is responsible of collecting the data from the monitored compute devices.

Monitoring Infrastructure
As of M24, the monitoring infrastructure in pocl-remote is still under development and
prototyping. A runnable demonstrator is expected to be ready by M30 with at least the
primary monitored characteristics supported.
The profiling data that provides a global view to the application optimizer (to help design
time optimizations of WP3) and the runtime adaptation layer of WP4 includes the start
and end times of the kernels and their connections (dependencies) via events and
shared input or output buffers. For providing the profiling data, a lightweight tracing
capability was added to pocl infrastructure. It can be enabled by setting environment
variable POCL_TRACING=cq. The implication of this setting is that all command queues
get automatically their profiling data flag set on after which they start producing event
time stamp information which can be collected lazily (whenever there’s a suitable spot
in the application execution with minimal interference to the collected data) and pushed
to the data collection server FIVIS lead developed by CUNI.
At M24, the basic non-intrusive time stamp collection infrastructure was added and
published in the open source POCL branch. What is left for the next period to do is a
component that feeds this data to the FIVIS data collection server for visualization
purposes.

Data Storage, Analytics and Visualization
The data collection server has an UI that is responsible of visualizing the data which will
be utilized in application optimization. At least a swimlane visualization of tasks
executing on the distributed devices is planned.
Also other interfaces/analyzers for the data are developed so it can be inspected locally
to produce feedback to the application design time (WP3). One of them is a Chromium
based one, which utilizes the web request breakdown visualization integrated in the
Chromium web browser engine for visualizing the execution in a swimlane-type manner.
The profile data collector is also designed in such a way that it can help runtime
adaptation decisions in the developed automated adaptation loop: For example, auto-
tuning of kernels (which implementation, parameters of the implementation) can be
performed during the application execution when such a feedback loop has been
implemented. This is accomplished by separating the collection of the data from the
parts that push/dump the data for the consumers.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 46 of 88

4.3.3 Monitoring systems for reconfiguration for Habit Tracking and
Smart Grid

UGR is developing a component for monitoring the elderly at their own home for the
Habit Tracking UC and a smart video-surveillance system for the Smart Grid UC. In both
cases, UGR is considering run-time reconfiguration based on different metrics explained
in the subsequent sections. The reconfiguration impacts both, the hardware resources
and the software components that we run on the available platforms. In both our
components, UGR sends monitoring data to the FIVIS platform, to visualize the metrics.

Monitoring Requirements
In the first place, as we are working with different NVidia SoCs (Jetson TX2 and Xavier),
we are interested in monitoring the platform metrics shown below because it helps us to
know the performance of our system. As well as the use of the different hardware
components (CPU and GPU).

● Temperature: it is monitored in Celsius (ºC). We are able to measure once every
second the temperature of the below components, independently.

○ Mainboard
○ CPU
○ GPU

● Power consumption: it is monitored in Watts (W). We are also able to monitor
it for the next hardware components at least once per second.

○ CPU
○ GPU
○ RAM

● Performance mode: This platform is capable of changing its behaviour and its
available resources at runtime. So, changing the operating frequency of the CPU
and the GPU will provide different performance of the system, and also different
values of power consumption and temperature. For this reason, we want to know
the current operating mode active at any given time in order to find out what
resources are being used. Each performance mode has an unique id and we
measure it every time it is changed.

Habit Tracking use case
In the Habit tracking use case, we are measuring some qualities that will help us make
decisions to do some reconfigurations of the system.

● Neural Network Performance: It is measured in frames per seconds (FPS).
Inside the system we have Deep Neural Networks that analyse a video stream
and outputs the confidence of which indoor action has been performed. It is
measured every time a Deep Neural Network does an inference over a batch of
frames. This helps us monitor if the system is working in real-time.

● Deep Neural Network evaluation metrics: We have trained several neural
networks that offer a different ratio of their power consumption and provided
accuracy. Thus, we have measured the quality of each model in terms of
accuracy, F1-Score, Precision and Recall over a common test set with action
videos. This is computed only once when the neural model is created. In this
way, we are able to compare the models that we have, and we will adapt the

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 47 of 88

target model according to the system requirements. This metric is measured
every time the Deep Neural Network is changed due to a reconfiguration.

● Confidence of recognized actions: When a video stream is fed into the system,
we get the probabilities of which action has been performed in a sequence of
frames. Recording this information is useful because it can give us an idea of the
system accuracy and requirements. For example, if for a period of time the
current active neural model is not capable of distinguishing between two actions,
we can reconfigure the system and use a better but more complex model, that
will also use more resources but that achieves better accuracy according to the
tests done previously on the available benchmarks. It is measured every time an
inference over the video is performed.

Smart-Grid Surveillance system use case
In order to carry out re-configurations in our system, we monitor certain metrics specific
to the video-surveillance task and the quality of the classification of the machine learning
models involved:

● Edge performance: Measured in frames per second (FPS). Since it is a
distributed system with a server-node structure, the performance of the software
running on each of the components must be evaluated to determine whether the
requirement for real-time operation is met.

● Cloud software performance: Measured in frames per second (FPS). Similarly
to the above, it has to be determined whether the software on the server side is
running to meet our real-time requirements.

● Joint system performance. Measured in frames per second (FPS). As it is a
distributed system, the aggregated performance of the system has to be
determined jointly, considering both the part that is executed at edges and the
part of the system is executed at the cloud/server.

● Confidence in people detection: Given anomalous situations in the scene, in
which certain regions of interest are analyzed, this metric provides a measure of
confidence in which it is reported whether each of these anomalous situations is
given by the presence or absence of a human subject.

● Similarity in people re-identification: When one or more people are detected,
the extraction of characteristics for re-identification is carried out using the history
of monitoring carried out to date. By comparing these characteristics of the
identified subjects with those of the previously identified subjects, a similarity of
re-identification is generated. This similarity metric serves to alert us if a new
human subject appears on the scene, not yet considered, and which could give
cause to reconfigure the system in some way in order to clarify a possible
intrusion.

Units Under Monitoring
Smart-Grid and Habit Tracking Use Cases both make use of two main types of platforms
to operate. Firstly, the work of both systems at node level, is carried out in one or more
System on Chip (SoC) NVidia embedded platforms.
For the Habit Tracking UC we will only use the Jetson Xavier edge node, while the Smart
Grid UC will make use of a Jetson Xavier edge node and a Jetson TX2 edge node. On
the other hand, work at the cloud level, where some of the most demanding computing

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 48 of 88

is done, runs on a high-performance PC that acts as a server. The main characteristics
of the SoCs used as nodes in both use cases are described below:

● NVidia Jetson TX2: The Jetson TX2 module corresponds to a System on a Chip
platform with a six-core CPU (2 Denver 64-bit CPUs + Quad-Core A57 Complex),
with 8 GB L128 bit DDR4 memory and a GPU with NVIDIA Pascal™ architecture
with 256 CUDA cores. This fully-configurable device supports different working
modes.

● NVidia Jetson Xavier: The Jetson Xavier module corresponds to a System on
a Chip platform with a octa-core CPU (8-core Carmel ARM v8.2 64-bit CPU),
with 16GB 256-Bit LPDDR4x memory and a GPU with 512-core Volta with 64
Tensor Cores. Again, this device is fully configurable adapting performance,
energy consumption, or working frequency.

● High-performance PC: The PC that will act as a server has a 6-core CPU (intel
i5-8400), 32GB-RAM memory, as well as a RTX 2080Ti GPU with 4352 GPU-
cores

For the Smart-Grid use case, the different SoC platforms presented are used for
distributed processing at edge level. These platforms are in charge of carrying out video
local surveillance tasks on the video stream coming from the camera connected to each
of the edge nodes. To bring together the information from the different nodes to carry
out more complex tasks such as tracking people in a multi-camera environment, part of
the processing is done at the cloud level. Both the Jetson TX2 and the Jetson Xavier
models are used to demonstrate the heterogeneity, adaptability and scalability of the
video surveillance system.
As for the Habit Tracking use case, the NVidia Jetson Xavier is the device used to run
the system. It is connected to a camera that provides a video stream. This video is
processed and analyzed with a Deep Neural Network inside this SoC platform. Finally,
it outputs the confidence of which actions have been recognized in the video feed.
Monitoring tasks in both cases are carried out in the edge nodes of the system, which
correspond to the SoCs presented above. Qualities such as the temperature of the
platforms, their energy consumption, or the performance mode in which they operate
are constantly monitored. Additionally, other domain-specific metrics are also taken into
account (discussed in the text below in more detail) for example: 1) for the Habit Tracking
use case, performance or confidence metrics from the Deep Learning models used are
shown; 2) for the Smart-Grid use case, the system performance at each of the edge
nodes level, confidence of the algorithms when carrying out detection and/or re-
identification of people.

Monitoring Infrastructure
To monitor the metrics and qualities of our systems we are using several tools:

● Python software: We have developed a Python library that is capable of
gathering information about temperature, power consumption of the different
hardware components, as well as the active performance mode. This library
collects data from checking some sysfs nodes from the device.

○ Temperature: This data is obtained in milliCelsius and then it is
converted to Celsius.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 49 of 88

○ Power consumption: This data is originally in milliWatts and then it is
converted to Watts.

○ Performance mode: It is a unique value that identifies the active
performance mode. It is obtained through the command nvpmodel.

Habit Tracking use case
● Python main system software: The habit tracking main system is developed in

Python, and within this system, two qualities are measured:
○ Neural Network Performance: This is measured by dividing the number

of frames being analyzed in the neural network model inference by the
time the inference took.

○ Confidence of recognized actions: This is obtained as the output of the
neural network model, because it assigns to each action a probability that
it has occurred during the analyzed video between 0 and 1.

● Python script: This Python script uses Keras and scikit learn to measure the
evaluation metrics of a Deep Neural model over a test set with videos.

○ Deep Neural Network evaluation metrics: These metrics are computed
doing an inference over all the videos of the test set, which are videos
that the neural network has not seen before during training, and then
compare if the output of the model matches the real action performed in
each video. The test set is composed of videos from different datasets:

■ Online action recognition datasets: We have compiled 2295
videos from a variety of heterogeneous datasets (see Table 5).

Table 5: Heterogeneous datasets

Dataset Year Actions Clips

HMDB51 [KUE11] 2011 51 6766

UCF-101 [SOO12] 2012 101 13320

Fall Detection Dataset [CHAR13] 2013 2 222

Charades [SIG16] 2016 157 66500

STAIR Dataset [YOS18] 2018 100 102462

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 50 of 88

Kinetics [CAR18] 2018 600 495547

■ Own recorded videos: We have also recorded more than 200
videos at home to test the neural network model with videos
similar to those that will be analyzed when making a real use of
the system (see Table 6).

Table 6: Recorded Video

Dataset Year Actions Clips

Our own (TBD [UGR20]) 2020 16 233

Smart Surveillance use case
● Python edge software: The part of the Smart-Grid Intelligent Video Surveillance

System that runs in a distributed way in the different nodes has been developed
in the Python programming language. From this software, the following qualities
are extracted:

○ Edge software performance: Measured in frames per second (FPS). It
is calculated by dividing the number of frames of the video stream
analyzed in each of the nodes, by the time employed in that task. For this
timing, we make use of the time function of the native Python time library,
which returns the number of seconds passed since epoch with
millisecond precision.

○ Confidence in people detection: Confidence (%) in the classification of
each of the regions of interest considered is obtained by inferring these
regions through our machine learning model implemented with
TensorFlow. With this, we obtain the confidence with which one of our
regions of interest includes or not a human subject.

● Python cloud software: The part of the system that ultimately runs in the cloud
has also been implemented with the Python programming language. These are
the qualities that are calculated in it and how they are obtained:

○ Cloud software performance: Measured in frames per second (FPS). It
is calculated by dividing the number of frames corresponding to the same
moment of time and coming from each of the nodes, by the time needed
to process them and perform the tracking task on them. For this timing,
we make use of the time function of the native Python time library, which
returns the number of seconds passed since epoch with millisecond
precision.

○ Joint system performance. Measured in frames per second (FPS). It is
the sum of the cloud and edge software performance metrics.

○ Similarity in people re-identification: A characteristic vector of a
human subject is extracted with a deep learning self-encoder model
developed with TensorFlow. Subsequently, an assignment problem is
solved between this feature vector and those of the human subjects
already detected previously by our system. The inverse of the Euclidean
distances between these characteristic vectors is the measure of
similarity of a human subject in re-identification.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 51 of 88

○ System evaluation metrics: In order to have a picture of the system's
performance in each of its operating modes or configurations, evaluation
measurements of the system as a whole are also obtained, running on
different test datasets. Examples of these metrics are: multiple object
tracking accuracy and precision, human subjects mostly followed and
lost, identity switches in re-identification, etc. These are the different
datasets used for the calculation of these metrics:

■ Third-party datasets: In order to test the performance of the
system in the detection, tracking and re-identification of human
subjects (see Table 7).

Table 7: Third-party datasets.

Dataset Reference Description

INRIA
Person
Dataset

[DAL05] This dataset contains 1805 images and X
people normalized to 64x128 pixels. The
people are usually standing, but appear in
any orientation and against a wide variety
of background image including crowds

VIRAT
Video

[OH11] This surveillance video dataset is
characterized by collecting data from
natural scenes that showed people

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 52 of 88

Dataset performing normal actions in standard
contexts, with uncontrolled and disordered
backgrounds. This dataset includes the
recording of different types of human
actions, recorded in multiple locations, in
more than 29 hours of video feed.

Oxford
Town
Centre
Dataset

[HAR19] The Oxford Town Centre dataset is a
CCTV video of pedestrians in a busy
downtown area in Oxford and includes
approximately 2,200 people. The Oxford
Town Centre dataset is unique in that it
uses footage from a public surveillance
camera that would otherwise be
designated for public safety.

Duke
MTMC

[RIS16] Duke MTMC (Multi-Target, Multi-Camera)
is a dataset of surveillance video footage
taken on Duke University's campus. The
dataset contains over 14 hours of
synchronized surveillance video from 8
cameras at 1080p and 60 FPS, with over 2
million frames of 2,000 students walking to
and from classes.

■ Own recorded dataset: Inside the facilities of our university,

some shots have been recorded simulating the setup and the real
situations for which the system is designed. These videos are
composed of 4 shots from two cameras that record the same
infrastructure from different perspectives, with overlapping and
individual recording between cameras. The simulated actions in
this dataset are listed below:

● Normal behaviour of operators in an electrical substation:
Walk through the facilities, fixing components, etc.

● Interaction between operators without occlusions: Two or
more people walking through the facilities together,
conversation between operators, etc.

● Interaction between operators with occlusions: Salutation
with contact, occlusions between operators when walking,
etc.

● Interaction of the operators with the perimeters of the
installation: Walk around the safe perimeters without
entering them (lurking), intruding into these perimeters,
leaving them, etc.

Suspicious behaviour score: Using space-time information from the tracking of
human subjects within the scene, the degree to which the subject's behaviour is
suspicious is determined. This measure is interesting to reconfigure the system to pay

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 53 of 88

more attention to a subject or scene shown by one or several cameras when, for
example, there is an intrusion in the installation or in a secure perimeter.

Data Storage, Analytics and Visualization
Currently, we are using the FIVIS platform to store and visualize our monitored data.
The monitored metrics are sent to FIVIS once they are recorded. Next, we can see some
illustrative examples for some of the monitored data.

● Temperature: Figure 26 shows the temperature of the mainboard, the CPU and
the GPU in Celsius during a concrete period of time.

Figure 26: Temperature plot.

● Power Consumption: Figure 27 shows the power consumption at each second
while our system is running.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 54 of 88

Figure 27: Power consumption plot.

Habit Tracking
In the Habit Tracking use case, we have two concrete qualities, which are shown in the
visualizations below.

● Neural Network Performance: We are able to check here that the system is
running between 46 and 51 frames per second, achieving real time performance
(see Figure 28).

Figure 28: Performance in frame per seconds.

● Confidence of recognized actions: In Figure 29, we can appreciate how the
actions detected vary along time. It mainly detects that someone is eating with a

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 55 of 88

high confidence over the 80%, and then other actions are recognized with a low
and similar percentage.

Figure 29: Action detection accuracy.

4.3.4 Monitoring capabilities for object recognition in space
applications

In this section, we describe some monitoring capabilities that will be used in the
autonomous space exploration use case for object recognition. The methodology
provides two types of monitoring mechanisms:

1. Internal quality parameter monitoring. This mechanism was described on section
4.2.2. The DSL component description could define component qualities. These
qualities could be modified at run time by the component code in order to guide
the runtime reconfiguration process. In this case, a system component (runtime
reconfiguration manager) could autonomously decide to modify the system
configuration (resilience systems).

2. Outward trace monitoring. In this case the system reports runtime traces to an
external trace storing and visualization framework. These traces could be used
to modify the system state. For example, the system uses the Linux lttng package
in order to collect and manage the runtime traces. These monitors are not
included in the SDL description.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 56 of 88

This section is focused on monitor requirements for the autonomous space exploration
use case that use both mechanisms.

Monitoring Requirements
Hardware platform parameters are monitored using the lttng tracing framework for the
Linux kernel (first mechanism). Specifically, the following parameters must be
monitored.

• Memory occupancy: Platform monitorization reports memory occupancy along
time to be aware of memory can be provided to application components.

• Available cores: We monitor along time the number of cores which are available
to be used by the different application tasks.

Application components have also different monitoring requirements. These monitors
use the first approach (Internal quality parameter monitoring) and they are defined in the
system SDL description:

• Frame rate: Video processing applications must consider the frame rate to fit

provided fps with required fps among components. This event is used to evaluate
the system performance and the component behaviour.

• Latency: This quality evaluates the time that a particular service has spent to
execute its task. The latency of individual components or services is used to
detect possible bottlenecks and to take reconfiguration decisions if neccesary.

• Compression rate: Video compressor component gives a measure of the
compression rate that it applies to the input video. Component configuration
parameters (e.g. compression quality) allows modifying the compression rate
and improve the system performances.

• Object recognition percentage: Recognizer component provides a quality that
indicates the probability of detection of an object. If the probability is too low, the
runtime manager could modify the convolutional neuronal network or the trained
weight is order to improve results.

• Radiolink rate: The space satellite has a radio link with the ground station. The
performances of this link can change during the time. This quality evaluates the
current performances of this radio link.

Unit Under Monitoring
The space application will be executed in several physical platforms, each of them with
different features and resources:

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 57 of 88

• Nvidia Jetson TX2: It is a power-efficient embedded computing device. It's built
around an NVIDIA Pascal™-family GPU and loaded with 8GB of memory and
59.7GB/s of memory bandwidth. It contains different kind of hardware interfaces
that make it easy to integrate it into a wide range of products and applications.

• Nvidia Jetson Nano: It´s a small powerful embedded system used on application
which requires low power consumption. It includes and NVIDIA Maxwell family
GPU, an ARM Cortex-A57 processor and 4 GB of memory.

• Zynq Ultrascale + ZCU106: It Combines four Arm Cortex-A53 high-performance
energy-efficient 64-bit application processors with two Arm Cortex-R5F real-time
processors and a programmable logic array (FPGA). This platform provides
power savings, heterogeneous processing, and programmable acceleration.

Monitoring Infrastructure
From SDSL monitor description, a generator creates a C++ monitor implementation.
This implementation could use the LINUX lttng library for trace management or other
infrastructures (e.g. FIVIS).
Figure 30 shows a simple video trace of the frame rate parameter for the component
“Display” using lttng:

Figure 30: Example of fps monitorization trace in a component

These results are used to dynamically reconfigure the systems, using the RIE
methodology. For example, if the system needs to produce more frame per second than
provided, the runtime manager selects a set point in which a component is implemented
into a FPGA, in order to increase the frame rate.

4.3.5 Monitoring of 8xSIMD Floating point Accelerators

In Y2, UTIA developed run-time reconfigurable 8xSIMD Floating point Accelerators for
Zynq 7000 and Zynq Ultrascale family of devices. See Figure 31. Detailed description is
reported in D5.2. Integration into complete Linux system is described in D3.2. See the
released application notes and evaluation packages [KAD19-1], [KAD19-2] for details.
The runtime reconfiguration is described in D4.2. The runtime monitoring is described in
this section.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 58 of 88

Figure 31 8xSIMD Floating point run-time reconfigurable accelerator

Monitoring Requirements
SW application can run on embedded HW with one or several accelerators with possibly
different capabilities. It is therefore required to provide mechanisms for the SW to identify
in the run-time what are the capabilities of the HW accelerator currently present in the
programmable logic (PL) of the Zynq or zynq Ultrascale+ device. Base on this
information, the processor can decide how to program the HW accelerator and what
operations to accelerate.

Unit Under Monitoring
The unit under monitoring is one 8xSIMD run-time reconfigurable floating point HW
accelerator with internal structure described in Figure 31.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 59 of 88

Table 8: Floating point functions present in all accelerators {10 or 20 or 30 or 40}.

Accelerators fp01x8 with all capabilities do not support 8xSIMD floating point division.
Accelerators fp03x8 with all capabilities support 8xSIMD floating point division.

Table 8 indicates supported vector floating point operations identical for all accelerators.
Table 9 provides list of specific vector functions which might be also implemented in the
accelerator. Each of these additional functions (see Table 9) requires extra HW
resources related to wider data multiplexers and finite state machines (FSMs). These
resources also require extra static and dynamic power. That is why the capabilities of
accelerators can be different.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 60 of 88

Table 9: Floating point functions in accelerators with the capabilities {10, 20, 30, 40}.

If the accelerator executes instruction VVER, it returns to the dedicated place in its
internal memory an unsigned 32 bit value with information about the capabilities of the
unit under monitoring.

FP01x8 Accelerator

• 16383 = 0000 3FFF capability {10}
• 32767 = 0000 7FFF capability [10, 30}
• 114687 = 0001 BFFF capability {10, 20}
• 131071 = 0001 FFFF capability {10, 20, 30}
• 262143 = 0003 FFFF capability {10, 20, 30, 40 }

FP03x8 Accelerator
• 1064959 = 0010 3FFF capability {10}
• 1081343 = 0010 7FFF capability [10, 30}
• 1163263 = 0011 BFFF capability {10, 20}
• 1179647 = 0011 FFFF capability {10, 20, 30}
• 1310719 = 0013 FFFF capability {10, 20, 30, 40}

FP01x8 and FP03x8 Accelerator – Status of the evaluation license

• If the two MSB bits of the unsigned 32 bit value are equal to zero, this indicates
that the evaluation license will expire soon.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 61 of 88

• In case of the commercially available release version of the accelerator, the two
MSB bits of the unsigned 32 bit value are always equal to one and the license
will never expire.

Monitoring Infrastructure

Monitoring infrastructure is using the AXI-streaming data communication interface:
Monitoring infrastructure - standard data interfaces

 Type of interface Device Clock Device Clock
• Data streaming I/O: AXI-S 32 bit ZynqUltrascale+: 240 MHz; Zynq 115 MHz
• Computation: 8xSIMD FP32 ZynqUltrascale+: 240 MHz; Zynq 115 MHz
• Firmware program VLIW 128 bit ZynqUltrascale+: 240 MHz; Zynq 115 MHz
• Configuration I/O: AXI-lite 32 bit ZynqUltrascale+: 150 MHz; Zynq 100 MHz
Monitoring infrastructure - standard data communication infrastructure

The design time support (WP3) have provided in Y2 the design flows for automated
generation of these data streaming HW (data movers):
• Zero Copy HW data mover without DMA unit
• DMA HW data mover with DMA unit
• SG DMA HW data mover with interrupts

Monitoring processor is ARM A9 or A53 running user application under Debian OS.
• Firmware is re-programmable in run-time by data streaming.
• Computation & data streaming can be performed in parallel.
Monitoring infrastructure - standard AXI-lite Registers

Each accelerator is controlled from ARM by set of AXI-lite registers. See Figure 31:

Monitoring processor reconfigures accelerator by change of firmware
The 8xSIMD Accelerator executes sequences of VLIW vector 8xSIMD instructions
defined in a program sequence (firmware) of accelerator program memory. This
firmware can be first defined in user SW program and then downloaded via the
streaming interface to the accelerator. The content of the program memory will usually
contain multiple different sequences of VLIW instructions. Computation performed in the
accelerator can overlap with stream-based data communication. This is controlled by
SW user-defined code from the Arm user-space app level and it can be used for the run-
time reconfiguration by loading of new program sequence to program memory of the
accelerator in parallel with performed computation.
Example: Matrix multiplication
User needs to perform HW accelerated matrix multiplication Z[64,64] = A[64,64] *
B[64,64]. The complete matrix operation is split into shorter sequences of VLIW
instructions. The complete matrix product is scheduled by SW user code in Arm by run-
time reconfiguration of pointers to pre-loaded programming sequences.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 62 of 88

This run-time reconfiguration process is performed in parallel to streaming part of data
of matrix B[64,64] from DDR to the accelerator. Rows of this matrix are propagated as
identical to all 8xSIMD memories in 8 subsequent stages.

Example: reconfigure accelerator by temporary change of firmware
User can reconfigure accelerator by
1. temporary saving of some data and firmware from accelerator to DDR
2. change of firmware,
3. execution of this firmware (for example the SupOp instruction)
4. reading of results from data memory of the accelerator to arm SW
5. returning back the original firmware from data stored in DDR
6. returning back the original data from data stored in DDR
After performing these 6 steps, the accelerator data and firmware is restored to its
original state and the SW user/developer have information from the accelerator about
supported 8xSIMD operations and also about the status of the HW license.
Example: read accelerator capabilities
User needs to find what vector 8xSIMD operations are actually supported by the
accelerator. This information is needed for SW decision, which firmware version can be
used. If 8xSIMD DotProd instruction is supported by the accelerator, the accelerated
matrix multiplication Z[64,64] = A[64,64] * B[64,64] will use them for efficiency reason. If
DotProd instruction is not supported, the matrix multiplication can be “assembled” by the
user Arm SW by sequencing of 8xSIMD vector Mac (multiply and accumulate)
instructions. If the Mac instruction is not supported, the matrix multiplication can be
“assembled” by the user Arm SW by sequencing of 8xSIMD vector Add and Mult
instructions. In this case, the MFLOP/s performance will be reduced by cca. 50% (Add
and Mult operators are not chained), but the accelerator takes less HW resources and
this might be critical in some platform configuration as the PL area is used by pre-defined
HW accelerated video processing. The example code is reported in Appendix A.

The function also demonstrates how to allocate temporary data vectors in the physical
continuous memory section of the DDR and how to free them before the exit from the
function.
Reconfigure streaming data paths of serial connected accelerators
The accelerators can be connected in serial chains. This results in saved resources for
HW data movers and enables also direct communication from an accelerator to a next
accelerator in the chain. But such connection creates dependency of accelerators and
run-time reconfiguration of the data path is needed to full-fill the needed tasks.
User can reconfigure in the run-time the accelerator streaming data path to reach these
different functionalities:
1. Set all accelerators in the chain as “pass-through” with exception of one of

accelerator, where the streaming data are used for
a. Rd (read data from the selected accelerator to Arm DDR)
b. Wr (write data to the selected accelerator from Arm DDR)
c. Rd and Wr (perform a. and in the same time b. from the same 64 bit BRAM

block or from a different 64 bit BRAM block)

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 63 of 88

2. Wr identical data to 2, 3 or 4 selected 64 bit BRAM blocks to all accelerators in the
serial chain of accelerators.

3. Rd from one selected accelerator and write data to another selected accelerator
located as one of next accelerators in the chain.

4.3.6 Monitoring of V-PCC in Virtual Reality
Point clouds for immersive media technology have received substantial interest in recent
years. Such representation of 3D scenery provides freedom of movement for the viewer.
However, transmitting and/or storing such content requires large amount of data and it
is not feasible on today’s network technology. Thus, there is a necessity for having
efficient compression algorithms in order to facilitate proper transmission and storage of
such content.
Recently, projection-based methods have been considered for compressing point cloud
data. In these methods, the point cloud data are projected onto a 2D image plane in
order to utilize the current 2D video coding standards for compressing such content.
These video-based point cloud compression (V-PCC) schemes can provide significant
improvement over state-of-the-art methods in terms of compression efficiency.

Monitoring Requirements
The main advantage of the selected V-PCC approach is its compatibility with current 2D
video coding standards. As 2D video coding standards, such as High Efficiency Video
Coding (H.265 / HEVC), are already supported by billions of devices and distribution
solutions, thus it is possible to integrate this type of solution in the current products and
services.
In addition, the V-PCC system provides remarkable bitrate reduction compared to
reference technology in the terms of both objective and subjective quality. Bitrate
requirements are reduced by around 75% for geometry and approximately 50% for
colour attribute over the state-of-the-art compression technology. The important bitrate
reductions can be achieved by new type of algorithmic solutions.
Figure 32 illustrates block diagram of overall process of the V-PCC system. A brief
description of the block diagrams that are used in the V-PCC technique is provided as
follows:

• 3D to 2D projection: Projecting each individual point cloud of a sequence onto
the 2D geometry. One 2D plane is allocated for texture projections and one for
geometry.

• 2D encoding: The 2D planes (geometry and texture) are encoded with the
current standard 2D video codecs (e.g. HEVC).

• 2D decoding: The encoded 2D planes are decoded with current standard 2D
video codecs.

• 3D to 2D projection: The reconstructed 3D scene can be created by using
decoded planes. In back-projection process, texture plane is used for colour

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 64 of 88

intensity value of point and the position of point is determined by corresponding
geometry value.

Figure 32: Projection-based volumetric video coding workflow in V-PPC system.

Figure 33 illustrates subjective performance of the V-PCC method compared to the
reference technology. As can be seen, the V-PCC system outperforms the reference
technology for compressing the point cloud data significantly.

Figure 33: (left) Original point cloud (middle) decoded point cloud at 13 Mbit/s for V-PCC system, and

(right) reference technology.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 65 of 88

The necessity to monitor the runtime state of the system provides the monitoring
requirements. In particular, it is required to monitor the system performance with the
following metrics:

• Near real-time (soft real-time) performance in terms of frames-per-second and
Megabits-per-second.

• The energy usage for the whole V-PCC system.

Units Under Monitoring
V-PCC Decoding Performance
In typical 2D video player applications, only one video stream is decoded and displayed.
Some stereo and VR stereo 360 video players handle and synchronise two video tracks,
one track for each eye. However, V-PCC decoding requires the synchronisation of three
video decoder instances. Unfortunately, current Android and iOS video decoders do not
support adequate synchronisation of video streams. Video bitstreams are decoded on a
“best effort" basis, depending on the available processing resources.
The possible frame-skipping is a serious problem for V-PCC, as all three video frames
are needed for 3D reconstruction. In typical 2D video display there is not much need for
the application to know if a frame was skipped and displayed twice in a row. Especially,
as the human eye adapts to such an event as it happens only rarely. For V-PCC
decoding this is however a serious error, as it will destroy the complete 3D
reconstruction. To avoid this issue and guarantee a high-quality V-PCC playback,
sophisticated frame buffering is essential. Table 10 provides an overview of V-PCC
decoding performance on current mobile hardware, e.g. decoding and synchronising
three individual video decoder instances.

Table 10: V-PCC decoding performance overview

V-PCC AR Rendering Performance

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 66 of 88

Decoding the separate video streams is just one part of the V-PCC decoding pipeline.
In order to fully evaluate how well a V-PCC standard can be implemented on current
generation mobile devices, the V-PCC test model was modified and ported to Android
and iOS platforms. A very minimalistic point cloud reconstruction process was selected,
without any further postprocessing such as 3D smoothing. A GPU accelerated version
of the 3D point reconstruction was implemented based on OpenGL ES 3.0. Table 11
summarises the achieved rendering capabilities on various mobile phones. The
rendering performance is consistent between devices with the same GPU (see Table
10).

Table 11: V-PCC AR point rendering capabilities.

The 3D point reconstruction is calculated inside a vertex shader to save vertex memory
bandwidth. Output of the shader is a uniformly distributed 1-pixel sized points, filling the
display of the mobile device. In order to measure peak performance, the video
dimensions (width, height) were increased to the point until the decoding performance
drops below 57 fps. Typically, mobile devices can only sustain maximum performance
for a short period of time. In order to measure more reliable benchmark results, the
rendering benchmark is kept running for ten minutes and the overall average is reported
as how many million points can be rendered in real-time (60 fps).
Typical V-PCC content currently consists of around 1 Million points per frame. Looking
at the results from Table 10 and Table 11, it can be seen that even 3-year-old hardware
is already capable of decoding and rendering V-PCC bitstreams.
Current Nokia’s V-PCC player can decode and render MPEG V-PCC coded bit streams
in real-time. An early version of Nokia’s V-PCC application was presented as VIP internal
Nokia demo at the Mobile World Congress 2019 in Barcelona. The current version has
been showed at the International Broadcasting Conference (IBC2019, September 13-
17, 2019) in Amsterdam. The V-PCC playback application source code has been made
available to the public as reference: Nokia Technologies, “Video Point Cloud Coding (V-
PCC) AR Demo,” https://github.com/nokiatech/vpcc

https://github.com/nokiatech/vpcc

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 67 of 88

Monitoring infrastructure
The runtime state of the system includes measured performance, which can be handled
by a generic data model. Relevant metrics to be monitored/evaluated are the following:

• Near real-time (soft real-time) performance: System performance can be
evaluated in terms of frames-per-second and Megabits-per-second. It is worth
noting that system robustness/performance/quality depends highly on the
selected computational algorithms. We have made our development work using
state-of-the-art methods to ensure that possible use cases can be implemented
easily in normal phone platforms. Later we plan to investigate more advanced
computational models that may require more optimization of the system code to
achieve more performance in the system level.

It is not an easy task to calculate the energy usage for the whole V-PCC system, since
continuous computational load and required advanced algorithms will present a
challenge in terms of optimizing the energy usage of the system as a whole. Thus, we
have so far planned only initial measurements on power usage and based on the
achieved initial results. We will try to adjust the implemented algorithms to enable
optimal energy usage of V-PCC system in the last year of the FitOptiVis project.

4.3.7 Monitoring in Salmi-Care System
HURJA’s AR-based (Augmented Reality) Salmi Care Platform is capable of motivating
rehabilitation patients to make daily exercises by utilizing AR-based gamification
techniques, assisting rehabilitation patients & brain damage patients & elderly people in
their daily tasks, and monitoring daily activities & vital signs of patients as well as
automatically alerting nurses/relatives in case of emergency. Rehabilitation patients,
brain damage patients, and elderly people are wearing AR-glasses (HoloLens II) as User
Interface for Salmi Care service. Service can be used via voice commands and/or
gestures. Service also enables patients to communicate with
nurses/doctors/relatives/peers via video calls that are directly shown on AR-glasses.

Monitoring Requirements
The runtime state of the system includes measured performance and energy usage,
which can be handled by a generic data model. Relevant metrics to be
monitored/evaluated are the following:

• Near real-time (soft real-time) performance: System performance was
monitored/evaluated in terms of frames-per-second and kilobits-per-second. It is
worth noting that AR-feature robustness/performance depends highly on the
selected AR-glass model. We have made our development work using state-of-
the-art HoloLens 2 AR-glasses to ensure that all possible use cases can be
implemented easily. Later on we plan to investigate the use of other (cheaper
and less powerful) AR-glass options that may require more optimization of the
system code to achieve the level of performance comparable with the high-end,
state-of-the-art AR-glasses.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 68 of 88

• Optimal energy usage: It is not an easy task to calculate the energy usage for
the whole Salmi Care system, since continuous camera feed and required
advanced algorithms will present a challenge in terms of optimizing the energy
usage of the system as a whole. Thus, we have so far performed only initial
measurements on power usage and based on the achieved initial results, we will
make adjustments to the implemented algorithms to enable optimal energy
usage of Salmi Care system.

Furthermore, the system monitors the achieved level of satisfaction of all end-user
groups that can be handled by a generic data model:

• The intended users of the Salmi Care system will be rehabilitation patients
(assisted living), brain damage patients (assisted living), elderly people (assisted
living), relatives (monitoring and situational awareness), nurses (home visits),
and doctors (emergency cases). We have made careful plans to achieve the
required level of satisfaction for all of these end-users of our Salmi Care system.
However, we cannot yet completely fulfill all of the below-mentioned end-users
requirements or all the needed features, but by the end of the project, we will
have fully functional version of Salmi Care system that fulfils the level of
satisfaction for all of these end-user groups.

Unit Under Monitoring
For achieving near real-time (soft real-time) performance on our low-power mobile AR-
based Salmi Care Platform we have utilized smart feature extraction, segmentation, and
classification algorithms to reduce bandwidth usage by only sending the necessary parts
of images/videos. A mobile application called Extent can upon request download a
JSON packet which consists of a list (descriptions) of wakeup images, objects, entities,
and actions. Either the request can come from the Salmi MAPS website, from the Salmi
Care mobile application, or directly from the Extent mobile application if the “free roam”
state has been switched on (requires GPS). End-users have the option to switch the
“free roam” state off at any time and when this happens, the Extent mobile application
downloads new content only upon request from an external source (currently only the
Salmi Care Platform related sources are available). The Extent mobile application
downloads all required wakeup images, 3D-models, textures, audio files, videos, etc.
based on the instructions received via JSON packet.
To optimize the run-time performance of the Salmi Care Platform all of these packets
can be downloaded in advance. All files will be saved locally into end-users’ mobile
device (smart phone or tablet) and those will be shown to end-users based on
instructions received via JSON packets as soon as matching wakeup image, object,
entity, or action has been found, or when an end-user is within a certain pre-defined
distance from the target. Free roam data will be removed on-the-fly from end-users’
devices when each session ends. The Extent mobile application is currently being
developed using C# programming language on top of the Unity 3D engine and the server
back-end side is currently being developed using PHP. During our early testing phase,
all description packets are in JSON format.

Monitoring Infrastructure
As of M24, the status of implementation of these monitoring data features is as follows:

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 69 of 88

• Monitoring of performance of rehabilitation patient’s daily exercises:
Rehabilitation patient’s daily exercises are monitored and related data is
collected for further analysis in order to determine how effective training is for
each patient. The variables under monitoring are total duration of the exercise,
the duration of each individual sub-session inside the exercise session, and
amount of correct/incorrect actions made during the exercise session. Data will
be sent to the cloud server for further analysis in real-time during the exercise
session.

• Monitoring of application performance: Application performance will be
monitored actively and most important target will be refresh frequency of the
application that represents in the high level how well application works. Refresh
frequency will be measured as Frames-Per-Second (FPS) and in case of
HoloLens II AR-glasses it is 60 FPS. Especially for AR-based applications it is
very important that FPS will be at least 60 all the time so that the user experience
of AR-world is as fluent and as convenient as possible. Another variable used for
application performance monitoring is the usage of RAM (Random Access
Memory), but it is not as important as FPS-monitoring since in rehabilitation
application there are only few really heavy operations in terms of RAM usage.
However, different operating systems will react differently to the situation when
RAM runs out and thus in case of HoloLens II we have to make sure that the
application never uses all the RAM in any circumstances to make sure the
application remains stable and usable all the time. The application performance
is monitored by utilizing the real-time development platform Unity’s own tools
(see Figure 34). We are able to monitor, by using Unity’s own performance
monitoring tool, the following variables during each frame:
o CPU: Calls, Garbage Collection Allocations, Time ms, and Self ms.
o Rendering: SetPass Calls, Draw Calls, Total Batches, Triangles, Vertices,

Used Textures (amt + memory usage), VRAM Usage, and Shadow Casters.
o Audio: Total Audio Sources, Playing Audio Sources, Paused Audio Sources,

Audio Clip Count, Audio Voices, Total Audio CPU usage (%), DSP CPU
usage (%), Streaming CPU usage (%), Other CPU usage usage (%), Total
Audio Memory (MB), Streaming File Memory usage (MB), Streaming Decode
Memory usage (MB), Sample Sound Memory usage (MB), and Other
Memory usage (MB).

o Memory: Texture/Mesh/Material/Animation/Audio/GC Memory usage and In-
Depth Analysis can be seen with Unity’s memory snapshot tool:

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 70 of 88

Figure 34: Unity based tool for application performance monitor.

Data Storage, Analytics and Visualization
Collected data will be stored in secure servers. Analytics and visualization will be done
utilizing appropriate analytics/visualization tools, such as Microsoft Power BI and AWS
Analytics/Visualization services. Statistics of the users include the amount of correct and
incorrect actions, duration of each action, and total duration of the exercise session.
Data from previous exercise sessions can be used to keep track and compare how the
user has progressed in the rehabilitation.

4.3.8 TSN support for concurrent monitoring of multiple
heterogenous systems

Monitoring infrastructures provided by TSN
Best effort, lowest priority TSN streams will be provided to collect monitoring information
for both Habit Tracking and Surveillance for Smart Grid critical infrastructure. These
traffics will be isolated from payload traffic, such control communication between
distributed processing nodes or from time critical messages.
Moreover, timestamping support is provided to distributed nodes under monitoring to
facilitate coherent processing and the understanding of collected data. Timestamping is
provided by means of the generalized Precision Time Protocol (gPTP).

TSN internal monitoring
The Time Sensitive Networking bridge for FitOptiVis is a Xilinx Zynq-7000 based
platform, composed by FPGA logic and software. TSN provides convergence of mixed
critical traffics relying on stringent time synchronization. For this reason, runtime

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 71 of 88

monitoring of gPTP provides information about self-capability and network-wide
capability of delivering RT-QoS.
As well as other protocol aspects, the different metrics to be delivered on runtime
monitoring are defined on IEEE 802.1AS:

● Current time deviation. The current synchronization deviation is computed at
every arrival of Sync messages generated by the elected grandMaster. This
information is used by time-critical applications to verify the enabling conditions
of deterministic communication. Unusual time deviations can be used to detect
abnormal functionality of the network components.

● Link delay. The link delay is used by the synchronization protocol to recover the
remote network time reference accurately. The link propagation delay is
computed periodically to maintain the synchronization accuracy isolated from
propagation delay variations. The link delay is also useful to estimate E2E
latency for time-critical traffics.

● RateRatio. Frequency relationship between the network time reference and the
local clock stored on the PTP Hardware Clock.

● AsCapable Interface. The AsCapable flag is associated to each time-sensitive
interface and reports the synchronization capability of the remote peer. A remote
node not supporting gPTP cannot be considered for grandMaster election and
cannot support deterministic forwarding.

● Current grandMaster and synchronization path. The result of the BMCA is
returned to the end user to check the synchronization network status. It is useful
to indirect see the status of remote elements

● Port role. The BMCA also determines the functionality of each active interface in
the time-aware system under monitoring. The slave interface is the one closest
to the grandMaster and provides synchronization to the system. Passive ports
also receive synchronization information and back the passive port in case of
failure. Master ports are present on bridges and retransmit the synchronization
information received from the GrandMaster. Finally, ports maybe also disabled
by the user or due to network failures.

● Network status. This information is related to local PHY layer and gives
information about inner hardware status.

Besides, other monitors have being considered to track the runtime of the TSN bridge
(i.e. network status).

Unit Under Monitoring
The primary scope of gPTP is to obtain time offset and frequency deviations between
the local PTP Hardware Clock (PHC) and the remote time reference (grandMaster).
However, link delays and gPTP residence times should also be tracked. The current
network time reference or grandMaster and the synchronization path linking this node
to the TSN bridge under monitoring is also available to check the network status. This
runtime information the basis to detect abnormalities and provide fast failover.

Monitoring Infrastructure: The Timestamping Unit (TSU)
All the quantitative metrics are based on deterministic time references taken at the
egress and ingress of gPTP event messages. Such determinism is key for
synchronization accuracy and is enabled by hardware timestamping located closed to

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 72 of 88

the physical medium. In this implementation, the hardware timestamping is located at
the Medium Independent Interface, isolating time synchronization from the variability
introduced by MAC, Bridge and higher Ethernet layers.
The hardware timestamping unit (TSU) is continuously tracking the MII interface and
fetches the local clock time from PHC whenever a start of frame (SoF) delimiter is
transferred. The TSU delivers the software processor ingress (Rx timestamp) and
egress (Tx timestamp) times for gPTP messages along with their FCS to allow matching
between messages and timestamps on gPTP protocol state machines implemented on
software (see Figure 35).

Figure 35: Timestamping Unit

Furthermore, gPTP defines the protocol mechanisms enabling the computation of the
current link delay and deviation between local clock and grandMaster clock.
Propagation delay measurement
The propagation link delay for full-duplex, point-to-point links is computed following the
Peer delay mechanism. This is based on a protocol handshake performed periodically
between every two adjacent time-aware stations and is present on every active
interface. Peer delay mechanism is shown in Figure 36.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 73 of 88

Figure 36: Regular Handshake on the Peer Delay Mechanism.

The left side of the link acts as peer delay initiator and the right as peer delay responder.
From the message interchange, four timestamps are captured (t1, t2, t3, t4) and
delivered to the gPTP executable at the initiator side, which computes the link delay
following the equation:

𝐷𝐷 =
(𝑡𝑡4 − 𝑡𝑡1) + (𝑡𝑡3 − 𝑡𝑡2)

2

Periodical computation of the link delay allows not only detect propagation delay
changes, but also estimate the relationship between local clock frequencies of two
adjacent time-aware systems (neighborRateRatio), by considering successive
Pdelay_Resp and Pdelay_Resp_Follow_Up messages. The relation between local
clock and grandMaster clock frequencies (RateRatio) can be derived from successive
neighborRateRatio computations along the synchronization path. The RateRatio is used
to reference remote timestamps to the local clock and obtain coherent time estimations.
Two-step PTP mechanism
IEEE 802.1AS implements a two-step PTP to recover the current remote time reference
(see Figure 37). A Sync message is generated by the grandMaster and retransmitted by
every time-aware bridge along the synchronization path. The follow-up message carries
the originTimestamp (i.e. the Sync egress timestamp on the grandMaster) and the
correction Field or propagation time until the Sync message is timestamped at the
ingress of the time-aware system of interest. This propagation time is the sum of every
link propagation delay and residence times on the synchronization path.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 74 of 88

Figure 37: Two-step PTP mechanism, as defined on IEEE 802.1AS

Best Master Clock Algorithm (BMCA) monitoring
The elected grandMaster and the synchronization path give qualitative information about
the inner quality of the remote time reference and the nodes participating on the
propagation of the Sync message. This information is maintained by the Best Master
Clock Algorithm executed on every time-aware system in the network. Finally, the BMCA
also determines the port role of the time-aware system.

Data Storage, Analytics and Visualization
The TSN User API delivers these monitors to the end user. A periodic task is executed
on the ARMv9 present on the Xilinx Zynq-7000 MPSoC to retrieve monitoring
periodically. Runtime monitoring is delivered to a central Set-Top-Box by a Best-effort
TSN stream. Monitors from all TSN stations are stored and available for presentation in
the FIVIS platform.

4.3.9 Monitoring systems for localization in space applications
The Autonomous Exploration use-case is focused on the reconfiguration of a video
processing chain on board of a spacecraft designated for locating different kinds of
satellites. Space missions have several stages that are very different in terms of
performance and environmental conditions. The target is to include into the UC a set of
monitors that ease the differentiation of the stages of the mission through power

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 75 of 88

consumption and radiation monitoring. In the use-case, besides the monitors developed
by TASE, the ones developed by University of Cantabria will also be used.

Monitoring Requirements
The monitors developed by TASE will focus mainly on the hardware side of the complex
video-processing chain. The two main metrics to measure at runtime in order to control
the reconfiguration mechanisms will be:

• Radiation dose: components off the shelve are currently being used in a lot of
space missions. These kinds of components are not radiation hardened by
design. It is really important to monitor the radiation induced failures on them in
order to keep functionality of the designs. When a high dose of radiation is
received by the components (in this case an FPGA) a full reconfiguration of the
system shall be done.

• Power consumption and temperature: another important driver for
reconfiguration during a mission is the power consumed by the platform. There
are several power constraints in space due to the lack of refuelling and the limited
amount of power delivered by the solar panels on a spacecraft. For example, it
is very important to minimize power consumption during shade-phases of a
mission. Power consumption will be monitored in order to verify that
reconfiguration has been performed successfully and that changes in the
configuration drive the consumed power to the desired values constrained by the
phases of the mission.

Additional metrics and monitors will be potentially taken into consideration in the future
regarding video-processing performance complementing those developed by the
University of Cantabria.

Unit Under Monitoring
The unit under monitoring will be the FPGA Logic of the Zynq UltraScale+ MPSoC.

Monitoring Infrastructure and Monitoring Processor
The monitoring infrastructure consists of three basic components that will act as building
blocks.

• SEM IP: Soft Error Mitigation IP. This IP is provided by Xilinx and has already
been integrated on the platform. It allows to simulate the failures induced by
radiation thanks to an ad hoc interface developed by TASE. This interface allows
to reproduce different radiation doses that are related with several orbits.

• System Monitor: The System monitor is an interface present on the silicon of the
FPGA that allows to keep track of the power and temperature of the system
under test. It is implemented by default by Xilinx

• Virtual Input/Outputs.I/Os: This component consists on inputs and outputs that
can be controlled from a GUI and allow to have information from the processing
logic of the MPSoC. Thes I/Os have to be implemented on each specific
components containing the desired information to monitor.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 76 of 88

4.3.10 Pose and facial recognition in Habit Tracking with edge-cloud
adaptivity

As part of the effort in Habit Tracking use case, HIB is developing a cloud-edge AI
solution for detecting activities of persons in their homes as well as matches of their
facial features according to a database of potential users. The main goal is to track
persons within their homes to detect if they present signs of mild cognitive impairment.
Technically one of the key features is to mix in the home edge processing with cloud
processing, where ‘edge’ corresponds roughly to smart cameras with low computational
capabilities (typically ARM processors running on batteries) and the ‘cloud’ corresponds
to x86 architectures in the home with no energy constraints.
In the following subsections we present the general outline of the adaptations to be
applied to the demonstrator with the help of WP4 components.

Monitoring Requirements
The main overarching requirement is to maintain a specific overall set of recognition
features while maximizing the usage of energy as some of the processing elements
could be running on batteries.
The functional ‘recognition features’ are currently being specified but as of the writing
of this document they are in summary:

• Pose estimation engine: using CMU openpose1 which yields a wire-frame
model of persons in still frames.

• Facial recognition engine: matches faces in still frames with known profiles of
persons of interest who have been trained in the system.

The main non-functional requirement of the system is to maintain an overall processing
of frames at a sufficient rate of frames per second that enables the detection of complex
behaviours. For the purposes of this in the use case, the figure is around 15 frames per
second.

Unit Under Monitoring
Figure 38 represents the overall architecture of the system under analysis.

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose - openpose: multiperson human
body posture detection by Carnegie Mellon University.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 77 of 88

Figure 38 HIB architecture for UC3 Habit Tracking

The Figure depicts the most relevant unit under monitoring which is the edge processing
device. In this case it is an Nvidia Jetson Nano single board computer (that integrates a
multi core ARM CPU and a GPU focused on AI operations). For the adaptation purposes
of the system the edge board(s) will be running not connecting to the mains power but
using a dedicated UPS power supply using 18650 LiOn batteries. This is connected to
the Jetson Nano by means of two wires: one (depicted in a thick edge) that supplies the
nano of the required 5V/2A required for normal processing and another (depicted in thin
edges) connecting a port in the UPS board to the GPIO pins in the Jetson Nano board.
This, encoded in the industry-standard device-to-device protocol i2C2, is used to monitor
the current level of the onboard batteries.
In the living lab deployment under test by HIB this edge system is connected via a
network connection to a Foscam FI9800P camera and also via network connections to
the ‘cloud’ server and the Internet at large.

Monitoring Infrastructure
The overall infrastructure is depicted in Figure 38. In addition to the aforementioned
hardware units (the Nvidia Jetson Nano and the GeekwormT200 UPS kit with i2C battery

2 https://en.wikipedia.org/wiki/I%C2%B2C – Inter-Integrated Circuit protocol.

https://en.wikipedia.org/wiki/I%C2%B2C

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 78 of 88

level monitoring), there is a ‘local’ adaptation engine running on the Nvidia board local
environment as well as a ‘cloud’ adaptation engine running offline in a we server.
The local adaptation monitors the battery levels and the desired QoS parameters (chiefly
the minimum fps). Combining the power draw that is required from the board’s
components (collected using the tegrastats command line tool provided in the default
OS for the board) and the available battery level in the UPS board (collected using i2c
polling on the appropriate port in the board), the system computes a battery life estimate.
Whenever the battery estimate falls below the threshold set at design time, the local
adaptation engine changes the execution environment for the feature recognition
engines by tweaking the active cores (using the nvpmodel command line tool provided
in the Ubuntu distribution for the Nvidia board) of the clock frequency of the cores and
GPU (using the jetson_clocks command line tool).

Lowering the execution performance with these increases the estimated battery life. If
by monitoring the performance we detect that it falls below the desired fps/QoS, then
the system might transition to a different cloud/edge configuration. This is mostly done
by the ‘cloud’ adaptivity system which is described in the following subsection.

Data Storage, Analytics and Visualization
The system continually collects values for the metrics of interest in the adaptation and
the execution of the system (the most important of which are the fps for the recognition
systems, the battery percentage from the UPS board). These are collected as a group
and sent to the remote monitoring system which uses the FIVIS[ref] environment by
CUNI as a unified signal set (called HIB_signal_set). In the FIVIS environment they are
collected and can be analyzed later on by the system operators.
The overall performance of the system is managed by a joint ‘cloud’ adaptation system
that is aware of all the computing elements in the deployment. Based on the
configuration selected by the system operator, different ‘edge’ (Nvidia Jetson Nano
boards) or ‘cloud’ (x86 PCs running a Linux environment) can be switched on and off on
demand.

4.3.11 Monitor in Processor-Coprocessor systems
In a typical edge-computing scenario, there can be functional and strict non-functional
requirements to be satisfied. This leads to heterogeneous platforms, and in Fitoptivis
there are tools aimed at supporting in the development of these platforms. In this regard,
MDC impacts in the development of processor to co-processors systems, offering a
coarse-grained functional and non-functional reconfiguration (Section 3.3). In this
section, the described runtime monitoring is part of the self-adaptive loop where the
MDC reconfiguration acts: the monitoring systems are generated by using the AIPHS
framework (Section 4.2.3). The framework to use AIPHS applied to MDC generated
coprocessors can be accessed at the repository in [AIP20].

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 79 of 88

Monitoring Requirements
Being at the edge, it has to be considered that the impact of monitoring actions on non-
functional parameters needs to be limited. On the other hand, monitoring of the current
execution of the system is necessary to properly trigger the reconfiguration.
The following monitoring requirements are given when the coprocessor systems have
to be monitored:

• MON1 - Limited SW overhead
• MON2 - Measure of accelerator latency
• MON3 - Measure of accelerator performance
• MON4 - Runtime verification of the accelerator

Unit Under Monitoring
The Unit Under Monitoring is given by MDC, which is able to deploy a processor-
coprocessor system according to the user choice:

1. Type of processor: hard-core (ARM available on Zynq7000 FPGAs) or soft-core
(Microblaze).

2. Processor-coprocessor coupling: stream based or memory mapped.
3. Use of DMA.

At the moment, the Unit Under Monitoring is given by the memory-mapped processor
coprocessor system, in which the DMA is used. Both ARM and Microblaze are possible
selections. Figure 17 shows the IP generated by MDC.

Figure 39 – The figure shows the IP generated by MDC. The MDC CGR accelerator is a coarse grain

reconfigurable datapath capable of executing different functionalities, by opportunely multiplexing
resources in time. This datapath is automatically encapsulated into a ready to use Xilinx IP and into a

processor-coprocessor system, according to the user choices during the design time.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 80 of 88

Monitoring Infrastructure
The monitoring infrastructure has been generated using the AIPHS framework: this
allows to satisfy the MON1 requirement, since AIPHS produces hardware monitoring
systems that limit the timing impact on SW execution. Three different sniffers can be
selected to monitor the coprocessor. Figure 40 shows the sniffers and their placement
with respect the internals of the accelerator. The sniffer at level 1 (red) monitors the
processed data by the accelerator, by counting the number of writes on the AXI4-Full
bus: this sniffer allows to satisfy MON3. The sniffer at level 2 (yellow) monitors the
accelerator latency, allowing the satisfaction of MON2. Finally, the sniffer at level 3
(violet) allows to perform a runtime verification of internal transitions.

Figure 40: Sniffer generation for MDC coprocessors

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 81 of 88

Data Storage, Analytics and Visualization
Data output by the monitoring system are organized as reported in Table 12.
EVENT_ATTRIBUTE contains an attribute for internal usage, ACC_ID provides a code
to indicate the ID of the monitored coprocessor, LEVEL_ID indicated the monitored level,
EVENT_INFORMATION contains the raw information.

Table 12: Event instances of monitors.

EVENT_ATTRIBUTE
(5 BITS)

ACC_ID (4 BITS) LEVEL_ID (2 BITS) EVENT_INFORMATION
(REMAINING BITS)

Further information, together with two working examples related to AIPHS for MDC, are
reported in [AIP20]. Table 13 reports the resource utilization impact of the different
monitor levels introduced in the Custom Multiplication example [AIP20].

Table 13: Resource utilization on Zynq7000 (Zedboard) for the Custom Multiplication Example [AIP20]

Configuration Enabled
Monitor Level

Purpose LUTs FFs

1st 2nd 3rd

Y0 - - - - 3397 2864

Y1 X - . Accelerator
Performance

+8.18 % +10.44 %

Y2 - X - Accelerator
latency

+2.94 % +7.96 %

Y3 - - X Runtime
verification

+2.38 % +6.25 %

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 82 of 88

 Conclusions
In our summary of the outcomes of Task 4.2 and Task 4.3 from the first two years of the
project, we deal primarily with two aspects of runtime support for adaptive applications
developed using the FitOptiVis approach.
The first aspect concerns runtime reconfiguration, where different instances of
reconfiguration mechanisms have been proposed; their combination gives rise to three
main categories of reconfiguration mechanisms. In turn, this abstraction enables the
development of an abstract view on how to use the different mechanisms in the quality
and resource management framework.
The second aspect concerns monitoring, profiling and measuring support, where
different enabling technologies and instances of monitoring mechanisms have been
proposed. Monitoring techniques can span at different levels, so to unify at level of
concepts, principles and abstractions to find and extract commonalities among different
domains, a reference platform for monitoring in FitOptiVis has been also proposed.
In the following year, we will focus (i) on refining the proposed mechanisms, by spending
effort on closing the adaptation loop that exploits the monitor and reconfiguration to
adapt a system, and (ii) on developing practical setups related to FitOptiVis use cases.
These activities will result in a second iteration of this deliverable, which will incorporate
outcomes from the third year of the project in deliverable D4.4 due in month 30 of the
project (end of November 2020).

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 83 of 88

 References
[CHAR13] I. Charfi, J. Miteran, J. Dubois, and M. Atri, “Optimized spatio-temporal
descriptors for real-time fall detection: Comparison of support vector machine and
Adaboost-based classification Network on Chip (NoC) View project Wireless ECG Patch
View project Optimised spatio-temporal descriptors for real-time fall detection :
comparison of SVM and Adaboost based classification,” Artic. J. Electron. Imaging,
2013.
[KAY17] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics human action
video dataset,”arXiv preprint arXiv:1705.06950, 2017.
[KUE11] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: A large
video database for human motion recognition,” in 2011 International Conference on
Computer Vision, 2011, pp. 2556–2563.
[SIG16] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta,
“Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding,” in
European Conference on Computer Vision, 2016.
[SOO12] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild,” 2012.
[YOS18] Y. Yoshikawa, J. Lin, and A. Takeuchi, “STAIR Actions: A Video Dataset of
Everyday Home Actions,” arXiv Prepr. arXiv1804.04326, 2018.
[OH11] Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.-C., Lee, J. T., ... Desai, M.
(2011). A large-scale benchmark dataset for event recognition in surveillance video. In
CVPR 2011 (pp. 3153–3160). IEEE. https://doi.org/10.1109/CVPR.2011.5995586
[HAR19] Harvey Adam. LaPlace, J. (2019). MegaPixels: Origins, Ethics, and Privacy
Implications of Publicly Available Face Recognition Image Datasets. Retrieved from
https://megapixels.cc/
[DAL05] N. Dalal (2005), “INRIA Person Dataset,” http://pascal.inrialpes.fr/data/human/
[CTF20] The Diamon Group, “The Common Trace Format”, https://diamon.org/ctf/
[KOR13] Georgios Kornaros and Dionisios Pnevmatikatos. 2013. A survey and
taxonomy of on-chip monitoring of multicore systems-on-chip. ACM Trans. Des. Autom.
Electron. Syst. 18, 2, Article 17 (April 2013), 38 pages.
[AIP20] AVIS – AIPHS for FitOptiVis, https://gitlab.com/alkalir/avis-aiphs-for-fitoptivis.git
[ZAN18] Michele Zanella, Giuseppe Massari, Andrea Galimberti, and William Fornaciari.
2018. Back to the future: resource management in post-cloud solutions. In Proceedings
of the Workshop on INTelligent Embedded Systems Architectures and Applications
(INTESA ’18). Association for Computing Machinery, New York, NY, USA, 33–38.
DOI:https://doi.org/10.1145/3285017.3285028
[CAR13] N. Carta, C. Sau, F. Palumbo, D. Pani, L. Raffo, “A Coarse-Grained
Reconfigurable Wavelet Denoiser Exploiting the Multi-Dataflow Composer Tool”,
Conference on Design and Architectures for Signal and Image Processing, 2013.

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 84 of 88

[SAU17] C. Sau, F. Palumbo, M. Pelcat, J. Heulot, E. Nogues, D. Menard, P. Meloni, L.
Raffo, “Challenging the Best HEVC Fractional Pixel FPGA Interpolators with
Reconfigurable and Multi-frequency Approximate Computing”, IEEE Embedded
Systems Letters, 9 (3), pp. 65-68, 2017.
[KAD19-1] J. Kadlec, Z. Pohl, L. Kohout: “Two serial connected evaluation versions of
FP03x8 accelerators for TE0820-03-4EV-1E module on TE0701-06 carrier board”
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s
[KAD19-2] J. Kadlec, Z. Pohl, L. Kohout: “FP01x8 Accelerator on TE0726-03M”
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8
[XIL12] Xilinx, Fast Simplex Link (2012),
https://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_f/fsl_v
20.pdf
[ARM10] ARM, AMBA Advanced-Peripheral Bus (2010),
https://static.docs.arm.com/ihi0024/c/IHI0024C_amba_apb_protocol_spec.pdf?_ga=2.
72731027.1882841013.1590093400-1278468236.1588607760
[ARM19] ARM, AMBA Advanced eXtensible Interface (2019),
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
[XIL16] Xilinx, Local Memory Bus (2016),
https://www.xilinx.com/support/documentation/ip_documentation/lmb_v10/v3_0/pg113-
lmb-v10.pdf
[ARM12] ARM, AMBA Advanced High-Performance Bus (2015),
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 85 of 88

Appendix – Example codes
The following example code is related to the Concrete Example Scenario reported in
Section 4.3.5. It is reading license of the accelerator and its capabilities. Function is
called by Arm in the Zynq or Zynq Ultrascale+ device. Function temporarily stores part
of the current accelerator context, downloads and perform new program to get the
needed information and finally restores the original state of the accelerator. See [KAD19-
1], [KAD19-2] for details.

unsigned int test_license_0(fp03x8 fp03x8_0_inst, fp03x8 fp03x8_1_inst){
 unsigned int license_data;
 wide_dt *src_Z1_Z2_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *src_Z3_Z4_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *src_Z5_Z6_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *src_Z7_Z8_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *dest_Z1_Z2_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *dest_Z3_Z4_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *dest_Z5_Z6_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt *dest_Z7_Z8_tmp = (wide_dt *) sds_alloc_non_cacheable(1*sizeof(wide_dt));
 wide_dt_prog *src_P1_P2_tmp =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
wide_dt_prog *src_P3_P4_tmp =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *dest_P1_P2_tmp =
 (wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));

wide_dt_prog *dest_P3_P4_tmp =
(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));

 wide_dt_prog *src_P1_P2_lic =
(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));

 wide_dt_prog *src_P3_P4_lic =
(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));

 wide_dt_prog *dest_P1_P2_lic =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *dest_P3_P4_lic =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *src_P1_P2_out =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *src_P3_P4_out =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *dest_P1_P2_out =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));
 wide_dt_prog *dest_P3_P4_out =

(wide_dt_prog *) sds_alloc_non_cacheable(1*sizeof(wide_dt_prog));

 // Read P from accelerator 0 (accelerators 1 is set to see through)
 //===

 we = 0x0000; fp03x8_we_write(&fp03x8_1_inst, we);
 bram = 16; fp03x8_bram_write(&fp03x8_1_inst, bram);

 // save current program line 0
 //===
 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 12; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_P1_P2_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_P1_P2_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 86 of 88

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 13; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_P3_P4_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_P3_P4_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 // save current Z1 .. Z8 line 0
 //===
 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 8; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_Z1_Z2_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_Z1_Z2_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 9; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_Z3_Z4_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_Z3_Z4_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 10; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_Z5_Z6_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_Z5_Z6_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 11; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_Z7_Z8_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_Z7_Z8_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 //Define program to read license status program
 //===
 src_P1_P2_lic[0].p[0] = 0; //a_addr;
 src_P1_P2_lic[0].p[1] = 0; //a_saddr;
 src_P1_P2_lic[0].p[2] = 0; //a_inc;
 src_P1_P2_lic[0].p[3] = 0; //b_addr;
 src_P1_P2_lic[0].p[4] = 0; //b_saddr;
 src_P1_P2_lic[0].p[5] = 0; //a_bank;
 src_P1_P2_lic[0].p[6] = 0; //b_bank;
 src_P1_P2_lic[0].p[7] = 0; //op;
 src_P3_P4_lic[0].p[0] = 0; //b_inc;
 src_P3_P4_lic[0].p[1] = 0; //z_addr;
 src_P3_P4_lic[0].p[2] = 0; //z_saddr;
 src_P3_P4_lic[0].p[3] = 0; //z_inc;
 src_P3_P4_lic[0].p[4] = 0; //cnt;
 src_P3_P4_lic[0].p[5] = 0; //z_bank;
 src_P3_P4_lic[0].p[6] = 0; //no_op;
 src_P3_P4_lic[0].p[7] = 0; //no_op;

 // Write first line of program of accelerator 0 (license rd)

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 87 of 88

 //===

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x1000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 12; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_P1_P2_lic, 2*1); //1
 capture_wrapper((unsigned*)dest_P1_P2_lic, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x2000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 13; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_P3_P4_lic, 2*1); //1
 capture_wrapper((unsigned*)dest_P3_P4_lic, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 // Run program of accelerator 0 (license rd)
 //===
 baddr = 0; fp03x8_baddr_write(&fp03x8_0_inst, baddr);
 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 pstep = 0; fp03x8_pstep_write(&fp03x8_0_inst, pstep);
 go = 1; fp03x8_go_write(&fp03x8_0_inst, go);

 go = 0;
 while (fp03x8_pdone_read(&fp03x8_0_inst) == 0);
 fp03x8_go_write(&fp03x8_0_inst, go);

 // Read license info from Z addr 0
 //===
 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 8; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)src_Z1_Z2_tmp, 2*1); //1
 capture_wrapper((unsigned*)dest_P1_P2_out, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 // Write back the stored line of program of accelerator 0
 //===

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x1000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 12; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_P1_P2_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_P1_P2_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x2000; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 13; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_P3_P4_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_P3_P4_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 // Write back Z1 ..Z0 address 0
 //===
 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0100; fp03x8_we_write(&fp03x8_0_inst, we);

© FitOpTiVis Consortium (Public Document)

WP4 D4.3, version 1.0
FitOpTiVis

ECSEL2017-2-783162
Page 88 of 88

 bram = 8; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_Z1_Z2_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_Z1_Z2_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0200; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 9; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_Z3_Z4_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_Z3_Z4_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0400; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 10; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_Z5_Z6_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_Z5_Z6_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

 paddr = 0; fp03x8_paddr_write(&fp03x8_0_inst, paddr);
 we = 0x0800; fp03x8_we_write(&fp03x8_0_inst, we);
 bram = 11; fp03x8_bram_write(&fp03x8_0_inst, bram);

 data2hw_wrapper((unsigned*)dest_Z7_Z8_tmp, 2*1); //1
 capture_wrapper((unsigned*)src_Z7_Z8_tmp, 2*1); //2
 sds_wait(1);
 sds_wait(2);

license_data =
 (unsigned int)(((unsigned int) dest_P1_P2_out[0].p[3]*256*256*256) +
 ((unsigned int) dest_P1_P2_out[0].p[2] * 256 * 256) +
 ((unsigned int) dest_P1_P2_out[0].p[1] * 256) +
 ((unsigned int) dest_P1_P2_out[0].p[0]));

 sds_free(src_Z1_Z2_tmp);
 sds_free(src_Z3_Z4_tmp);
 sds_free(src_Z5_Z6_tmp);
 sds_free(src_Z7_Z8_tmp);
 sds_free(dest_Z1_Z2_tmp);
 sds_free(dest_Z3_Z4_tmp);
 sds_free(dest_Z5_Z6_tmp);
 sds_free(dest_Z7_Z8_tmp);
 sds_free(src_P1_P2_lic);
 sds_free(src_P3_P4_lic);
 sds_free(src_P1_P2_tmp);
 sds_free(src_P3_P4_tmp);
 sds_free(src_P1_P2_out);
 sds_free(src_P3_P4_out);
 sds_free(dest_P1_P2_lic);
 sds_free(dest_P3_P4_lic);
 sds_free(dest_P1_P2_tmp);
 sds_free(dest_P3_P4_tmp);
 sds_free(dest_P1_P2_out);
 sds_free(dest_P3_P4_out);
 return (license_data);
}

	DOCUMENT INFO
	E-mail
	Company
	Author
	Change
	Date
	Version
	Keywords
	Editor Address data
	Table of Acronyms
	1. Executive Summary
	2. Introduction
	3. Runtime reconfiguration
	3.1 Overview
	3.2 Dynamic Reconfiguration in CompSOC
	3.3 Dynamic Reconfiguration using Multi-Dataflow Composer
	3.4 Reconfiguration in Nvidia Jetson embedded devices
	3.5 Reconfiguration of Time Sensitive Network (TSN)
	3.6 RIE-based reconfiguration method

	4. Runtime Monitoring, Profiling and Measuring
	4.1 Reference Platform for monitoring
	4.2 Enabling Solutions to perform monitoring in FitOptiVis
	4.2.1 FIVIS data storage, visualization and analytics platform
	4.2.1.1 Overview
	4.2.1.2 Architecture
	4.2.1.3 Data Model
	4.2.1.4 Data Server Interface
	4.2.1.5 Data Processing
	4.2.1.6 Client Interface
	4.2.1.7 System Status

	4.2.2 DSL extension to express monitoring requirements
	4.2.3 AIPHS framework to build custom edge monitoring systems
	4.2.3.1 Overview
	4.2.3.2 Monitoring system composition
	4.2.3.3 Interface

	4.3 Instances
	4.3.1 Monitoring in 3D industrial inspection system
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Data Storage, Analytics and Visualization

	4.3.2 Heterogeneous Distributed Computing Adaptation Monitoring
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Data Storage, Analytics and Visualization

	4.3.3 Monitoring systems for reconfiguration for Habit Tracking and Smart Grid
	Monitoring Requirements
	Habit Tracking use case
	Smart-Grid Surveillance system use case

	Units Under Monitoring
	Monitoring Infrastructure
	Habit Tracking use case
	Smart Surveillance use case

	Data Storage, Analytics and Visualization
	Habit Tracking

	4.3.4 Monitoring capabilities for object recognition in space applications
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure

	4.3.5 Monitoring of 8xSIMD Floating point Accelerators
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Monitoring infrastructure - standard data interfaces
	Monitoring infrastructure - standard data communication infrastructure
	Monitoring infrastructure - standard AXI-lite Registers
	Monitoring processor reconfigures accelerator by change of firmware
	Example: Matrix multiplication
	Example: reconfigure accelerator by temporary change of firmware
	Example: read accelerator capabilities
	Reconfigure streaming data paths of serial connected accelerators

	4.3.6 Monitoring of V-PCC in Virtual Reality
	Monitoring Requirements
	Units Under Monitoring
	V-PCC Decoding Performance
	V-PCC AR Rendering Performance

	Monitoring infrastructure

	4.3.7 Monitoring in Salmi-Care System
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Data Storage, Analytics and Visualization

	4.3.8 TSN support for concurrent monitoring of multiple heterogenous systems
	Monitoring infrastructures provided by TSN
	TSN internal monitoring
	Unit Under Monitoring
	Monitoring Infrastructure: The Timestamping Unit (TSU)
	Propagation delay measurement
	Two-step PTP mechanism
	Best Master Clock Algorithm (BMCA) monitoring

	Data Storage, Analytics and Visualization

	4.3.9 Monitoring systems for localization in space applications
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure and Monitoring Processor

	4.3.10 Pose and facial recognition in Habit Tracking with edge-cloud adaptivity
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Data Storage, Analytics and Visualization

	4.3.11 Monitor in Processor-Coprocessor systems
	Monitoring Requirements
	Unit Under Monitoring
	Monitoring Infrastructure
	Data Storage, Analytics and Visualization

	5. Conclusions
	References
	Appendix – Example codes

