

ECSEL 783162

FitOptiVis

From the cloud to the edge - smart IntegraTion and
OPtimisation Technologies for highly efficient Image and VIdeo

processing Systems

Deliverable: D3.3 Design time, optimisation,
deployment and programming strategies V3

Due date of deliverable: (30-09-2021)
Actual submission date: (30-09-2021)

Start date of Project: 01 June 2018 Duration: 36 + 6 months

Responsible: Jiri Kadlec kadlec@utia.cas.cz (UTIA)

Revision: Draft

Dissemination level

PU

Public

PP

Restricted to other programme participants (including the Commission
Service

RE

Restricted to a group specified by the consortium (including the Commission
Services)

CO

Confidential, only for members of the consortium (excluding the Commission
Services)

mailto:kadlec@utia.cas.cz

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 2 of 148

© FitOptiVis Consortium public

1. DOCUMENT INFO

Author

Author Company E-mail

Pekka Jääskeläinen TUT pekka.jaaskelainen@tuni.fi

Jiri Kadlec UTIA kadlec@utia.cas.cz

Pablo Sanchez UC sanchez@teisa.unican.es

Carlo Sau UNICA carlo.sau@diee.unica.it

Dip Goswami TUE D.Goswami@tue.nl

Roman Juranek BUT ijuranek@fit.vutbr.cz

Luis Medina 7SOLS luis.medina@sevensols.com

Francesca Palumbo UNISS fpalumbo@uniss.it

Luigi Pomante UNIVAQ luigi.pomante@univaq.it

Tero Säntti UTU teansa@utu.fi

Massimo Massa AITEK mmassa@aitek.it

Tomas Bures CUNI bures@d3s.mff.cuni.cz

Jukka Saarinen Nokia jukka.saarinen@nokia.com

Jari Hannuksela Visidion jari.hannuksela@visidon.fi

Document history
Document
version #

Date Change

V0.1 14.6.2021 Starting version based on D3.2 – Jiri Kadlec, UTIA

V0.2 31.8.2021 Integrated partner input

V0.3 3.8.2021 Template for 3.1 Progress made by each partner.

 Template for 8.1 Main achievements by each partner.

V0.4 6.8.2021 Update of UTIA chapters, introduction and conclusion

V0.5 13.9.2021 Draft sent for internal review

V09 29.9.2021 Integrated modifications proposed by the internal review

V1.0 30.9.2021 Ready for release. In ch. 3.1 8.1, partner input.
V1.1 6.10.2021 Integrated additional partner input into chapters 3.1 8.1,

V1.2 10.10.2021 Ready for release to ECSEL JU portal.

Document data
Keywords

Editor Address data Name: Jiri Kadlec
Partner: UTIA
Pod vodarenskou vezi 4, Prague 8.
Czech republic:
Phone:+420 2 6605 2216

Distribution list
Date Issue E-mailer

10.10.2021 V1.2 fitoptivis-wp3@lists.utu.fi

mailto:pekka.jaaskelainen@tuni.fi
mailto:kadlec@utia.cas.cz
mailto:sanchez@teisa.unican.es
mailto:carlo.sau@diee.unica.it
mailto:D.Goswami@tue.nl
mailto:ijuranek@fit.vutbr.cz
mailto:luis.medina@sevensols.com
mailto:fpalumbo@uniss.it
mailto:luigi.pomante@univaq.it
mailto:teansa@utu.fi
mailto:mmassa@aitek.it
mailto:bures@d3s.mff.cuni.cz
mailto:jukka.saarinen@nokia.com
mailto:jari.hannuksela@visidon.fi

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 3 of 148

© FitOptiVis Consortium public

Table of Contents

1. DOCUMENT INFO .. 2

2. EXECUTIVE SUMMARY .. 9

3. INTRODUCTION ... 10

3.1. Progress of development made in FitOptiVis by WP3
partners 10

4. MODEL-DRIVEN ENGINEERING TECHNIQUES FOR ENERGY,
PERFORMANCE AND OTHER QUALITIES .. 15

4.1. The S3D modelling methodology for real-time video
processing systems ... 16

4.2. Design space exploration for re-configurability 19

4.3. The SAGE verification suite .. 32

4.4. Scenario- and platform-aware design flow for image-based
control systems .. 33

4.5 Modelling of real-time video processing systems with
limited precision ... 40

4.6 Design time support for high level tool chains 41

4.7 High-level abstract component model and DSL 41

4.8 Runtime reconfiguration Implementation of Embedded
systems 42

5. PROGRAMMING AND PARALLELIZATION SUPPORT 47

5.1. Static resource allocation and runtime scheduling 47

5.2. Training WaldBoost detectors for FPGA 48

5.3. OpenMP for real-time video systems 51

5.4. Design time support for C/C++ compilers and OpenCV
algorithmic libraries ... 52

5.5. TTA-based Co-Design Environment (TCE) 52

5.6. BlockCopier: A programmable block transfer unit 59

5.7. Deterministic timing in distributed systems and latency
control with Time Sensitive Networks (TSN) .. 61

5.8. Code generation for reconfigurable systems 61

6. ACCELERATION SUPPORT.. 64

6.1. OpenMP for HW accelerators ... 64

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 4 of 148

© FitOptiVis Consortium public

6.2. HW accelerators generated by the Xilinx SG for DSP and
SDSoC system level compiler ... 65

6.3. The Multi-Dataflow Composer (MDC) tool: a dataflow-to-
accelerator design suite ... 66

6.4. NEURAghe a flexible and parameterized CNN accelerator 68

6.5. TTA-Based customized soft core accelerators 70

6.6. Object detection on FPGA using Waldboost algorithm 79

6.7. HDR image acquisition, merging and tone-mapping 80

6.8. Convolutional HW accelerator .. 81

6.9. Video-based Point Cloud Compression 82

6.10. Acceleration of face detector on GPU and DSP 85

6.11. Automated Toolchain for Adaptive Neural Network
Accelerator 87

7. DESIGN TIME SUPPORT FOR METHODOLOGIES AND TOOLS 90

7.1. DTRiMC for TE0820-3CG and TE0820-4EV modules 92

7.2. DTRiMC for TE0808-15EG and TE0808-09EG-ES1 94

7.3. DTRiMC for TE0726-03M and TE0726-03-07S board 97

7.4. Tool development directions after the end of project 99

8. CONCLUSIONS .. 102

8.1. Main achievements in WP3 of the FitOptiVis project 102

9. REFERENCES .. 107

10. APPENDIX: FITOPTIVIS DESIGN TIME SUPPORT TOOLS................. 112

10.1. TTA-Based Co-design Environment (TCE) 114

10.2. HW/SW CO-DEsign of HEterogeneous Parallel dedicated
SYstems (HEPSYCODE) ... 118

10.3. Multi-Dataflow Composer (MDC) tool 124

10.4. The SAGE Verification Suite (SAGE-VS) 126

10.5. RIE – Re-configurable Implementation of Embedded
systems 129

10.6. S3D – Single Source Design Framework 131

10.7. Design Time Resource Configurator (DTRC) Technology 133

10.8. Design Time Resource Integrator of Model Composer IPs
(DTRiMC) Technology. ... 136

10.9. IMACS (IMAge in the Closed-loop System) 143

10.10. HDR Processing accelerator (HDR Core) 145

10.11. Object detection accelerator (ACF Core) 147

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 5 of 148

© FitOptiVis Consortium public

Table of Figures

Figure 1: TE Single Source System Design Framework (SD3). 17
Figure 2: Application view... 18
Figure 3: Example of Component interfaces. .. 18
Figure 4: HEPSYCODE ESL HW/SW co-design flow. .. 20
Figure 5: CSP representing the system behaviour. .. 21
Figure 6: SC_MODULE representing the System module. ... 21
Figure 7: Sketch of the System SC_MODULE SystemC description. 22
Figure 8: Sketch of a CSP process SystemC description. .. 22
Figure 9: Affinity with respect to GPP, DSP, and SPP. ... 23
Figure 10: Timing/Energy trade-off. .. 24
Figure 11: TTC/ETC relationship (L = load, E = energy, C = Cost). 25
Figure 12: Timing/Energy/Cost trade-off. .. 25
Figure 13: Block-diagram specification of a simplified digital camera. 27
Figure 14: CSP-based DC system-level model. .. 27
Figure 15: High-level representation of the system and testbench. 28
Figure 16: Detail of the System SC_MODULE. .. 28
Figure 17: SPADe flow for multiprocessor image-based control systems. 34
Figure 18: Multiprocessor SoC with two processor tiles and one memory tile. 34
Figure 19: NVIDIA Drive PX2 platform graph structure. .. 36
Figure 20: System mapping to MPSoC... 37
Figure 21: IMACS evaluation framework. ... 38
Figure 22: Comparison between SPADe and pipelined (state-of-the-art) approaches.39
Figure 23: Design-space exploration for a HiL with different implementation choices. 40
Figure 24: Example of RIE virtual instance. .. 43
Figure 25: RIE reconfiguration approach. ... 44
Figure 26: RIE remote infrastructure. ... 44
Figure 27: Remote component implementation. ... 45
Figure 28: Component configuration example. ... 46
Figure 29: Profiling IP core connection. .. 47
Figure 30: JSON loaded in Chrome Tracing for analysis. ... 48
Figure 31: Feature channels extracted from the input image. 49
Figure 32: Example of detected license plates. .. 49
Figure 33: OpenMP-based reconfiguration methodology. ... 51
Figure 34: The two different loop optimization modes. .. 53
Figure 35: High-level example of software pipelining. ... 54
Figure 36: Programmable dictionary compression flow. ... 59
Figure 37: Example RISC-V ISA-based processor. .. 59
Figure 38: Architecture of the block copier ASIP. ... 61
Figure 39: UC WP3 design flow.. 62
Figure 40: Automatic code generation. ... 63
Figure 41: Automatic generation of component library. ... 63
Figure 42: HW accelerators with OpenMP code. .. 64
Figure 43: Maximum clock frequency of the synthesized processors. 72
Figure 44: Simplified view of the wide-SIMD TTA template. 73
Figure 45: Simplified TCE Exploration process of AutoExplorer. 74
Figure 46: Un-optimized architecture (left), final best possible architecture (right). 75
Figure 47: AEx2 result pruning between passes. .. 77
Figure 48: Overall runtime comparison. .. 78
Figure 49 Accelerator in an example project in Vivado. .. 79

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 6 of 148

© FitOptiVis Consortium public

Figure 50: Overall schematics of HDR acquisition pipeline. .. 80
Figure 51: Vivado schematics of ghost-free HDR merging block. 80
Figure 52: (left) standard merging algorithm, (right) output of our algorithm. 81
Figure 53: V-PCC encoding structure. .. 83
Figure 54: V-PCC decoding structure. ... 84
Figure 55: Power consumption in case of CPU implementation. 86
Figure 56: Power consumption in case of GPU implementation 87
Figure 57: Adaptive NN hardware accelerators .. 89
Figure 58: Block diagram of DTRiMC supported design flow. 92
Figure 59: HW platform for Zynq Ultrascale+ ZU3CG and ZU4EV devices................. 93
Figure 60: SW application running on Zynq Ultrascale+ ZU3CG and ZU4EV devices.93
Figure 61: HW platform for Zynq Ultrascale+ ZU15EG device. 95
Figure 62: SW (Sobel and LK DOF) on the Zynq Ultrascale+ ZU15EG device. 96
Figure 63: Two HW platforms for Zynq 7000 device: 8xSIMD accelerator and FIFO. . 97
Figure 64: SW (floating point benchmark) on Zynq 7000 device. 98
Figure 65: Time frame and roadmap of Xilinx SW/HW design tools. 99
Figure 66: Measured memory bandwidth in te0820-04ev Vitis platform. 100
Figure 67: Measured memory bandwidth in te0803-04ev Vitis platform. 101
Figure 68: Nokia Technology demonstrating point cloud compression technology at
IBC 2019. ... 105
Figure 69: Sebastian Schwarz (middle) and Mika Pesonen (right) from Nokia
Technology received the IBC 2019 Best Technical Paper Award for their work on point
cloud compression and visualisation. ... 105
Figure 70: FitOptiVis Design Support Tools. ... 112

Table of Tables

Table 1: Overview and Comparison of Model-driven engineering techniques. 16
Table 2: VLAN identification rules of user traffic types. ... 62
Table 3: Resources consumed by our Ghost free merging IP cores. 81
Table 4: Progress made in FitOptiVis in WP3 in Y1. Comparison to ALMARVI. 90
Table 5: Power consumption of ZU04EV and ZU03CG systems 94
Table 6: Power consumption of Zynq Ultrascale+ ZU15EG system. 97
Table 7: Power consumption of Zynq zc7z010 with 8xSIMD accelerator. 98
Table 8: Measured performance of HW data movers for Zynq xc7z07s device. 99
Table 9: Use of WP3 tools and technologies by project partners. 113

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 7 of 148

© FitOptiVis Consortium public

Table of Acronyms

AEx AutoExplorer is a design space exploration flow

AXI4 Xilinx Interconnect standard

AXI4-Stream Xilinx Interconnect standard serving for data streaming

AXI4-Lite Xilinx Interconnect standard serving for access to registers

BMCA Best Master Clock Algorithm

CfP Call for Proposals

CNN Convolutional Neural Networks

CompSOC predictable multiprocessor system-on-chip platform

CSP Convolution-Specific Processor

D-HMPS Dedicate Heterogeneous/homogeneous Multi-Processing System

DMA Direct Memory Access

DSE Design Space Exploration

DSL Domain Specific Language

DTRiMC Design Time Resource Integrator of Model Composer IPs
technology

ESL Electronic System Level

FPGA Field Programmable Gate Array

FPS Frames per second

gPTP generalized Precision Time Protocol

HiL Hardware-in-the-Loop

HLS High Level Synthesis (Xilinx C/C++ to HW IP compiler).

IBC Image Based Control

IRF Instruction Register File

J4CS Joule for C statements

LLVM Low-Level Virtual Machine compiler development infrastructure

LSU Load-Store Unit

MDA Model Driven Architecture

MDC Multi-Dataflow Composer tool: a dataflow-to-accelerator design
suite

MPL Max Plus Linear graph (Serves for analysis of DSF graph)

NeuDNN NEURAghe Deep Neural Network software stack

NEURAghe Flexible and parameterized CNN accelerator

NFR Non-Functional Requirements

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 8 of 148

© FitOptiVis Consortium public

OpenCL Open standard defined by khronos group supported by multiple
vendors

OpenCV Open Computer Vision (C++ library of algorithms)

OpenMP Open Multi-Processing

PCP Priority Code Point

PIM, PDM, PSM Platform Independent/Description/Specific Model

PSPs Property Specification Patterns

QoC Quality-of-Control

QRML Quality and Resource Management Language

RIE Runtime reconfiguration Implementation of Embedded systems

S3D Single-Source System Design Framework

SAGE-VS SAGE Verification Suite is set of SW tools aimed to accomplish
different formal verification tasks at design time.

SDF Synchronous Data Flow

SDSoC Software Defined System in Chip (System level HW design flow).

SG-DMA Scatter-Gather Direct Memory Access

SIMD Single Instruction Multiple Data

SMP Symmetric Multi-Processing

SoC System on Chip

SPADe Scenario and Platform Aware Design

TCE TTA-based Co-Design Environment

TMO Tonemapping

TSN Time Sensitive Networks

TTA Transport Triggered Architecture

UML-MARTE UML Profile for Modelling and Analysis of Real-Time and
Embedded Systems

VID VLAN ID

VLIW Very large Instruction Word

V-PCC Video-based Point Cloud Compression

WC Worst case

WCET Worst Case Execution Time

YOLO Open source content analysis software

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 9 of 148

© FitOptiVis Consortium public

2. Executive summary

Deliverable D3.3 “Design time, optimization, deployment and programming
strategies V3” focuses on concrete design flows, tools and design time support
packages used, developed and/or extended in the FitOptiVis project until the end of
the project. The deliverable D3.3 is an update of the D3.2, with partner contributions
and results delivered in the final, M25-M40 period of the FitOptiVis project.

Results developed in task T3.1 “Model-driven engineering techniques for energy,
performance and other qualities” are described in Chapter 4.

Results developed in task T3.2 “Programming and parallelization support” are
described in Chapter 5.

Results developed in task T3.3 “Accelerator support” are described in Chapter 6.

Results spanning over all three tasks (T3.1, T3.2 and T3.3) are described in
Chapter 7. The design time technologies described in Chapter 7 have been released
by FitOptiVis project WP3 partners in form of publicly accessible evaluation packages
and publicly accessible application notes [7.15]-[7.20]. These resources served as
WP3 design-time resource for FitOptiVis project partners, and also serve as publicly
accessible design time support material, which can be used by other developers
outside of the project.

Chapter 8 provides main conclusions from the work performed by WP3 partners in the
FitOptiVis project.

Chapter 9 contains references.

Chapter 10 forms an appendix to the D3.3 deliverable. It summarizes all the developed
tools and design technologies, highlighting their differences, granularities and use
scenarios.

Each developed tool is presented in a compact table format similar to a sort of data
sheet of the tool. The tool descriptions provide links to the publicly accessible
repositories with application notes and released evaluation packages.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 10 of 148

© FitOptiVis Consortium public

3. Introduction

This deliverable presents design methodologies, frameworks and design time support
packages developed and/or improved by WP3 partners. The deliverable integrates
results of WP3 after the third year of the project.

The work of WP3 is organised in 3 tasks: T3.1, T3.2 and T3.3, which contributions are
provided in this deliverable as follows.

Task 3.1 – It deals with common approaches to the design time resources covering
model-driven engineering techniques for energy, performance, and other qualities.
These activities are described in Chapter 4. One of the core developments is the RIE
methodology, which supports runtime reconfiguration of the software components
described in the QRML modelling language developed in WP2. It is possible to
generate RIE code from the WP2 QRML language and UML/MARTE models.

Task 3.2 – Contributions of partners related to task T3.2 are mainly included in
Chapter 5. It describes the techniques that have been added to the design and
programming tools developed in WP3 to improve their programming and parallelization
support. Activities of partners in Task 3.2 also include links to the WP5.

Task 3.3 – Accelerator related contributions of partners are mainly included in Chapter
6. It describes design time resources related specifically to developing new HW
accelerators. It contains the link to WP5 (Devices) via its new hardware accelerator
designs supported by the WP3 design time development flows.

Chapter 7 is dedicated to design time methodologies and tools that have been
developed in Tasks 3.1 and 3.3, and have been released in form of publicly accessible
documented evaluation packages [7.15]-[7.20]. These released resources serve as
concrete WP3 output results for FitOptiVis project partners. The tools released as
open source also serve to other developers outside of the project.

Chapter 8 is highlighting main achievements achieved by projects partners
cooperating in WP3.

Chapter 9 contains all references, including the www links to the developed and
released evaluation packages and application notes.

Chapter 10 is an appendix of D3.3 deliverable contains the final overview and
summary of all tools and design technologies developed, documented and released
by WP3 partners. It also provides mapping of these results in a bigger picture related
to their granularity and to the software/hardware orientation.

3.1. Progress of development made in FitOptiVis by WP3
partners

This section briefly highlights progress made by technology development partners in
WP3 in the duration of the project.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 11 of 148

© FitOptiVis Consortium public

3.1.1. UTIA

UTIA started its development in FitOptiVis project from board support packages for

video processing systems based on Zynq 7000 devices (28 nm) developed in the

ARTEMIS JU project No. 621439 ALMARVI (4.2014 to 6.2017).

In FitOptiVis (6.2018 – 11.2021), UTIA in collaboration with WP3 partners progressed

substantially with the development and documentation of board support packages for a

wide range of Zynq Ultrascale+ industrial grade modules (16 nm) manufactured by

company Trenz Electronics, with support for Xilinx SDSoC system level compiler

(versions 2017.4 and 2018.2) and also with integration of custom, run-time

reprogrammable 8xSIMD floating point HW accelerators.

In Y1, Debian OS, ZynqUltrascale+ Full HD video platform with support for Xilinx

SDSoC compiler was developed. See D3.1 and application notes and evaluation

packages [7.1]-[7.4], [7.11] (released for public access in M12).

In Y2, fixed-HW, precompiled platforms with 8xSIMD HW accelerators were developed

and documented in D3.2 by UTIA in collaboration with WP3 partners. The Design Time

Resource Configurator (DTRC, see chapter 10.7) was released and documented.

Released precompiled platforms support HW accelerated Full HD video processing

and in addition the SW compilation of host firmware for 8xSIMD HW accelerators in

gcc or g++ compiler projects. See application notes and evaluation packages [7.12]-

[7.14] (released for public access in M24).

Finally, in Y3, UTIA in collaboration with WP3 partners developed, released and

documented complete HW/SW flow for Zynq Ultrascale+ with possibility to integrate

external SIMD HW accelerators, supported by the Design Time Resource Integrator of

Model Composer IPs (DTRiMC, see chapter 10.8). It supports complete HW/SW

design flow for video processing systems. It is open for user-defined

modifications/extensions of the initial HW platform. This design time resource is

described in this final deliverable D3.3 and related application notes and evaluation

packages [7.15]-[7.20] (released for public access in M38).

3.1.2. BUT

BUT started with legacy technologies for Zynq platforms stemming from previous

projects (EMC2, ALMARVI). In FitOptiVis , BUT continued on the development of the

technologies in order to improve performance, configuration capabilities and resource

consumption. Specifically, we improved IP core for processing of multi exposure video

where we worked on high quality image merging. We completely redesigned the IP

core for object detection. We dropped the legacy technology and implemented the

algorithm with better speed and resource usage parameters. Finally, we implemented

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 12 of 148

© FitOptiVis Consortium public

a machine learning software, which can produce models for the object detection IP

core.

3.1.3. TUT

TCE was developed substantially within FitOptiVis , with most of the developments

shaped to a level that they were contributed to the open source OpenASIP branch. As

highlights of new work in FitOptiVis :

 64b integer and pointer support,

 Loop optimizations (initial software pipelining study) and

 Various improvements related to instruction memory density, the main pitfall of

VLIW/TTA designs.

Furthermore, the soft core use case was improved with various FPGA-specific

optimizations done to the SIMD and multicore support, as well as the automated

processor generator tool AEx.

3.1.4. UCAN

The WP4 work has been focused into 4 main areas: the development of a C++

implementation methodology and support library (RIE) for reconfigurable systems, the

automatic generation of implementation code, the integration of the FitOptiVis

abstraction models in the S3D UML/MARTE framework and the analysis of the use of

OpenMP for video systems. The methodology and library for the implementation of

reconfigurable systems (RIE) is a pure FitOptiVis development that began from a basic

specification and generates a framework that provides efficient reconfigurable

implementations. The last year release is based on grpc services and support

interfaces with reconfigurable implementations. In the other hand, a WP2 result (the

SDSL language) has been used as input of a RIE-based automatic code generator.

This generator has been used to generate the UC10 use-case components.

Additionally, during the last year UCAN has finalized the integration of SDSL in the

S3D framework, in order to automatically generate UML/MARTE models from WP2

SDSL models. In WP3, UCAN has been also evaluating the use of OpenMP for

programming heterogeneous systems that integrate HW accelerators or OpenCL-

based devices. During the first part of the project, the effort was mainly focused on HW

accelerators while the OpenCL-based system has received more attention in the last

half. The final results is an OpenMP-based framework for heterogeneous system

programming.

3.1.5. UNIVAQ

In the context of the ECSEL FitOptiVis project (WP3), UNIVAQ has finalized the

extension of the HEPSYCODE methodology (with respect to the baseline available as

a result of the ECSEL MEGAMART2/AQUAS projects) to consider also non-functional

requirements related to energy consumption. Accordingly, UNIVAQ has also improved

the set of prototypal SW tools supporting the methodology.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 13 of 148

© FitOptiVis Consortium public

3.1.6. TUE

Image-based control (IBC) systems are increasingly being used in various domains

including healthcare and autonomous driving. TUE dealt with efficient implementation

of image-based control systems. The starting point was the basic analytical

infrastructure developed in the earlier projects (oCPS, rCPS). TUE has extended the

idea introducing scenario- and platform-awareness in the design flow – SPADe – of

image-based control loops as well as software support for application development for

the same. The idea was demonstrated considering time-predictable platforms. The

idea was further adapted for modern industrial heterogeneous platforms, such as

NVIDIA Drive. The SPADe flow is integrated into IMACS framework allowing for

software-in-the-loop (SiL) and Hardware-in-the-loop (HiL) testing and bugging IBC

systems.

3.1.7. UNISS

In this last reporting period UNISS has completed his work on MDC tool and an the

SAGE suite. MDC extension for AIPHS has been completed, while, concerning SAGE,

UNISS has finalized an SMT-based approach for automated consistency checking and

inconsistency finding of configuration specifications.

3.1.8. HURJA

We have defined and implemented design-time optimization, deployment, and

programming strategies related to Hurja’s Salmi Care Platform in order to better utilize

computing resources (CPU/GPU) of advanced AR-glasses (HoloLens 2) and smart-

phone/tablet platforms. HURJA has also made UC3 integration by utilizing FIVIS tool

to centralize the gathering of Salmi Care demonstrator’s rehabilitation data in UC3.

3.1.9. UTU

In WP3 UTU developed accelerators for the Aura line of microprocessors. The

accelerators were developed fully from scratch, and the end results are in the form of

VHDL code that can be implemented in FPGA or in ASIC. Full synthesis to both

targets has been done. The main task to be accelerated in the FitOptiVis target

domain was convolutional image processing. These algorithms are also usefull in AI

applications, not only image/video processing. The accelerator was designed in two

variants, one using normal arithmetics, and on using reduced precision arithmetics.

The motivation for reduced precision was minimizing memory accesses and thus

power consumption.

3.1.10. NOKIA

In Y1 and Y2, A significant amount of new technical know-how was developed during

the implementation of video-based point cloud coding technology (V-PCC) with WP3

tools and developments, in particular on how to synchronise several video streams on

low complexity, low reliability devices, such as Android mobile phones. We took the

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 14 of 148

© FitOptiVis Consortium public

opportunity to communicate this new knowledge to related industry and

standardisation bodies to create awareness for new challenges.

In Y3, the Real-time Point Cloud Augmented Reality Rendering Case Study has been

implemented with TUT. We studied a full application task offloading case study, a

smartphone application that renders a streamed animated point cloud in augmented

reality (AR). The point cloud is received as an HEVC-encoded V-PCC stream which is

decompressed using the mobile device's hardware decoder and reconstructed using

OpenGL shaders. We utilized a scalable low-latency distributed heterogeneous

computing PoCL-R which is based on the standard OpenCL API's features. We also

proposed an API extension that significantly improves buffer transfer times for cases

with varying data sizes. The unique latency and scalability enhancing features were

tested with a distributed real-time augmented reality case study which reached 19x

improvement in FPS and 17x in EPF by remote of offloading a rendering quality

enhancement kernel using the runtime. The remote kernel execution latency overhead

of the runtime was only 60 microseconds on top of the network roundtrip time. This

demonstrator’s implementation was based on the usage of WP3 design tools.

3.1.11. CUNI

In the scope of WP3, CUNI has been mainly active in integrating QRML and FIVIS with

design time optimization. In Y1, CUNI’s main activity in WP3 was to integrate QRML

with activities in WP3 and to support partners in WP3 in adopting QRML and in

developing QRML models for their components. In Y2, we turned our focus mainly to

developing FIVIS platform to support partners in WP3. This involved mainly integration

of QRML with FIVIS. In Y3, our work on FIVIS continued and we focused mainly

supporting partners by FIVIS-based visualizations aligned with QRML. Here, FIVIS

supports design time evolution by allowing at design-time to drill into and compare

data measured at runtime on different (previous) versions of a component.

3.1.12. TASE

TASE’s work in WP3 has been mainly related with two different tasks. One of them is

the development of WP5 components using VITIS. This tool has allowed the

developers to perform efficient and fast implementations of hardware-based

components needed for the UC10 demonstrator on the remote component based on a

Zynq UltraScale+. The components were started from scratch and VITIS allowed a fast

development of these components starting from OpenCV software implementations.

The other main task of TASE in WP3 has been providing support to UCAN during the

integrations of their developments into the Space Use Case.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 15 of 148

© FitOptiVis Consortium public

4. Model-driven engineering techniques for energy,
performance and other qualities

This section presents design and verification frameworks as well as techniques that
WP3 partners have developed during the second year. The first four sections present
design and verification frameworks while the other sections present specific
techniques. Activities of all partners in these areas also form an initial WP3 link to WP2
(component models, abstractions, virtualization and methods).

The project team included the set of elaborated model-driven engineering techniques
in D3.2 used by partners as design time resource. Table 1 describes why they have

been chosen to be FitOptiVis model-driven techniques and what kind of features exist
in each of them, how they differ and complement each other.

Model-driven
engineering
technique

Cha
pter

Why chosen to be one of
FitOptiVis model-driven
techniques for the design
time resource

Specific features

FitOptiVis S3D
Modelling
Framework

4.1 Efficiently models real-time
video processing systems
with runtime re-
configuration capabilities.

FitOptiVis S3D framework
includes eclipse-based Papyrus
modelling and requirement
capture framework and
automatic generation of SW
and verification code.

Design Space
Exploration for
Re-
configurability

4.2 Model-driven Design Space
Exploration HW/SW co-
design methodology. The
goal is to identify suitable
“reconfiguration plans” for
different trade-offs

Set of prototypal SW tools to
support the methodology.
Algorithm implementations
providing results with different
accuracy (approximate
computing techniques)

SAGE
Verification
Suite

4.3 Automated Consistency
checking and Inconsistency
finding of requirements
Organization and storage of
requirements in an online
platform.
Automatic synthesis for goal
oriented "correct-by-
construction" policies from a
system model and an
objective.
Automatic test generation
for black-box reactive
systems starting from
requirements formalized in
a logical language.

SpecPro: library translating
requirements from natural
language to logical language.
ReqV: tool for requirements
management and consistency
formal verification.

HyDRA: a tool for synthesizing
an optimal and “correct-by-
construction” policy given a
model and tasks in logical
language.

ReqT: a tool for requirements-
based test suites generation.

Dynamic
performance
tracking
(control
theoretic

4.4 Depending on the
application requirements,
the optimization algorithms
find the best configuration
(mapping, scheduling and

It is based on Synchronous
Dataflow (SDF) graph which
can be analysed to answer
performance related questions
such as the minimum

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 16 of 148

© FitOptiVis Consortium public

approaches) voltage/frequency setting). guaranteed throughput for a
given mapping to a platform.

Modelling with
limited
precision

4.5 This approach allows using
a reasonable dynamic
range while limiting the
data-path width, and thus
energy consumption.

Use of non-linear number
space.

Support for
High Level
Tool Chains

4.6 Design time development
methodology for fast
modelling and development
of algorithms in C/C++ code
executable on ARM with
real video I/O.
Performance of the HW
accelerator can be
estimated from these C/C++
models without complete
compilation to the HW

Compatibility with Xilinx High
Level Synthesis design Flow
(Vivado HLS) and Xilinx
SDSoC system level compiler.
It compiles user defined C/C++
from ARM to the programmable
Logic of the Zynq device.
Xilinx SDSoC requires board
support packages provided by
FitOptiVis WP3 partners.

High-level
abstract
component
model and
DSL

4.7 The specified High-level
abstract component model
and the specified domain
specific language (DSL)
serve as conceptual link of
work performed in the WP2
and in the WP3.

From the perspective of WP3,
the component model provides
the structure (component
architecture). Components are
hierarchically composable
(support for abstracting
composition of components as
another component).

Table 1: Overview and Comparison of Model-driven engineering techniques.

4.1. The S3D modelling methodology for real-time video
processing systems

The Single-Source System Design Framework, S3D [4.1], follows a component-

oriented approach and applies Model Driven Architecture (MDA) principles in the

development of HW/SW embedded systems to deal with the increasing complexity of

software development. It considers application components as units that can be

allocated either on the software part or on the hardware part of the system. S3D has

been developed by UC in several projects [4.2] and the main objective of the S3D

development in FitOptiVis is to adapt and improve the capacity of the methodology to

efficiently model real-time video processing systems with runtime re-configuration

capabilities. Additionally, the capability of the methodology to capture non-functional

requirements will also be evaluated and improved. S3D uses the UML/MARTE

standard and its main goal is to minimize the modeling effort as much as possible. In

order to facilitate capturing all the relevant information about the system for different

purposes in a coherent, accessible and compressive way, the information is organized

in views.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 17 of 148

© FitOptiVis Consortium public

Figure 1: TE Single Source System Design Framework (SD3).

Each view encloses all the required information about a particular aspect of the
system. The S3D ecosystem that is presented in Figure 1 includes different tools that

perform different design tasks such as verification, simulation, performance analysis,
scheduling analysis, etc. When the design satisfies all the functional and non-
functional constraints, the code to be deployed on the different computational nodes of
the distributed platform is automatically generated. The FitOptiVis S3D framework
includes several design and verification tools such as an eclipse-based (Papyrus)
modelling and requirement capture framework and automatic generation of SW and
verification code.

The proposed approach uses three global models: PIM (Platform Independent Model),
PDM (Platform Description Model) and PSM (Platform Specific Model). The PIM
specifies the application structure (system components and their relation), behaviour
and requirements. The PDM defines the structure and main performances of the
physical HW/SW platform, in which the application will be implemented. The PSM
model defines the allocation of the application components in the platform HW/SW
resources.

The main view of the PIM is the Application View. This view defines the application
components and their relations. An example of Application View is presented in Figure
2

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 18 of 148

© FitOptiVis Consortium public

Figure 2: Application view.

The Application View uses generic components. In MARTE, these elements model
real time units (concurrent elements) or passive component (non-concurrent
elements). The external view of the component includes the services (functions) that
they provide and/or require. Thus, the required interface of a component lists all the
services that the component requires from other components. The provided interface
lists all the services that the component offers to other components. Figure 3 shows an

example of component that presents all the interface services. Every component has
at least an implementation (or behaviour) and a specific verification test case.

Figure 3: Example of Component interfaces.

In FitOptiVis , the S3D framework has been extended with new generators and
modelling capabilities. The generator produces UML/MARTE models from QRML
descriptions. The WP2 QRML models are mainly oriented to dataflow description and

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 19 of 148

© FitOptiVis Consortium public

this limits the UML/MARTE supports. In order to extent the modelling capabilities to
services, a specialization of QRML (SDSL) was propose in WP2. The new language
allows modelling software applications with service-oriented architecture and facilities
UML/MARTE model generation. SDSL includes all the QRML elements, and,
therefore, the generator supports all the QRML features related to application
modelling.

During the last year (Y3), the UML/MARTE generator has been integrated in S3D and
extended to support the last versions of SDSL and QRML. Next figure shows the
structure of the developed generators. It integrates the previously commented
UML/MARTE model generator and the C++ code producer. The C++ code generator
produces runtime reconfigurable implementations. These elements will be commented
in section 5.8.

Figure 4: S3D design flow.

4.2. Design space exploration for re-configurability

In Y3, UNIVAQ has finalized the extension of the HEPSYCODE methodology to

consider non-functional requirements (NFR) related to energy consumption, by

exploiting a high-level (i.e., statement-level) energy performance metric (i.e., J4CS,

described in D3.2) able to provide information about energy consumption of an

embedded system and so useful for energy consumption estimation approaches. This

metric is used inside the HEPSYCODE model-driven ESL HW/SW co-design

methodology for the design of run-time reconfigurable heterogeneous parallel

dedicated systems. Accordingly, UNIVAQ has also improved the set of prototypal SW

tools supporting the methodology. Figure 4 shows the reference HEPSYCODE ESL

HW/SW co-design flow more in details.

The HEPSYCODE goal is to identify (at design-time and, in the future, also at run-

time) suitable “configurations” for different trade-offs (e.g., timing vs energy/power vs

accuracy) by considering a heterogeneous set of HW components with multiple

working points.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 20 of 148

© FitOptiVis Consortium public

Figure 4: HEPSYCODE ESL HW/SW co-design flow.

4.2.1. Energy-aware HEPSYCODE

As stated in the previous paragraph, UNIVAQ has extended the HEPSYCODE

methodology ([4.29], [4.30], [4.31], [4.32]) to consider energy-aware requirements,

metric, and cost function in the design space exploration step. User energy

requirements can be related to the possibility to find system implementations based on

a dedicated heterogeneous/homogeneous multi-processing system (D-HMPS) that

consumes as less energy as possible, or D-HMPSs that consumes less energy than a

given energy threshold, while considering also other NFR (e.g., timing, cost, etc.). The

considered energy metric is the J4CS, while the design space exploration analyzes

alternative solutions by means of an evolutionary algorithm that considers, at the same

time, with a weighted sum method, several objectives.

So, taking into account different processor technologies, HEPSYCODE is able to find a

HW/SW partitioning, to define a HW architecture and to suggest a mapping potentially

able to satisfy all the requirements.

Finally, HEPSYCODE is able to estimate timing performances and energy

consumption by means of a SystemC simulator that considers the results found by the

evolutionary algorithm.

Respect to the plan exposed in D3.2, UNIVAQ has applied the extended (i.e., energy-

aware) methodology to two use cases, described below, to show the possible

exploitation of the improved HEPSYCODE:

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 21 of 148

© FitOptiVis Consortium public

 FIR-FIR-GCD [4.31] [4.32]: a synthetic example;

 Digital Camera [4.33]: an example in the image processing domain (i.e.,

meaningful also for the Italian UC).

4.2.2. Use case #1: FIR-FIR-GCD

In order to show the main features of the extended methodology and to verify the

related protype tools, a reference example is reported in the following. Let be the

system behavior, represented by the CSP shown in Figure 5, composed of 8

processes and 12 internal channels.

Figure 6 provides a graphical representation of the main SC_MODULE representing

the System (with internal processes and channels), while Figure 7 and Figure 8 show

some parts of the correspondent SystemC description.

Figure 5: CSP representing the system behaviour.

Figure 6: SC_MODULE representing the System module.

Stimulus Display

fir16

fir8

gcd

evaluation shifting

evaluation

evaluation shifting

System

ch1

ch2

ch3
ch4

ch5

ch6

ch7

ch8

ch9

ch10

ch11

ch12

ch13

ch14
ch15

System

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 22 of 148

© FitOptiVis Consortium public

 SC_MODULE(mainsystem)

{

 // Ports for testbench connections

 sc_port< sc_csp_channel_in_if< sc_uint<8> > >

stim1_channel_port;

 sc_port< sc_csp_channel_in_if< sc_uint<8> > >

stim2_channel_port;

 sc_port< sc_csp_channel_out_if< sc_uint<8> > >

result_channel_port;

 // PROCESSES

 void fir8_main();

 void fir8_evaluation();

 void fir8_shifting();

 …

 // CHANNELS

 // fir8

 sc_csp_channel< fir8e_parameters >

*fir8e_parameters_channel;

 sc_csp_channel< fir8e_results >

*fir8e_results_channel;

 …

 SC_CTOR(mainsystem)

 {

 SC_THREAD(fir8_main);

 SC_THREAD(fir8_evaluation);

 SC_THREAD(fir8_shifting);

 …

Figure 7: Sketch of the System SC_MODULE SystemC description.

 //f8s

void mainsystem::fir8_shifting()

{

 // datatype for channels

 fir8s_parameters fir8s_p;

 fir8s_results fir8s_r;

 // local variables

 sc_uint<8> sample_tmp;

 sc_uint<8> shift[8];

 while(1)

 {

 // read parameters from channel

 I(f8s) fir8s_p=fir8s_parameters_channel->read();

 // fill local variables

 sample_tmp=fir8s_p.sample_tmp;

 for(unsigned j=0; j<TAP8; j++)

shift[j]=fir8s_p.shift[j];

 // processing

 I(f8s)

 for(int i=TAP8-2; i>=0; i--)

 {I(f8s)

 I(f8s) shift[i+1] = shift[i];

 }

 I(f8s) shift[0]=sample_tmp;

 // fill datatype

 for(unsigned j=0; j<TAP8; j++)

fir8s_p.shift[j]=shift[j];

 // send results by channel

 I(f8s) fir8s_results_channel->write(fir8s_r);

 P(f8s)

 }

}

Figure 8: Sketch of a CSP process SystemC description.

It is worth noting that the considered example, called FIR-FIR-GCD, doesn’t perform a

meaningful computation, but it is just used as a simple case study (i.e., it is a synthetic

example).

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 23 of 148

© FitOptiVis Consortium public

The Technology Library considered for this case study is composed of three different

processors: an Intel MPU8051 (12 MHz, GPP), a Gaisler LEON3 (75 MHz, GPP) and

a Xilinx Spartan3AN (50 MHz, SPP). TL contains all the relevant information about

processors, memories (local to processors) and interconnections among processors

(in this case study they are limited to a single shared bus, i.e., I2C) needed to perform

the DSE step.

The Functional Simulation allows checking correctness of the system behavior by

analyzing outputs obtained by providing reference inputs.

Then, in this example, the Co-Analysis activity has been performed (partially manually)

by the designer. Based on his experience, he has provided values for the Affinity

(Figure 9), while the Concurrency has been estimated by means of the HEPSIM

simulator [4.34].

Figure 9: Affinity with respect to GPP, DSP, and SPP.

The Co-Estimation activity has been performed by exploiting CC4CS [4.35] and J4CS

(see D3.2) metrics. The results about Timing are then several min-max pairs (one for

each processor) related to the number of clock cycles needed to execute the

statements composing the SystemC descriptions of each process. The results about

Energy are also several min-max pairs (one for each processor) related to the energy

(Joule) needed to execute the statements composing the SystemC descriptions of

each process. The precise values to be used during timing/energy co-simulation are

dependent on process allocation and also on the Affinity of the process with respect to

the selected processor. Similarly, Size data are min-max pairs related to the number of

bytes needed for code/data (to be used during DSE step when a process is

implemented on GPP) and, since this case study refers to a FPGA as SPP, to the

number of Slices/LUT (to be used during DSE step when a process is implemented on

SPP). Such values have been estimated by means of some benchmarking activities.

Finally, Load Estimation for 8051 and LEON3 is performed by means of timing co-

simulations with respect to a Time-To-Completion (TTC) constraint [4.34]. The goal is

to estimate the load that each process would impose to the selected processors to

satisfy the constraints itself. The final results are a pair of estimated loads (for 8051

and LEON3) for each process.

f8m = {0.9, 0.7, 0.5}

f8e = {0.5, 0.7, 0.5}

f8s = {0.5, 0.8, 0.9}

f16m = {0.9, 0.7, 0.5}

f16e = {0.5, 0.7, 0.7}

f16s = {0.5, 0.8, 0.9}

gcdm = {0.9, 0.7, 0.5}

gcde = {0.5, 0.7, 0.7}

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 24 of 148

© FitOptiVis Consortium public

As specified before, in this case study, the communication infrastructure has been

fixed (i.e., processors with local memory and a single shared bus among them). So,

the Bandwidth Estimation is not needed since the DSE step doesn’t have to suggest

interconnection links to be used. Moreover, the timing/energy co-simulator will take

directly into account the characterization data, related to the selected shared bus,

provided in TL. The Co-Estimation is so concluded.

Once collected all the metrics and all the estimations needed for the DSE step, the

following additional constraints are imposed:

 Timing/Energy constraints: given the worst case time-to-completion (i.e.

WCTTC), estimated by means of a timing simulation performed allocating all

the processes on a single 8051 instance, the DSE step has to suggest

architecture/mapping pairs able to satisfy both a timing requirement of

x*WTTC, with x belonging to (0, 1), and an energy requirement of an energy

consumption less than a given ETC (Energy-To-Completion).

 Architectural constraints: the DSE step can use max 4 instances of 8051, max

2 instances of LEON3 and max 1 instance of Spartan3AN.

 Scheduling Policy: processes implemented in SW and allocated on the same

processor are subjected to a FCFS scheduling policy with 10% overhead for

context change.

Considering different TTC and ETC constraints, the DSE step provides the results

shown in Figure 10 (ordered by increasing execution time). Such results can be then

used to identify the relevant configurations to be used at run-time for max timing

performance, max energy saving, or a specific performance/energy trade-off.

Figure 10: Timing/Energy trade-off.

As an additional example, Figure 11 shows as, by reducing TTC, suitable solutions are

possible only by relaxing the ETC in a proper way.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 25 of 148

© FitOptiVis Consortium public

Figure 11: TTC/ETC relationship (L = load, E = energy, C = Cost).

Finally, Figure 12 shows a trade-off analysis that considers also the monetary cost of

each suggested solution. It is worth noting as it is possible to identify some interesting

outliers that would be difficult to imagine only on the base of the designer experience.

Figure 12: Timing/Energy/Cost trade-off.

4.2.3. Use case #2: Digital Camera

In order to show the main features of the extended methodology when applied to a

domain related to the Italian UC (i.e., image processing), it has been applied to the

Digital Camera (DC) case study proposed in [4.33], where a simplified JPEG

compression is taken into account. The case study presents several implementations

providing different performances with respect to timing, energy/power and cost. In

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 26 of 148

© FitOptiVis Consortium public

such a context, the energy-aware HEPSYCODE (in particular the HEPSIM simulator)

has been used to both check the consistency of the results with those provided in

[4.33], and to perform a wider DSE considering more degrees of freedom.

The DC main tasks are to capture images, store them in a digital format and download

them on a PC for permanent storage (using a serial cable for the connection). The

processing is initiated when the user presses the shutter button of the camera; a

special sensor, called CCD (charge-coupled device), is used to convert the image into

a digital form. A CCD is composed of many small cells that become electrically

charged when exposed to light. The charge of each cell is converted into an 8-bit value

that represents a pixel of the image. Some of the columns are covered with a black

strip of paint in order to perform a zero-bias adjustment: due to manufacturing errors

the cells of a CCD may measure a value that is slightly above or below the actual

value; this error (zero-bias error) is typically the same across columns, but different

across rows. For this reason, if a covered cell registers a value different from zero, we

detect the zero-bias error for that row. A CCD is capable of discharging the cells,

sending 8-bit at a time as an output (the 8-bit value represents the charge value of a

cell, i.e., one pixel). At this point the digital image is available, with a 64x64 resolution

(64x64 is the default value, but other size can be selected to trade-off timing

performance and energy consumption) and two extra columns to perform the zero-bias

adjustment: for each row the average of the two values of the zero-bias is performed

and the error is corrected by subtracting this number from each element of the row.

The next step involves the compression of the image in order to reduce the number of

bits needed to store the image and to transmit the image to the PC in less time. The

image is compressed by using the JPEG encoding, with a mode of operation that use

the discrete cosine transform (DCT): the digital image is divided into blocks of 8x8

pixels and each block is processed in three steps: forward DCT, quantization and

Huffman encoding (the last one, as done also [4.33], is omitted from the model). The

quantization step reduces the bit precision of the encoded data; in this way fewer bits

are needed to store the data, and compression is achieved. To do so, each pixel is

multiplied by a factor of 2 (i.e., each 8-bit value is right-shifted). When the compression

phase has been performed on every 8x8 block of the digital image, it can be

transmitted serially to the PC, using a UART. The flowchart in Figure 13 describes the

high-level functionality of the digital camera as considered in the use case.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 27 of 148

© FitOptiVis Consortium public

Figure 13: Block-diagram specification of a simplified digital camera.

The CSP-based system-level model of the DC behaviour is shown in Figure 14.

Figure 14: CSP-based DC system-level model.

Apart from the main behaviour of the DC, modelled by means of 4 processes and 4

internal channels, a testbench is required to execute the specification: Stimulus

provides the required inputs to the system and Display shows the corresponding

results. Then, the CSP-based model has been represented using SystemC as a

specification language. In order to achieve this goal, processes have been modelled

by using classic SC_THREAD, while channels have been modelled by introducing a

proper SC_CSP_CHANNEL derived from the SC_FIFO with an interface that offers

blocking write and read. An SC_THREAD modelling a process presents an infinite loop

behaviour and accesses only to its local variables, so the communication with other

processes occurs only by means of CSP channels. The whole system behaviour is

enclosed into a single SC_MODULE containing all the processes and internal

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 28 of 148

© FitOptiVis Consortium public

channels. Moreover, the testbench is modelled by other SC_MODULE connected to

the system by means of proper SC_PORT and channels. The high-level

representation of the system and testbench is shown in Figure 15 and a description of

the different SC MODULE and SC_THREAD in them is given below, while details

about SC_MODULE System are provided in Figure 16.

Figure 15: High-level representation of the system and testbench.

Figure 16: Detail of the System SC_MODULE.

The first step of the co-design flow is the Functional Simulation, where the system is

simulated to check its correctness with respect to some input data sets. This

simulation allows detecting errors in the model like wrong outputs or critical conditions

(such as deadlocks). Functional Simulation does not consider the time needed to

execute the statements composing the processes, so statements are executed in 0

time. Since the SystemC model is executable by construction, this simulation is directly

based on the simulation kernel provided by the standard SystemC library.

Once the behaviour of the system has been verified, the design space exploration step

is performed. This step consists of determining the system's architecture, i.e., the

number and type of processors (SPP, GPP, ASP), memories and buses, and involves

the mapping of the system processes to that architecture (multiple functions may be

mapped to a single processor). An implementation is obtained by fixing a particular

architecture and mapping and the solution space (or design space) is the set of all

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 29 of 148

© FitOptiVis Consortium public

possible implementations. The authors in [4.33] have analyzed four different

implementations, starting from a single general-purpose processor connected to flash

memory and RAM and mapping all the functionalities to software running on that

processor. Although this implementation allows satisfying power, size and time-to-

market constraints, it does not meet timing performance requirements imposing that

the DC must process an image in 1 second. For this reason, the implementation has

been modified in order to speed it up by using different approaches that involved the

exploitation of single-purpose processors for time- critical functions. In summary, the

considered implementations are the following ones:

 Implementation 1: Microcontroller Alone (AllSW)

 Implementation 2: Microcontroller and CCDPP/UART

 Implementation 3: Microcontroller and CCDPP/UART/Fixed-Point FDCT

 Implementation 4: Microcontroller and CCDPP/UART/CODEC

Timing performance of Implementation 1 has not been estimated, since a rough

analysis allowed estimating that only ccdpp process would take nearly half of the time

budget of 1 second. All the other implementations have been simulated using a VHDL

RTL (Register Transfer Level) description. A synthesizable implementation of 8051

microcontroller (written in VHDL) is available, all the SPPs in the system are modeled

in VHDL too, and the software modules are compiled and linked in order to obtain the

final executable that can be translated into the VHDL representation of the ROM (using

a ROM generator). In this way the entire system is represented in VHDL-RT, so the

simulator interprets it and simulates the execution of the final system. Moreover, an

ASIC synthesis tool has been used to estimate, at gate-level, energy and size. A

summary of the estimations obtained with this procedure is shown in the table below.

In order to compare the DSE results provided by HEPSICODE, the different

configurations proposed in [4.33] have been simulated at system-level by using

HEPSIM. Moreover, in order to provide more information about the possible trade-offs

obtainable by scaling the image size and considering different working frequencies and

interconnection links bitrates, HEPSIM has also been used to perform worst- and best-

case analysis. The final goal is twofold: to validate the results provided by HEPSIM

and to show the possible trade-offs that can be considered to select different system

configurations.

Implementation 2 Implementation 3 Implementation 4

 Performance (second) 9.1 1.5 0.099

 Power (watt) 0.033 0.033 0.040

 Size (gate) 98,000 90,000 128,000

 Energy (joule) 0.30 0.050 0.0040

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 30 of 148

© FitOptiVis Consortium public

The Processing Units and Physical Links (that allow the communication among

processes) that have been inserted in Technologies Library to simulate the different

implementations are listed below:

 Processing Units

o Intel 8051 (GPP) 12-20 MHz (GPP)

o Xilinx Artix7 12-20 MHz (SPP)

 Physical Links

o GPIO PORT of width 8 (to connect Stimulus and ccdpp, when ccdpp is

implemented in SW)

o CUSTOM of width 8 (to connect Stimulus and ccdpp, when ccdpp is

implemented with a SPP)

o BUS8051 of width 8 (to connect 8051 and memory/SPPs)

o GPIO PIN of width 1 (to connect uat and Display, when uat is

implemented in SW)

o UART, of width 1 (to connect uat and Display, when uat is implemented

with a SPP)

After Processing Units and Physical Links have been selected, the simulations have

been performed. The mapping between processes and Processing Units and the

mapping between channels and Physical Links have been performed according to the

implementations suggested by [4.33], but also considering the most relevant trade-

offs.

It is worth noting that in [4.33] not all the details are completely clear, so there has

been the need to make some assumptions (i.e., a precise comparison is not always

possible). The table below reports the results obtained for the very worst and very best

scenarios (HEPSIM source code customized for the DC and all the files related to such

simulations can be found in [4.36]):

 Very Worst Case

o Application

 Image size: 64x64

 Affinity: 0 for each process

o Timing

 Working frequency: 12 MHz

 CC4CS: max

 Scheduler overhead (estimated by exploiting the info provided in

[4.37]): max

 Links bitrate: min for each link

o Energy

 J4CS: max

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 31 of 148

© FitOptiVis Consortium public

 Link energy consumption (estimated by exploiting the info

provided in [4.38]): max for each link

 Very Best Case

o Application

 Image size: 16X16

 Affinity: 1 for each process

o Timing

 Working frequency: 20 MHz

 CC4CS: min

 Scheduler overhead: min

 Links bitrate: max for each link

o Energy

 J4CS: min

 Link energy consumption: min for each link

The simulation results show the timing performance and energy consumption intervals

obtained by considering all the possible system configurations for the reference

implementations. It is worth noting that all the results provided in [4.33] are included in

such intervals. The only exception is related to the energy values for Implementation 4:

this is because the estimation provided in [4.38], used as a reference for the

simulations, are related to inter-chip communications, while [4.33] considers only intra-

chip ones (characterized by a reduced energy consumption). Finally, it shall be

highlighted as all the considered simulations have been performed by starting from the

same system-level SystemC-based model without the need to perform any kind of

modification. This, with respect to other approaches where different models at different

abstraction levels are involved (e.g., 3 different VHDL-RT models in [4.33]), allows a

faster and wider design space exploration useful to support very early alternatives

evaluation.

4.2.4. Conclusions and future works

UNIVAQ has finalized the extension of the HEPSYCODE methodology to consider

non-functional requirements (NFR) related to energy consumption, by exploiting a

high-level (i.e., statement-level) energy performance metric. Respect to the plan

exposed in D3.2, since more effort than expected has been needed to fix and improve

TIME

Implementation Simulated time (s) [ESD2001] Simulated time (s)-VeryWorstCase Simulated time (s)-VeryBestCase

2 9.1 10.7 0.096

3 1.5 10.7 0.096

4 0.099 5.73 0.021

ENERGY

Implementation Energy (uJ) [ESD2001] Energy (uJ)-VeryWorstCase Energy (uJ)-VeryBestCase

2 300000 1.08675 e+7 68337.3

3 50000 1.08675 e+7 68337.3

4 400 7.86243 e+6 48367.2

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 32 of 148

© FitOptiVis Consortium public

the management of multiple heterogeneous links in the HEPSYCODE simulator (i.e.,

HEPSIM), the planned work related to the accuracy (i.e., to consider also a set of

alternative algorithm implementations providing results with different accuracy) has

been postponed as work for future projects.

4.3. The SAGE verification suite

The SAGE Verification Suite (SAGE-VS) is a set of SW tools aimed to accomplish

different formal verification tasks at design time. The main components of the SAGE-

VS are:

 SpecPro: a software library to translate requirements from natural language to
logical language.

 ReqV: a tool for requirements management and consistency formal verification.

 HyDRA: a tool aiming at synthesizing an optimal and “correct-by-construction”
policy given a model and tasks in logical language.

 ATG: a tool for requirements-based test suites generation.

The key features of the SAGE-VS are

 Automated consistency checking of requirements expressed in natural
language (ReqV component).

 Automated inconsistency finding in case of inconsistent requirements (ReqV
component).

 Organization and storage of requirements in an online platform (ReqV
component).

 Automatic synthesis for goal oriented "correct-by-construction" policies from a
system model and an objective (HyDRA component).

The inputs are:

 Set of requirements in natural (controlled English) language, formulated as
Property Specification Patterns. (PSPs) for Linear Temporal Logic extended to
constrained numerical signals (ReqV component).

 Hybrid model of the system with safety limits (HyDRA component).

The outputs are:

 Consistency result (yes/no). In the case of inconsistency, the tool returns the
minimal set of requirements that causes the inconsistency (ReqV component)

 A yes/no answer on whether the system can be used to achieve the tested use
case. A yes answer comes with a correct by design plan to achieve the given
objective. The plan accounts for both the discrete and continuous limits of the
system so that the plan is valid and guaranteed to be executable and thus
constitute a proof that the system has the targeted capability.

 ReqV: extends the expressivity of input PSPs to allow the translation in a logic
language for hybrid systems and improve the usability of the GUI.

 HyDRA: defines a more usable input language and improve the performance of
the planner in terms of execution time.

 ATG: is release of the first stable version.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 33 of 148

© FitOptiVis Consortium public

4.4. Scenario- and platform-aware design flow for image-
based control systems

TUE has developed a scenario- and platform-aware design flow image-based control
loops as well as software support for application development for the same. Image-
based control (IBC) systems are increasingly being used in various domains including
healthcare and autonomous driving. The key challenge in IBC is to deal with high
computation demand while guaranteeing performance and safety requirements such
as stability. While modern industrial heterogeneous platforms, such as NVIDIA Drive,
offer the necessary compute power, application development on these platforms with
performance and safety guarantees is still challenging. Alternative time-predictable
platforms are not yet in widespread use.

A typical design flow for IBC systems consists of three distinct elements: (i) mapping
tasks onto platform resources; (ii) timing analysis, consisting of task-level worst-case
execution time (WCET) analysis and application-level analysis to obtain worst-case
performance bounds on aspects such as latency and throughput; (iii) controller design
using the obtained performance bounds, ensuring performance and safety. While such
a three-step design process is modular in nature, it usually leads to over-dimensioned
systems with sub-optimal performance, because task- and/or application-level timing
bounds are pessimistic.

TUE developed a coherent design flow for IBC systems modelling, design and
implementation that exploits the application-specific and platform-aware characteristics
of IBC systems to cope with the long variable sensing delay and to optimise the
system performance. The SPADe flow explicitly considers image workload variations,
parallelisation of sensing processing, pipelining of the control loop and approximation
of the camera image signal pre-processing. The SPADe flow is platform-aware and
can explicitly consider multiprocessor system-on-chip (MPSoC) and can also be
adapted for industrial platforms. We illustrate the method considering a predictable
multiprocessor system-on-chip platform - CompSOC. See [4.39].

We validate the proposed method using hardware-in-the-loop (HiL) experiments with
industrial heterogeneous multiprocessor platforms - NVIDIA Drive PX2 and NVIDIA
AGX Xavier. We obtain an improved control performance compared to the state-of-the-
art IBC design.

4.4.1. Scenario- and platform-aware design (SPADe)

The SPADe flow comprises the following steps as shown in Figure 17:

 identify, model and characterise the frequently occurring workload scenarios
that characterise the dynamic behaviour of the image processing in the control
loop;

 find optimal mappings for these scenarios considering a defined
implementation choice for the given platform allocation;

 identify optimal system scenarios combining workload and mapping information
and taking into account constraints from the control domain, e.g. stability, and
from the embedded domain, e.g. camera frame rate;

 design a controller with high overall QoC and guaranteed stability for the
chosen system scenarios; and

 a runtime reconfiguration mechanism for implementation.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 34 of 148

© FitOptiVis Consortium public

 explore the design-space for the optimal implementation choice that considers
the degree of application parallelism and the degree of pipelining.

As already stated, we illustrate the SPADe design flow considering the predictability
and composibility properties of the CompSOC platform. In the following, we detail the
steps in the SPADe design flow.

Figure 17: SPADe flow for multiprocessor image-based control systems.

Notation. 𝑓ℎ: Camera frame arrival period, p: number of pipes for pipelined implementation,

𝑛𝑐
//

: number of cores per pipe for application parallelism, W: workload, 𝑛𝑐
𝑎𝑣𝑙: number of

allocated cores for the application

Figure 18: Multiprocessor SoC with two processor tiles and one memory tile.

4.4.2. SPADe inputs

The inputs to our design flow are details of the IBC application (e.g. the workload
characterisation W), other applications sharing the platform, the implementation

choices for the degree of application parallelism (nc
//

) and the degree of pipelining (p),

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 35 of 148

© FitOptiVis Consortium public

given platform allocation for the IBC application (nc
avl) and camera characteristics, e.g.

fps, 𝑓ℎ. These should be compliant with the application and platform models. Note that
the details of the other applications sharing the platform are not relevant for a
composable platform such as CompSOC.

4.4.3. Formal modelling: application and platform models

A typical IBC application model is modelled as a Scenario-Aware Dataflow Graph
(SADFG) [4.14]. The SADFG of the sensing and processing algorithm receives the
camera image frames and detects the regions-of-interest (RoID) in the frames. The
detected regions-of-interest (RoI) can be processed in parallel on a multiprocessor
platform. The number of allocated processors for our application determines the
number of RoI processing (RoIP) actors in our model. Note that the sensor-to-actuator
delay and sampling period vary based on the mapping to the processors. After
processing the RoI, the data is merged and the controller state is computed by the RoI
merging (RoIM) task. The control algorithm (C) then computes the controller input and
feeds it to the actuation (A) task. This is explained later with examples.

Task-level WCET profiling is required to compute the WCETs on the CompSOC
platform. The platform is modelled as a platform graph as shown in Figure 19 for the

two platforms we considered. Model transformations are needed to obtain an
implementation-aware graph to model the time-triggering of tasks, pipelining and inter-
frame dependencies.

4.4.4. Analysis and design

System mapping: We first describe the system mapping, i.e., binding and scheduling,
of our IBC application model to the platform. Figure 20 illustrates three workload

scenarios (𝑤𝑖) and their possible platform mapping. Each workload is associated with a
SADFG. Figure 20 (a), (c), and (e) model the data flow graphs for different workloads

and Figure 20 (b), (d) and (f) show their corresponding mappings on two or three

processor tiles. Optimal mapping for a workload scenario 𝑤𝑖 to a platform graph

generates a binding-aware SDFG (𝐺𝑖
𝑏).

To have more processor tiles means that we can reduce sampling period h and

sensor-to-actuator delay τ of IBC system by parallel execution of the sensing tasks. A
lower h and τ are translated to a better performance of an IBC system. τ𝑖 and ℎ𝑖 are
the delay and period computed for a workload scenario.

System mapping refers to the mapping of application tasks (modelled as an SADF
graph) to the platform. An application can have multiple mapping options for a given
platform allocation. For example, in Figure 20 (c) and (e), the given platform allocation

is two and three processor tiles respectively (visible in the number of RoIP actors) for
the same workload (5 RoI).

Relation between dataflow and control design: The inverse throughput of the mapped
binding-aware SDFG for scenario sequence Si

ω gives the sensor-to-actuator delay τ,

i.e.

 𝜏𝑖 =
1

𝑡ℎ̅̅̅(𝑠𝑖
𝜔)

And sampling period

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 36 of 148

© FitOptiVis Consortium public

ℎ𝑖 = ⌈
𝜏𝑖

𝑓ℎ
⌉ 𝑓ℎ

where 𝑓ℎ is the camera frame arrival period.

Figure 19: NVIDIA Drive PX2 platform graph structure.

Controller design: Once we obtain τ𝑖 and h𝑖 for mapped workload scenario wi, they are
then used for the discrete-time controller implementation and for designing the
controller gains. See [4.14] and [4.28] for further details.

Further model transformations allow us to compute the inter-frame dependence time f𝑑
as an inverse throughput of the transformed graph. Inter-frame dependence time is the
minimum time to wait before we can start processing the next frame for a pipelined
implementation.

Optimal system-scenario identification: It is possible for multiple workload scenarios to
have the same sampling period due to implementation constraints like platform
allocation and camera frame rate. For example, for the workload scenario represented
in Figure 20 (a) with (hi, τi), the number of RoI, #RoI =2. However, even for the

workload scenario with #RoI =1 mapped to two processors, we would have the same
timing parameters (h1, τ1) since the tasks would have to execute sequentially on one
processor. Similarly, for the workload scenario in Figure 20 (c), we would have the

same timing parameters for #RoI 5 and 6.

A system scenario ss abstracts multiple workload scenarios si such that for hs = nfn for

some n > 0, (hs − fh) < hi ≤ hs and τi ≤ τṡ. Only the system scenarios are then
considered for defining the control configuration and for platform implementation. The
optimal system scenarios are identified and their corresponding control and mapping
configurations are stored as a look-up table (LUT) in platform memory for runtime

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 37 of 148

© FitOptiVis Consortium public

implementation. A system configuration for a system scenario refers to the
combination of the control and mapping configurations and contains the binding-aware

graph 𝐺𝑠
𝑏, the delay τs and sampling period hs for the system scenario, and the

controller feedback and feedforward gains Ks and 𝐹s.

Figure 20: System mapping to MPSoC.

4.4.5. Implementation and runtime reconfiguration mechanism

During run-time, for every arriving input image frame, we compute the workload (e.g.
through an image pre-processing step) and choose the correct system scenario
associated with this workload from the LUT. Controller and mapping configurations of
the corresponding system scenario are loaded from the LUT. A scheduler then
reconfigures the mapping, the time-triggering of the actuation task and the controller
gain parameters based on the chosen system scenario. The overhead cost for this
reconfiguration has already been considered in our analysis model as a time cost in
the start of sensing task.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 38 of 148

© FitOptiVis Consortium public

Figure 21: IMACS evaluation framework.

Notation in Figure 21: (a) IBC system block diagram and the HiL simulator. (b) a snapshot of
the HiL simulation environment in webots. (c) LKAS using single camera. (d) multi-camera
LKAS; c1, c2, c3 are the cameras.

4.4.6. Evaluation: IMACS framework

IMACS [4.15] is an open-source framework for performance evaluation of IMAge in the
Closed-loop System. This framework allows for software-in-the-loop (SiL) and
Hardware-in-the-loop (HiL) testing and bugging IBC systems. We evaluated the
proposed SPADe framework on the IMACS framework. The approach being
developed and reported in Section 4.4 (on dynamic throughput tracking) will be
integrated into IMACS framework once the method gets further matured.

4.4.7. Case study

We considered a concrete case study of a multi-camera lane keeping assist system
(LKAS). The goal of the LKAS is to steer the vehicle autonomously to follow the centre
line of a lane. Multiple cameras are used since the field-of-view of a single camera is
not sufficient to detect the lanes when the vehicle has to make sharp turns, e.g., at a
T-junction. Figure 21 (c) and (d) show the two different scenarios in the LKAS system.

The first scenario 𝑠1 (see Figure 21 (c) occurs when the vehicle is navigating on a road

with no sharp turns. In scenario 𝑠1, only one camera 𝑐1 needs to be active. The second
scenario 𝑠2 (see Figure 21 (d) happens when the vehicle needs to take a sharp turn. In

this case, all three cameras 𝑐1, 𝑐2and 𝑐3 need to be active.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 39 of 148

© FitOptiVis Consortium public

During runtime the scenarios are detected based on the following: i) when there is a

lane detected by camera 𝑐1and there is no request to make a turn, the LKAS executes
in scenario 𝑠1; ii) when there is no lane detected by camera 𝑐1or there is a request to

make a turn, the LKAS executes in scenario 𝑠2. Our multi-camera LKAS is sharing the
NVIDIA Drive PX2 platform with two other data-intensive applications - object detection
and tracking (ODT) and automatic emergency braking (AEB).

Figure 22: Comparison between SPADe and pipelined (state-of-the-art) approaches.

Notation: bc=best-case timing and wc=worst-case timing; SPADe is executed with a

number of scenario sequences; yL is the lateral deviation of the LKAS system under
study.

4.4.8. Results and comparison

We compare our SPADe approach with a state-of-the-art pipelined control approach.
For fairness in the comparison, we use the same control design technique - LQR with
integral action - explained in [4.16] for SPADe. Further, we consider the same given
platform allocation of two processors.

The results of the comparison of the pipelined controller with respect to the SPADe
approach are shown in Figure 22. The controller is supposed to bring the lateral

deviation 𝑦𝐿 to 0.03m as soon as possible. The shorter time to reach the reference, the
better the Quality-of-Control (QoC) is. Note that SPADe allows for parallelisation that
reduces both sampling period and sensor-to-actuator delay. However, pipelining only
reduces the sampling period. We observe that the QoC of the pipelined controller is
always in the range of QoC between the worst-case (wc) design and the SPADe
approach.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 40 of 148

© FitOptiVis Consortium public

4.4.9. Design-Space Exploration (DSE)

We perform a design space exploration, if needed, to identify the optimal
implementation choice for a pipelined parallelism implementation. A pipelined
parallelism implementation considers both pipelining and parallelism together for a
given platform allocation. In such a setting, it is not clear what the optimal choice for
the best performance is. We compute the optimal choice analytically using the Gain
Margin (GM) and the Phase Margin (PM). The higher the GM and PM are, the better
the control performance is. The analytical computation can be further validated using
Matlab simulations and/or HiL simulations where we compute the mean-squared error
(MSE) and the settling time (ST) for our application. The lower the MSE and St are, the
better the control performance is. A DSE for a HiL setting is shown in Figure 16.

Figure 23: Design-space exploration for a HiL with different implementation choices.

Notation in Figure 23: The legend denotes <number of allocated cores, number of cores

per pipe for application parallelism, number of pipes>, i.e. <nc
avl, nc

//
, p>.

4.5 Modelling of real-time video processing systems with
limited precision

A limited precision approach was applied to image / video processing pipeline. This
was modelled and analysed prior to actual implementation. Application areas include
CNN type processing and content analysis from a live video stream. After the
simulation models, the approach was implemented in FPGA hardware and finally
integrated to full custom ASIC along a RISC-V CPU core. The COVID-19 related
delays at the processing site forced the IC to be abandoned, but the tests executed on
FPGAs proved all the assumptions correct.

The key idea was to use a non-linear number space. This approach allowed using a
reasonable dynamic range while limiting the data-path width, and, thus, energy
consumption. Additional benefits include lower memory requirements and simplified
arithmetic operations (for given operations).

The usability of this approach was studied primarily in the field of object detection. The
purpose was to find domains where the loss of precision was not a significant problem,

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 41 of 148

© FitOptiVis Consortium public

and the benefits of the reduced precision processing outweighed the negative impacts.
Also, conversions between the typical binary domain and this reduced precision
domain were identified as a problematic aspect, potentially causing the approach to be
unusable in some applications. To alleviate this problem, more arithmetic units using
the same number space should be developed in the future.

4.6 Design time support for high level tool chains

UTIA developed support for high level modelling of IP blocks based on integration of
the Xilinx System generator for DSP 2018.2 and Xilinx Model Composer 2018.2.
Function of IPs can be modelled in bit-exact and cycle accurate Matlab/Simulink model
before automated generation of the RTL code of the IP. Generated IP is integrated in
Vivado 2018.2 based flow and communicates via the AXI-stream data interfaces with
automatically generated data movers. SW API for these data movers is also
automatically generated for the Debian OS applications running on ARM A9 or A53
processing systems.

The automated generation of HW data movers and corresponding PetaLinux kernel
drivers is implemented in the high level tool chain based on the Xilinx SDSoC 2018.2
compiler with design time support for the PetaLinux 2018.2 kernel, Debian “Stretch”
operating system. Developed and released evaluation packages are described in
Chapters 7.1 – 7.4 of this deliverable.

4.7 High-level abstract component model and DSL

CUNI has been acting in the work package as a bridge between WP2 and WP3 in
regard to component modelling. The concepts of the component model and the
corresponding domain specific language to capture components of the model in textual
format have been described in detail in D2.1.

In this section, we describe work performed in Y3 related to connection of the
component model to the model-driven design space optimization.

CUNI has been modelling devices and functions as components. Generally, we
distinguish two principal types of components – platform component (corresponds to a
device or an execution platform) and application component (corresponds to a function
– typically a data processing block). The main relation between these two types of
components is that an application component runs on a platform component.

Components further exhibit input and output ports that can be used to construct video
processing pipelines.

Components are hierarchically composable, which allows abstracting composition of
components as another component. In this sense a smart camera can be composed of
embedded board (a platform component) and software (application component).

An important feature of components is that they are configurable (e.g. FPS, video
quality, etc.) and exhibit distinct qualities in each configuration (e.g. power
consumption).

When composing components together, relation between components and their
configuration parameters gets established (e.g. that two neighbouring components in

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 42 of 148

© FitOptiVis Consortium public

video pipeline have to operate on the same FPS or that a hardware component must
provide enough memory to the software component). This effectively limits the design
space of configurations.

From the perspective of WP3, the component model provides the structure (i.e.
component architecture). The interpretation of the configuration parameters and their
relation and influence on component qualities is based on the models discussed above
in the section.

As such, the component model provides a structural part of the reference architecture
that is specialized by use of corresponding modelling techniques to deal with particular
aspects of energy, performance and other qualities.

4.8 Runtime reconfiguration Implementation of Embedded
systems

RIE (Runtime reconfiguration Implementation of Embedded systems) is a component-
based C++ implementation methodology. It also provides software reconfiguration
capabilities for managing component implementations and system configurations at
runtime. The RIE methodology has five basic elements

 User-defined data types. Specific C++ classes implement these elements.

 Component interfaces. C++ classes with pure virtual functions are used to
model the required and provided interfaces.

 Components. RIE use C++ classes to implement components. These classes
derive from an important RIE element, the “RIEComponent” class. This class
accesses to all the application components and provides common services
such as component monitoring, runtime reconfiguration and set-point
modification. In RIE, a component is implemented with a base class and
several implementation classes. The base class identifies the component
required and provided services. This class derives from the “RIEComponent”
class and all the interface classes that model the provided services. The base
class does not include service implementations. The implementation classes
derive from the base class and provide different implementations such as CPU-
oriented code, OpenCL or HW accelerator implementation. For example, an
image-processing component, “ImgProc”, provides an “I_Image” interface while
the “Rgb2gray” component class defines a particular implementation of the
“ImgProc” base class.

class ImgProc: virtual public RIEComponent, virtual public I_Image { …
class Rgb2gray: public ImgProc, virtual public RIEComponent, virtual public I_Image

The interface “I_Image” provides a service that access to an image:

class I_Image { public: virtual void get_image(imageType &image)=0; …

 Instances. In order to support hierarchical designs, the methodology defines a
class (RIEInstance) that allows instantiating child components in the parent
component. The instances are associated to base components in the C++
code. However, the RIE infrastructure can associate at runtime a particular
instance to any implementation class that derives from the base class.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 43 of 148

© FitOptiVis Consortium public

Figure 24: Example of RIE virtual instance.

 Required services. The C++ “RIEInterface” class defines the required
interfaces of a component. These required services are associated to the
instances that provide the services.

The RIE methodology supports runtime reconfiguration of the software components. In
order to modify the configuration set point, several qualities are monitored at runtime.
In the RIE-based methodology and WP2 abstract component model, a component
may have several set points that define different component implementations and
configurations. All the implementations of the basic component will share the same
provided/required interfaces and a common set of configuration parameters and
monitoring qualities. Each implementation or WP2 QRML alternative may have
particular configuration parameters or qualities. The implementations represent
different component mapping of the application into a physical platform (vertical
composition in the abstract model of WP2).

The component implementations could also use different algorithms for the same
behaviour in order to provide a different performance balance (e.g. reduce power
consumption while increase service latency).

The RIE reconfiguration strategy minimizes the time, in which the system is not
available. When reconfiguration starts, only those components that need to be
reconfigured are stopped. Before stopping them, the system creates the new
components, initializes them, and suspends their execution until the services provided
by the old component are finished. After this, the instance associated with the
component has to be replaced with the new version and the new component has to be
activated to provide the new services. Finally, the old component is removed,
completing the reconfiguration process. The diagram in Figure 25 shows the RIE

reconfiguration strategy.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 44 of 148

© FitOptiVis Consortium public

Figure 25: RIE reconfiguration approach.

The methodology supports on-the-edge component implementations. In this case, the
components are integrated in component servers that are allocated in network nodes.
These components use remote interfaces or particular implementations of the
component interfaces that provide support for remote procedure calls (rpc methods).
This methodology facilities the use of commonly used micro-service frameworks, such
as Google grpc for rpc implementation.

As can be seen in Figure 26, the methodology specifies two platforms: local system and

remote component server. Furthermore, a Domain Name Server, DNS, will provide the
component server IP address and port number to the component that requires remote
implementations (service discovery strategy).

Figure 26: RIE remote infrastructure.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 45 of 148

© FitOptiVis Consortium public

The system is implemented in the local platform, while the component server provides
a set of functionalities that can be used by the local platform.

At runtime, the DNS server receives requests from the components with the value of a
configuration parameter (“urlSink”) and returns the IP address and port of the
component server. This information allows establishing a connection between the local
platform and the remote component server. Once the server that provides the remote
component implementation is identified, the communication between both platforms is
established by means of remote procedure calls, using the gRPC library.

This methodology defines three types of component implementations

 Local implementation. Implementation that uses platform resources to provide
the functionality of the component. This implementation is allocated in the local
platform and in the remote server.

 Local implementation of remote component. This implementation is found only
in the local platform and is responsible for connecting the local platform with
the remote one.

 Remote component. This implementation is allocated in the server and is
responsible for communication with the corresponding “local implementation of
remote component”. The remote component uses a "local" implementation in
the server to provide the required functionality.

Figure 27: Remote component implementation.

In case of local implementations, the designer has to specify the component class that
implements the component (RIE_Impl parameter), while for the local implementation of
the remote component the designer has to indicate the server and the “local”
implementation of the component. In systems with remote components, it is not
normally possible to know at design time the IP address and port of the component
servers, since these servers are developed and managed at runtime independently of
the application. To solve this problem, a component configuration parameter ("urlSink")
is used to identify the component server at runtime. In the component configuration,

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 46 of 148

© FitOptiVis Consortium public

the "RIE_Impl_Remote" parameter defines the implementation of the component in the
remote server.

Figure 28: Component configuration example.

Figure 28 shows the configurations of a component. The parameter "RIE_Impl"

specifies the name of the implementation that is associated with a specific set point.
For example, set point “s2” defines a local implementation of a remote component,
which is specified by the "urlSink" parameter. The "RIE_Impl_Remote" parameter
specifies the remote-component set point.

The RIE methodology and implementation library were designed taking into account
the WP2 abstract models and the UML/MARTE design methodology. For this reason,
it is possible to generate RIE code from the WP2 QRML language and UML/MARTE
models. Some of these generators will be presented in the next section.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 47 of 148

© FitOptiVis Consortium public

5. Programming and parallelization support

This chapter describes the techniques that have been added to the design and
programming tools to improve their programming and parallelization support. Activities
of all partners in this area also form a link to the WP4 programming support
developments.

5.1. Static resource allocation and runtime scheduling

During the algorithm development, the key part is profiling which can hint on resource
consumption during real execution of the algorithm. This is especially important for
algorithms with strong data dependency where resource consumption is interlocked
with the input and cannot be determined in advance. The only way is to actually run
the algorithm and gather profiling information and statistics. Examples to this are
detection of objects where the time required for analyzing an image is dependent on
the image content.

We focused on platforms combining FPGA and ARM CPU like Xilinx Zynq. Tool
enables logging of different types of events and their aggregation on both FPGA and
CPU side, ensuring their interconnection in time. The log is stored in JSON format and
can be viewed using the Chrome tracing tool. 128 bits are used to store the event,
while the timestamp is 48 bits. Twelve different types of events are predefined, such as
start/end of packet or frame, setting a specific value and others. It is possible to
simultaneously monitor events on up to four interfaces with a data width of 8 to 64 bits.

SW profiling is solved by direct writing to the dedicated memory space of the profiling
IP core. The number of events logged over time is limited by the size of the memory
used to store the data and the throughput of the bus and DMA, which takes care of
transferring the logs to application memory for subsequent storage in JSON.

Figure 29: Profiling IP core connection.

Schematic diagram in Figure 29 presents connection of the profiling IP core to the detection IP
for event logging and profiling.

The following code shows the JSON data produced by the IP Core.

{
"traceEvents": [
{"args":{"name":"AxiStream0-Image"},"cat":"__metadata","name":"thread_name","ph":"M","pid":1,"tid":1,"ts":0},

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 48 of 148

© FitOptiVis Consortium public

{"args":{"name":"AxiStream0-Line"},"cat":"__metadata","name":"thread_name","ph":"M","pid":1,"tid":2,"ts":0},
{ "pid":1, "tid":1, "ts":87705, "ph":"B", "cat":"AXI-Stream0", "name":"Image", "args":{ "id":0 } },
{ "pid":1, "tid":2, "ts":87705, "ph":"B", "cat":"AXI-Stream0", "name":"Line0" },
{ "pid":1, "tid":2, "ts":328154, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":346867, "ph":"B", "cat":"AXI-Stream0", "name":"Line1" },
{ "pid":1, "tid":2, "ts":846867, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":946867, "ph":"B", "cat":"AXI-Stream0", "name":"Line2" },
{ "pid":1, "tid":2, "ts":1146867, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":2, "ts":1246867, "ph":"B", "cat":"AXI-Stream0", "name":"Line3" },
{ "pid":1, "tid":2, "ts":2228154, "ph":"E", "args":{ "len":1280 } },
{ "pid":1, "tid":1, "ts":2228154,"ph":"E" }
],
}

Figure 30: JSON loaded in Chrome Tracing for analysis.

5.2. Training WaldBoost detectors for FPGA

During the course of the project, we developed a package for training object detectors
compatible with the ACF object detection IP Core (also developed in the project). We
started with legacy Matlab-based code for training detectors with LBP features where
compatibility with the FPGA solution was ensured by multiple workarounds. The main
benefit of the package developed in this project is a simple use in other applications
(since it is a small Python package). Compared to the older solution, we use a more
recent detection model, and models have smaller footprint and higher accuracy.

The most recent version of the package can be downloaded from a GitHub repository
[5.1]. It supports custom image channel features, decision trees as weak classifiers
and full integer pipeline in training and inference of models. The parameters of the
trained model are serialized as Protocol Buffer binary files and so they can be easily
transferred to the target embedded system and uploaded to FPGA. We used the
package to train models for license plate detection components in WP5, which is
integrated in the demonstrator in WP6.

We described the package in D3.2. In the last project period, we improved data
management and strategy for sampling training data. We dropped the requirement of
TF object detection API (which was used for bounding box operations) in favor of a
much simpler bbx package. And we improved the overall stability of performance of
the training. Since the detailed description was given in the previous deliverable, we
just repeat a few important points here.

The main purpose of the package is to generate object detector models for ACF Core.
It takes the definition of a dataset (an iterator producing images with associated object
locations) and runs a training process, which results in the definition of the model
detecting the objects. In the training the input images are transformed to “feature
channels” - a custom multi-channel representation of the image. In the case of ACF
Core the channels are energy values in multiple directions (see Figure for an
example). The detector is trained as a sliding window model over the images
represented by the feature channels.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 49 of 148

© FitOptiVis Consortium public

Figure 31: Feature channels extracted from the input image.

The final model can be saved to a binary file in ProtocolBuffer format and used for
detection in the target application. The detection model can be applied to a new image
by calling detect function.

boxes = wb.detect(image, model)

In boxes, there is a list of bbx.Boxes with locations of detected objects, which can be
further passed to post processing (e.g. non maxima suppression, tracking, etc.)

Figure 32: Example of detected license plates.

Within FitOptiVis we greatly improved this software. We started with a few simple
scripts for data sampling and training and progressively developed a fully usable
package with a comprehensive interface. In the project, we focused mainly on the

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 50 of 148

© FitOptiVis Consortium public

development of the support for FPGA in the wb.fpga module but we also improved
data management and internals of the package.

We use data from CAMEA to train license plate detectors, which are then incorporated
in the FPGA object detector used in the license plate detection component within
Traffic Surveillance Use case (UC5). We also experimented with other object types
related to traffic surveillance scenarios - vehicle masks and unconstrained license
plate detection.

5.2.1. Training example

The following code shows a simple example of how the new model is trained with the
waldboost-python package.

import waldboost as wb
from waldboost import fpga
An iterator producing dict with image and groundtruth_boxes keys
training_images = …
Define detector window dimensions
h,w = 10,40
Define how features are extracted from images
channel_opts = dict(
 shrink=2, n_per_oct=16, smooth=1, channels=fpga.grad_hist_4_u1)
New model instance
model = wb.Model((h,w,4), channel_opts)
Pool of training samples that are extracted from training images
pool = wb.SamplePool(min_tp=10000, min_fp=5000)
pool.update(model, train_images)
learner defines type of weak classifiers within the model
fpga.DTree is compatible with ACF Core architecture (if max_depth=2)
learner = wb.Learner(alpha=0.2, wh=fpga.DTree, max_depth=2)
Train the WaldBoost model and save it to file
fpga.train(
 model, train_images, learner, pool,
 length=64, quantizer=64, bank_pattern_shape=(1,4), clip=3)
model.save("detector.wb")

The important thing, of course, is the ‘training_images’ object which supplies training
data to the pool. The ‘train’ function incrementally builds the new model so it produces
less false positives and keeps on objects.

The following code shows how the model is applied to a new image, producing a set of
raw detections which are post-processed by non_max_suppression - final detections.

Load image - np.array with shape (H,W) and unit8 dtype
import bbx # package for processing of bounding boxes
image = …
dt = wb.detect(image, model)
dt = bbx.non_max_suppression(dt, iou_threshold=0.1, reduction="mean")
dt is an instance of bbx.Boxes with locations of detected objects

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 51 of 148

© FitOptiVis Consortium public

This tool was used for training new models for a license plate detector component in
WP5, which was applied in the Traffic surveillance use case.

5.3. OpenMP for real-time video systems

UC is using the OpenMP standard programming paradigm for system implementation.
In this task, we defined the basic infrastructure to support OpenMP programming in the
project platforms.

OpenMP (Open Multi-Processing) is a directive-based parallel programming language,
mainly oriented to Symmetric Multi-Processing (SMP) architectures with shared
memory. Traditionally, the OpenMP code was executed in a homogenous cluster of
multi/many cores with shared memory. However, the latest versions support code
offloading to other devices such as GPUs.

Figure 33: OpenMP-based reconfiguration methodology.

In this project, UC has extended the offloading capabilities of OpenMP (Version 5) with
a new feature: source code offloading. This new feature allows extracting the source
code of the OpenMP target regions. The OpenMP-based design methodology is
presented in Figure 33. During compilation, the target region code is extracted and the

OpenMP code is adapted to support runtime loading of functions that implements
these target regions. The target regions are implemented with implementation
platform-depended design flows. For example, for FPGA-based hardware accelerators
the target region code is adapted and synthetized with standard FPGA design
frameworks such as Xilinx SDSoC or Vitis. In this process, the performances of the
platform-specific implementations are evaluated (static performance analysis). This
information is used to define different system configurations. During execution, the
system configuration management could select the best target region implementation
taking into account the performance analysis results.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 52 of 148

© FitOptiVis Consortium public

.

5.4. Design time support for C/C++ compilers and OpenCV
algorithmic libraries

UTIA extended design time support for C and C++ compiler toolchains with OpenCV
algorithmic libraries suitable for development/debug/execution on the 32 bit dual-core
ARM A9 systems and on the 64 bit quad-core ARM A53 UltraScale+ systems. UTIA
extensions include SW and HW versions of OpenCV algorithms for object detection
from Full HD colour video input. See Chapters 7.1 – 7.4 for detailed descriptions.

5.5. TTA-based Co-Design Environment (TCE)

This section presents developments and activities done in the context of a co-design
environment for customized Transport-Triggered Architectures called TCE. The
produced processor cores can be realized as soft cores in FPGAs or integrated to new
SoCs implemented as ASICs. TCE has been further developed in various aspects,
which are described in the following subsections as well as in Section 6.5.

5.5.1. Support for 64-bit pointers and integers

Within the project a key missing feature was brought to TRL4, support for 64b pointers
and integers. Earlier, TCE supported only 32-bit pointers and arithmetics. Although
32b can typically address a large enough address space in embedded applications or
co-processing tasks the TCE cores are used for, the ability of sharing 64b pointers
from 64b host CPUs allows easier integration of TCE-generated ASIPs to modern
SoCs. The main limitation left for the future is that while wider than 64b datapaths are
possible with SIMD instructions, the SIMD vectors may currently not contain 64-bit
elements.

The implementation added a new top level target definition, “tcele64” to the compiler.
The compiler automatically selects this mode when it notices that the compilation is
performed to a 64-bit TTA architecture. When compiling code for the tcele64 target, all
pointers are assumed 64-bit wide and 64-bit integer arithmetics are also supported.
64-bit TTAs must contain 64-bit versions of all the basic integer and memory
operations to facilitate address computation, and the general purpose registers for
compiler targets must be also 64 bits wide at this state.

In the base operation set of TCE, the 64-bit operations have the same base name as
corresponding 32-bit operations, but add a suffix “64”. For example, the 64-bit add
instruction is named “add64”.

5.5.2. Loop optimization support

Computer programs spend most of their time executing loops. Therefore, optimizing
loops will have a large impact on the overall performance of executing a program.

The compiler of TCE has now two modes that optimize loops. The first mode is a loop
scheduling mode (developed during the first project year of FitOptiVis), and the
second mode is a new software pipelining mode, of which development started in year
2. Figure 34 shows the last phases of the TCE compiler and the differences between

these two loop optimization modes.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 53 of 148

© FitOptiVis Consortium public

Figure 34: The two different loop optimization modes.

In Figure 34, red labels indicate re-used code from LLVM and blue labels indicate
separate code managed by TCE code generator.

The loop scheduling mode is a part of the instruction scheduling phase of the TCE
compiler. The instruction scheduler organizes the instructions into such order, that the
original program semantics is preserved, but the hardware can execute the code in as
efficiently as possible.

Statically scheduled architectures such as VLIW and TTA processors execute the
code in exactly the order specified by the compiler, so the quality of the instruction
scheduler has a big impact on the performance. On exposed datapath architectures
such as TTA, the instruction scheduler can also perform various low-level
optimizations, which can further increase performance and save energy.

Loop scheduling mode is a special mode of operation in the instruction scheduler that
is used for scheduling code in inner loops. A loop scheduler typically interleaves
multiple iterations of a loop, converting it to a “software pipeline”. This allows the
performance of the loop to be considerably increased without unrolling the loop.

The basic idea of software pipelining is described in Figure 35. First, an initialization

code called prologue is executed. It initiates the execution of the first iteration(s) of the
loop. The loop body (also known as the kernel or the steady state of the loop) contains
parts of code for multiple interleaved iterations of the original loop, so that each original
instruction of the loop is there exactly once, but in a different order and for a different
iteration than the original non-pipelined loop. After the body has finished executing,
most of the original iterations have fully finished, but the very last ones are not. In
order to finish the last iterations, a code block called epilogue is executed.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 54 of 148

© FitOptiVis Consortium public

Figure 35: High-level example of software pipelining.

Figure 35 presents high-level Example of software pipelining with loop with 3 phases:

load, calc and store. In this example three iterations of the loop are overlapped, so the
prologue contains the beginning of two iterations and epilogue contains the end of two
iterations.

Besides software pipelining the loop scheduling mode in the TCE compiler can also
perform aggressive loop-specific optimizations, which take advantage of the TTA
features; It can perform software bypassing over loop edges, which in some cases
may even totally eliminate all register writes inside small loops, when all generated
values are directly bypassed to instructions, which use it. The final result, which is
generated by the last iteration, can then be written to a register in the epilogue only
once.

Another loop-specific optimization the TCE compiler can perform is loop-invariant
operand sharing, which means that immediate values or register-based values, which
do not change inside the loop, may have to be read only once, in the prologue. The
combination of these optimizations may allow creating code without any register reads
or writes for small loops. However, the bigger body the loop has, the less effect these
optimizations have.

The software pipelining in the TCE loop scheduling implementation currently has a
limitation that it can currently overlap code from only two successive loop iterations.
This can often limit the performance improvement achieved from it, as this means that
speedups from over 2 can never be achieved from the loop scheduler over an
optimized non-pipelined version of the loop, and the critical path of the loop easily
dominates the cycle count, especially if the loop contains small amount of long latency
operations.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 55 of 148

© FitOptiVis Consortium public

This software pipelining limitation is a result of register allocation. The register
allocation phase is done before the loop scheduler and chooses registers in a fashion
that can limit the loop scheduler. For example, the register allocator creates output
dependencies that reduce register pressure when not software pipelining, but prevents
iteration overlapping when trying to software pipeline.

Another loop optimization mode, the LLVM-based software pipelining mode, was
experimented in the last year of the project created to solve this issue. In this mode,
the software pipelining will be done before register allocation. The used software
pipelining implementation simply uses as many registers as needed and, therefore, is
not be limited to overlapping only 2 iterations. However, this mode still has other
limitations: Because of implementation reasons, TTA specific advantages are not yet
utilized. Loop-invariant operand sharing and software bypassing over loop edges are
not done in this software pipelining mode in the current status.

Furthermore, as the software pipelining mode is a complex work, it was still left
unfinished within the FitOptiVis project and will be continued in other projects until it is
stable enough to be used for daily work. For example, in its current state, the amount
of iterations has to be fixed and not all amount of iterations create a correct result,
thus, sometimes the code generator produced invalid code, fixing of which is the
highest priority.

An example of a loop that can be pipelined in the software pipelining mode at the end

of FitOptiVis with the new LLVM-based software pipeliner is shown in the following:

int sum = 0;

#define N 3

char dstBuf[N];

char dstBuf2[N];

for (int i = 0; i < N; i++) {

 sum+= dstBuf[i] * dstBuf2[i];

}

5.5.3. Instruction stream optimizations

The TCE toolset supports multiple compiler-assisted architecture features for

optimizing instruction fetch to mitigate the pitfall of VLIW-style processors: the wide

and “loose” instruction streams. Various mechanisms for implementing level 0 caches

and other means for instruction streams were studied and validated down to

implementation level within the FitOptiVis project. The focus on this work was on

energy saving, while maintaining good performance with minimal runtime impact.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 56 of 148

© FitOptiVis Consortium public

One such mechanism was a streamlined loop buffer which has two main variations: 1)

for-loop buffer, where, before entering a loop, the compiler generates an instruction

which specifies how many times the loop is executed and how many instructions it

contains, and 2) while-loop buffer, where only the loop instruction count is specified,

and there is a separate instruction for breaking out from the loop. At the end of the

FitOptiVis project, the loop scheduler of the TCE compiler can utilize these variations

automatically if the processor has any of these instructions and the processor is

specified to have a loop buffer. The for-loop buffer may also allow removal of the loop

counter update and comparison instructions from the code, reducing also the data path

power consumption and leaving more space for other instructions in small processors.

These loop buffers only work for loops, which do not have any control, such as if-

statements inside them, and they do not support multiple nested loop levels. This is

their main limitation made knowingly to simplify the hardware behind, and, thus, make

it energy efficient and fast.

To answer research questions related to how much impact there is if we lift the control

flow limitations of streamlined loop buffers, but utilize a smaller memory with its own

control flow instructions for the hot spots, another mechanism for optimizing instruction

fetches experimented within FitOptiVis was done: Instruction Register File (IRF) is

more flexible than the loop buffer, allowing for example if-statements and nested loops.

The IRF is like a compiler-assisted cache, which can contain a single block of code at

a time, we call IRF block, which in our implementation is basically a superblock when

using the global instruction scheduling terminology: Inside the IRF block there can be

branches to any location inside the IRF block, and also jumps outside from the IRF

block. Practically the only limitation the IRF has is that there may not be jumps, which

jump into the middle of an IRF block from outside the IRF block. This also means that

function calls cannot be positioned into the middle of IRF block, as the return from a

function is a jump back to the call site. Thus, when there is a function call, a new IRF

block starts after the function call. However, in our work that focuses on ASIPs for

data-oriented applications, we consider function calls something that should be

avoided anyhow in the hot spots of the application to be accelerated.

Since IRF is a compiler-oriented static L0 architecture, additional compiler analysis

was needed to utilize it. The compiler analyses the control flow of the program and

partitions the code into these IRF blocks, which can fit into the IRF and contains

backwards jumps inside the same IRF block. These backwards jumps are then

converted into special IRF jump, which tells the processor to stop fetching instructions

from the instruction memory and execute them from the IRF instead. These jumps also

use the index of the instruction as the jump target, instead of memory address of the

instruction. If the execution flows outside the specified IRF block size, the execution

resumes from the main instruction memory. If there is a normal jump, the execution

resumes from the main instruction memory. The beginning of a IRF block is specified

by special instruction, which also contains the length of the block. When this special

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 57 of 148

© FitOptiVis Consortium public

instruction is encountered when fetching instructions from the main memory, the

following instructions will be stored to IRF while executing them. When a block of

instructions does not contain any backwards jumps, it would be executed only once, it

is not put into the IRF, but it is executed directly from the instruction memory,

bypassing the IRF.

The support for IRF for validated for various applications and with different

configurations within the FitOptiVis project, but still has room for research and

development. Here are some code examples, which can or cannot be put to the loop

buffer or the IRF:

// This whole first for loop can go to one IRF block,

// if the IRF is big enough.

// This loop count not be handled by the loop buffer

// due to the control inside.

for (int i = 0; i < N; i++) {

 if (A[i] % 1) {

 A[i] += 5;

 } else {

 A[i] -= 5;

 }

}

// the function call would cause an IRF block split,

// so that this loop cannot not be put to the IRF.

// it cannot be put into loop buffer either.

for (int i = 0; i < N; i++) {

 printf(“%d ”, A[0]);

}

// this whole loop can go to one IRF block, if there is enough space,

// as nested loop are allowed in the IRF.

// this whole loop could be put to the loop buffer due to the nesting.

for (int i = 0; i < N; i++) {

 // The loop buffer could only contain this inner loop.

 for (int j = 0; j < M; j++) {

 B[i*M + j] = A[i] * C[j];

 }

}

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 58 of 148

© FitOptiVis Consortium public

// this can be put to the IRF and while-loop buffer,

// but not into for-loop buffer, as the iteration count is not known

// before entering the loop.

// in case of an IRF, this could reside in the same IRF block

// as the code before or after this.

while (*a != 0) {

 a++;

}

Finally, mostly over the last year of the FitOptiVis project, programmable instruction

dictionary compression support was researched and developed. An experimental, but

validated, version of a programmable instruction dictionary was integrated in the

toolset. The support is being validated with an example energy delay-product

optimized DSP design that is being integrated to a test chip in another Finnish project

focusing on refreshing regional SoC development and manufacturing skills and

practices (see [5.2]).

Code compression reduces the amount of traffic between the processor and the
energy-hungry memories that store the instructions. This is achieved by representing
often occurring instructions in a shorter format. The method uses multiple parallel
dictionaries to store often occurring parts of instructions. One of the novel aspects in
this work is that these dictionaries can be updated on the fly during the program’s
execution, allowing enhanced compression ratios for the instruction mixes found in
different program phases, leading to significant reductions in the instruction stream
energy overhead. However, since the dictionaries are a static structure (for enhanced
energy efficiency in comparison to dynamic caches), it requires analysis in the
compiler.

Figure 36 presents an example of instruction placement in memory for the overall
functionality of the dictionary compression. It demonstrates programmable dictionary
compression flow and an example of instruction placement in memory. A publication of
this work was made with an experimental implementation for the RISC-V ISA.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 59 of 148

© FitOptiVis Consortium public

Figure 36: Programmable dictionary compression flow.

Figure 37 presents an example RISC-V ISA-based processor system (using the

programmable dictionary compression before adapting it to the TTA architecture used
in TCE.

Figure 37: Example RISC-V ISA-based processor.

System presented in Figure 37 is using the programmable dictionary compression.

5.6. BlockCopier: A programmable block transfer unit

Perhaps, the most common bottleneck in FPGA execution is the available memory
bandwidth. While the peak processing power of FPGAs is very large compared to, for
example, a high-end CPU, the memory bandwidth is often similar. Furthermore, the

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 60 of 148

© FitOptiVis Consortium public

memory models required for conventional, hardware-controlled caches are difficult to
implement on FPGAs.

Explicitly-controlled caches, where the data is selected and transferred to the cache by
software, does not require such memory models, and ensures that the cached data is
always relevant to the task at hand. It also eliminates cache misses, and thus
decreases delay and throughput variance. This can help the application meet real-time
constraints.

A simple approach for an explicitly controlled cache uses a portion of memory local to
the accelerator, where the required memory can be transferred for the duration of the
computation. Once the required data is present, the processor can access it within a
more constrained time window, since cache misses are not possible. This can simplify
the processor implementation, especially for statically scheduled processors.

The data transfer to and from the accelerator is usually handled by a direct memory
access (DMA) controller. Most platforms, including the most common FPGA SoC
chips, provide a DMA controller, but the interface and capabilities between platforms
may vary.

For portability between platforms, we have developed a programmable block copier
component, implemented as a TTA processor with a custom function unit capable of
AXI burst transfers. The architecture for the TTA can be seen in Figure 38. With minimal

changes the same design would work on any AXI-based platform, and with a redesign
of the custom function unit, other interconnect architectures could be supported as
well.

Supporting high-level programming models like OpenCL can significantly ease the
programming effort of TTAs, especially during processor and platform design space
exploration. Abstracting data transfers between the host processor and the accelerator
and internally between TTA accelerators removes some of the burden from the user,
especially when the accelerators use local memories instead of or alongside caches.
This could remove the need for long latency accesses to system-level memory.

Performed I integration of the block copier with the OpenCL runtime developed in WP4
has been an important step in ensuring ease of use of the accelerator platform. The
primary target for improvement has been the signaling behavior.

The initial version supported rudimentary signaling – it supported postpone of the
execution of a DMA transfer based on signals and broadcast a signal of its own, once
a transfer has been completed – it relied on the host processor executing the OpenCL
runtime to propagate those signals to the other devices.

Developed solution provides better handling of signals and moves the management of
event waitlists onto the devices. This solution removes the event polling and
propagation tasks from the host processor and frees it to perform useful computations,
e.g. executing its own computational kernels.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 61 of 148

© FitOptiVis Consortium public

Figure 38: Architecture of the block copier ASIP.

5.7. Deterministic timing in distributed systems and latency
control with Time Sensitive Networks (TSN)

This technology has been already described in Chapter 5.7 of D3.2.

5.8. Code generation for reconfigurable systems

From the WP2 QRML description, it is possible to generate a C++ system
implementation. The generator produces C++ code that uses the RIE (Runtime
reconfiguration Implementation of Embedded systems) library that was presented in
section 4.7. The generator creates a C++ implementation template in which
components are implemented as classes that make use of the RIE library to provide
runtime reconfiguration and monitoring capabilities.

UC has also developed an UML/MARTE generator that transforms QRML/SDSL
descriptions into UML/MARTE models, as shown in Figure 39. The generated

UML/MARTE model is used as input of S3D tool for code generation as well as system
verification purposes.

The generator produces C++ code with component class definitions. It also
implements the component connections but the service implementations are derived to
the system designers. In order to clarify the code generator features, the next table

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 62 of 148

© FitOptiVis Consortium public

presents the main transformations that are required to generate C++ code from a
QRML system description.The generator produces C++ code with component class
definitions.

Figure 39: UC WP3 design flow.

QRML element Generated code

Interface C++ class with all its services declared as pure virtual methods in
the component base class. The component implementations will
implement the service functionalities.

Monitor C++ class with all events defined as methods. The
implementation of these methods depends on the tracer
infrastructure (e.g: lttng implementation).

Component C++ class deriving from RIE Component (to inherit runtime
functions) and from provided interfaces. In case of component
implementation, they also derive from the base component.
Provided services are declared in the base class and
implemented in the derived classes. Instead, required interfaces
are declared as instances of the interface in the component class.
Qualities and parameters are declared as variables in the class.

System C++ class that includes system component instances and the
connections among provided and required interfaces. It
corresponds to the root component.

Channels QRML channels are implemented with specific interfaces that
provide stream-data read services.

Qualities and
parameters

The qualities and parameters are implemented in component
class members.

Table 2: VLAN identification rules of user traffic types.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 63 of 148

© FitOptiVis Consortium public

It also implements the component connections, but the service implementations are
derived to the system designers. In order to clarify the code generator features, the
next table presents the main transformations that are required to generate C++ code
from a QRML system description.

The next figure presents an example of code generation from the QRML language.
The “linkComponent” function is also automatically generated. The function assigns
components to instances and connects required and provided services.

Figure 40: Automatic code generation.

The automatic tool generates a component library model for describing and modelling
all application components described in SDSL description. In Figure 41 we can see a

UML/MARTE component model that was automatically generated

Figure 41: Automatic generation of component library.

a) QRML description

b) RIE-based C++ code

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 64 of 148

© FitOptiVis Consortium public

6. Acceleration support

This chapter describes HW accelerator-oriented design flows and programming
techniques that are being developed on task 3.3. The first part presents tools that
generate HW accelerators from high-level programs (OpeMP, C++ and data flow
descriptions) or for specific architectures (TTA-based soft processor). The second part
presents HW generators that are oriented to particular applications as well as specific
acceleration techniques.

6.1. OpenMP for HW accelerators

Two approaches have been used to implement HW accelerators with OpenMP. The
first approach directly modifies the OpenMP code to support FPGA synthesis. The
second approach uses the developed OpenMP target offloading. The first approach is
used with Xilinx SDSoC (version 2018.3), while the second is used with the last Vitis
versions (version 2020.2). For Xilinx SDSoC design flow, the OpenMP and the SDSoC
oriented code cannot be in the same file because the Xilinx synthesis tools do not
support the OpenMP directives. The next figure presents the code of both files.

The HW accelerators (target devices) are controlled by the system processors (hosts)
that require their services to execute specific functions. The accelerators normally
have a private memory and limited access to the processor main memory. Therefore,
the processors have to transfer data from/to the program memory space to the
accelerator memory before/after accelerator execution (copy-in/copy-out model). This
protocol is explicitly implemented in OpenCL and it is implicit in OpenMP.

Figure 42: HW accelerators with OpenMP code.

FPGA-based accelerator normally implements additional communication models. For
example, SDSoC from Xilinx provides direct access to the software memory space
from the accelerator or data streams. The shared memory model normally has an
important disadvantage: the latency to the external non-cacheable memory, in which
the shared data are stored, is typically higher than it is for the CPU. One way to

a) OpenMP Code

b) Xilinx SDSoC code

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 65 of 148

© FitOptiVis Consortium public

minimize the low performance of the shared variables is to access memory in a
sequential way. For this reason, hardware accelerator design tools (e.g. SDSoC)
recommend use of shared variables with sequential access based on DMA (Direct
Memory Access).
The OpenMP accelerator strategy developed in WP3 by UC in FitOptiVis in Y3 itried to
reduce these overheads.

6.2. HW accelerators generated by the Xilinx SG for DSP and
SDSoC system level compiler

In Y3, UTIA updated design time support serving for design time integration of:

 IP blocks with streaming data interfaces. Blocks are generated in Xilinx SG for
DSP Matlab/Simulink toolbox. See section 10.8 of this deliverable “Design
Time Resource Integrator of Model Composer IPs (DTRiMC) technology”.

 HW data-movers connecting the Xilinx System Generator for DSP and Model
Composer IP blocks to Arm A9 processing system on Zynq and for A53
processing systems on Zynq Ultrascale+ devices. These data movers are
generated by Xilinx SDSoC 2018.2 system level compiler as part of the
automated kernel compilation process. It is using the Xilinx Vivado HLS 2018.2
tool.

 The user defined IP blocks in C or C++ source code and OpenCV algorithmic
libraries are compiled by the Xilinx SDSoC 2018.2 system level compiler and
by the Xilinx Vivado HLS 2018.2 design flow.

This process is automated by UTIA DTRiMC tool. See Chapter 7.1 -7.4 for details.

In Y3 UTIA developed evaluation packages for the DTRiMC tool compatible with these
versions of accelerators generated in Xilinx System generator for DSP:

 8xSIMD fp01x8 HW accelerators with capabilities = 10, 20, 30 or 40 Zynq 7000
family of devices (without support for FP32 8xSIMD division).

 8xSIMD fp03x8 HW accelerators with capabilities= 10, 20, 30 or 40 for Zynq
Ultrascale+ family of devices (with support for FP32 8xSIMD division).

Implementation details of these run-time reprogrammable accelerators are described
in D5.3. SW description and design time use of these of these run-time
reprogrammable accelerators are described in D4.3.

In Y3, HW platforms supported by the DTRiMC tool include these HW accelerators:

 Edge detection accelerator based on Sobel filter in SW and in HW

 Canny edge detector in HW

 Motion detection accelerator based on two Sobel filters in SW and in HW

 Lucas Kande Dense Optical Flow accelerator in SW and in HW

 Object tracking HW accelerator (tracking of colour and position of four balls)

The Y2 UTIA Design Time Resources released in [7.12], [7.13] contained
precompiled HW design in form of precompiled dynamic (.so) libraries. These libraries
represented fixed HW. These libraries was dynamically linked to C or C++, user
defined, applications for Debian OS running on the ARM A9 or A53 processor.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 66 of 148

© FitOptiVis Consortium public

The Y3 Design Time Resources for the DTRiMC tool [7.15]-[7.20] contain HW project
design, which can be extended by the user with additional custom HW. DTRiMC tool
scripts support the compilation to dynamic (.so) libraries. These libraries represent
fixed HW with user defined extensions. In the next DTRiMC tool supported stage,
these libraries are dynamically linked to C or C++, user defined, applications for
Debian OS running on the ARM A9 or A53 processor.

 PC cross-compiler can be used for compilation of the user-defined C or C++
SW application in the free Xilinx SDK 2018.2 Eclipse-based framework.
Remote debug of the application on the target device is also possible for
modules with Ethernet.

 Embedded gcc or g++ compiler can be used for compilation of the user-defined
C or C++ application directly on the embedded device (Zynq A9 or Zynq
Ultrascale+ A53 processing system).

These UTIA design time resources developed, documented and released in Y3 are
summarised in Chapter 10.8 of this deliverable as the “Design Time Resource
Integrator of Model Composer IPs (DTRiMC) technology”. Technical details are
described in Chapters 7.1 – 7.4 of this deliverable.

6.3. The Multi-Dataflow Composer (MDC) tool: a dataflow-to-
accelerator design suite

The Multi-Dataflow Composer (MDC) is a software tool, or rather a suite of different
design features, for the automatic generation and management of coarse-grained
reconfigurable systems and accelerators based on the dataflow Model of Computation.
MDC main purpose is supporting software developers/embedded system engineers
and/or hardware architects/embedded system engineers in defining flexible and
performance-aware coarse-grained reconfigurable substrates, which can be
embedded into FPGA-based hardware accelerators. The key features of this tool are:

 the ability to combine different high-level dataflow specifications, describing a
set of functionalities, into a single accelerator, exploiting coarse-grained
reconfigurable technologies and capable of accelerating all the provided
functionalities

 automatic resource minimization

 transparent (to the user) reconfiguration management

The MDC features are:

 Baseline MDC Core – performing dataflow-to-hardware composition, by means
of data-path merging techniques.

 Structural Profiler – performing the design space exploration of the
implementable multi-functional systems, which can be derived from the input
dataflow specifications set, to determine the optimal coarse-grained
reconfigurable substrate according to the given input constraints.

 Dynamic Power Manager – performing, at the dataflow level, the logic
partitioning of the involved resources to implement at the hardware level
power- and clock-gating strategies and, in turn, to save both static and dynamic
power consumption.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 67 of 148

© FitOptiVis Consortium public

 Co-Processor Generator – performing the complete dataflow-to-hardware
customization of a ready-to-use Xilinx compliant multi-functional accelerator IP.
Starting from the input dataflow specifications set, such an accelerator can be
either loosely coupled or tightly coupled, according to the user needs, and also
its drivers are derived.

The inputs are:

 high level models (dataflow) of functionalities to be accelerated - XDF, Cal

 HDL description of the components (HDL Components Library, HCL)
corresponding to the dataflow actors, manually or automatically generated -
Verilog, VHDL

 hardware communication protocol between components - XML

And finally, the outputs are:

 (baseline functionality) HDL description corresponding to the multi-functional
dataflow model - Verilog, VHDL

 (optional) multi-functional model resulting from the combination of the input
applications models - XDF, Cal

 (optional) Xilinx IP wrapper logic, scripts and drivers - XML, Verilog, Tcl, C

MDC is available open source on GitHub, with a BSL 3-clause licence. Here in after
the MDC useful links are provided in [6.8]:

MDC has been used, within the Water Supply use case, to generate accelerators for
image classification (WP6 activities) and, contemporarily, it has been connected to the
AIPHS monitoring infrastructure (WP4 activities). With respect to the former activity,
the cooperation with AITEK has been established. In particular, AITEK in the last
project phase will assess and compare the new accelerators with traditional
implementation, providing relevant feedback to UNICA and UNISS for future
improvements of MDC tool.

State of the art algorithms for image classification have been used with
implementation in FPGA-based accelerators obtained using the MDC tool. AITEK
provided such algorithms as Convolutional Neural Networks (CNNs) in ONNX format,
which has been firstly translated into the corresponding C source code thanks to the
ONNX2C flow, which is part of the NeuDNN software stack (see Section 6.4). Such C
source code has been used for implementing the CNNs: the source code coming from
the ONNX2C flow has been used as input point for the Vivado HLS tool, in order to
derive the HCL required by MDC. So that, the CNNs have been described as dataflow
models according to the initial ONNX structure and taking as HCL the one generated
by Vivado HLS from the C source code corresponding to the same ONNX description.
These activities have been completed in Y3. On the top of this setup, several versions
of the CNNs have be derived and combined together by MDC, enabling multi-
functional CNN hardware accelerators capable of playing with the different CNN
versions.

We have been using as a possible metric for evaluating the different accelerators the
execution time of CNN algorithms, processing images with different resolutions. To
have a complete benchmarking, different processors have been tested. We have
collected different execution times to be compared with the execution time achieved
thanks to the accelerator.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 68 of 148

© FitOptiVis Consortium public

In Y2, UNICA and UNISS enhanced availability of the MDC tool, which has been
provided with

 a starting pack for easy and quick testing;

 extended documentation and open source diffusion;

 tutorials to getting familiar with MDC features and application fields;

 internal and external assessment has been planned, set-up and continued also
during Y2 of the project

o regarding internal assessment, UNIVAQ and AITEK are playing a
central role: besides its usage within the Water Supply use case, MDC
has been lately (M18) assigned to some UNIVAQ students to carry out
their projects within the “Embedded Systems” course of the Laurea
Degree in “Telecommunication Engineering”;

o regarding external assessment, MDC is used in other regional [6.9] and
EU projects [6.10].

In Y2, we also worked on extensions of MDC to:

 we have developed support for accelerators monitoring with AIPHS
o a proof of concept has already be developed and the achieved, results

are about to be submitted to a scientific journal,
o automation of the whole accelerator deployment plus monitoring is still

currently ongoing

 we have progressed with the development for supporting the ALMAIF front-
end. In this regard, plans are there, but the activity will start at completion of the
integration with AIPHS.

In Y3, MDC has been adopted in an almost fully automated toolchain, together with
some features of NEURAghe and with Vivado HLS from Xilinx (details are provided in
section 6.11). This toolchain is intended for supporting designers of neural network
adaptive hardware accelerators, going from widely adopted application development
frameworks down to the corresponding accelerator implemented on FPGA. The
toolchain has been adopted within the scope of UC1 to provide an adaptive
accelerator for a convolutional neural network capable of classifying humans and
animals.

6.4. NEURAghe a flexible and parameterized CNN
accelerator

NEURAghe is a hardware/software solution for the acceleration of Convolutional
Neural Networks (CNNs) on Xilinx Zynq Systems on Chip (SoCs). In particular, it
exploits both the hard-core ARM processors and a Convolution-Specific Processor
(CSP) deployed on the configurable logic. As a result, the ARM processors are in
charge of supervising the acceleration and of executing the hard-to-accelerate parts of
the computational graph, while the accelerator takes care of the bulk of CNN workload
and can be controlled by software at a very fine granularity.

The acceleration hardware is supported by a software stack, NEURAghe Deep Neural
Network software stack (NeuDNN). NeuDNN allows the user to develop and reuse
CNNs to be accelerated with the NEURAghe solution. It runs on top of Linux OS in
order to favour system integration and it is basically constituted by a configurable
C/C++ library, providing APIs to the user in order to seamlessly execute the CNN with
or without acceleration, and by drivers (ARM-side) plus a resident runtime (CSP-side),

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 69 of 148

© FitOptiVis Consortium public

the former sending commands to the latter that properly executes them on the
acceleration logic. Besides this, some extensions of the NeuDNN software stack are
ongoing in order to provide automated conversion from ONNX (NN widely used
formalism) to C with NEURAghe API calls, and to provide configuration of a C template
with NEURAghe APIs starting from a darknet (NN state of the art framework) high level
network configuration.

NEURAghe also offers several configuration points at design time, making it extremely
flexible. Indeed, it is possible to configure:

 Data precision for input/output pixels, biases and weights (16 or 8 bits),
providing a compromise between accuracy and performance;

 Baseline CNN hardware acceleration core size (sum-of-product units matrix
size);

 Number of acceleration clusters (each cluster is independent from each other
and can have its own baseline CNN hardware acceleration core size);

 Memory size of each cluster.

The inputs are:

 CNN host code or ONNX NN specification or darknet network configuration

 Target Xilinx Zynq SoC (among Z-7045, Z-7020, Z-7007s)

The outputs are:

 Zynq-based CNN hardware/software acceleration engine

 CNN host code with NEURAghe API calls (possibility of offloading computation
to the acceleration engine)

According to the perspective adoptions in the FitOptiVis use-cases, NEURAghe and
NeuDNN will be refined in particular to provide:

 model-based optimization of the scheduling of CNN actors on available
processing elements (Task 3.1).

 implementation of dynamically

 variable precision computing in convolution cores, thus realizing different set
points for the CNN accelerator (Task 3.2).

NEURAghe, constituting a CNN accelerator provided with the NeuDNN software stack,
will be also part of the model-based working technology supporting the FitOptiVis
design platform (Task 3.3).

State of the art algorithms for image classification are under evaluation on the
NEURAghe platform. AITEK provided such algorithms as CNNs in ONNX format,
which has been firstly translated into the corresponding C source code thanks to the
ONNX2C flow, which is part of the NeuDNN software stack. Such C source code has
been used for implementing the CNNs through the NEURAghe platform. The source
code coming from the ONNX2C flow has been automatically populated with proper
function calls to configure and manage the processing offloading on the NEURAghe
CNN accelerator. In this activity UNICA and AITEK provide respectively the target
platform and the applications. The implementation of the accelerators, with the support
of both UNICA and AITEK, has been carried out by UNISS, which is assessing the
ONNX2C flow. At UNISS in Y2, the accelerators have been under evaluation, and
compared with AITEK proprietary implementations. Assessment at UNISS has been
completed in June 2020.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 70 of 148

© FitOptiVis Consortium public

The application provided by Aitek consisted of three different Neural Networks that
have been detecting moving targets and distinguish between persons and animals.
This has been a requirement specifically elicitated in Use case 1. In the first scenario
it was needed to detect possible human intruders and limit false alarms caused by
animals entering the same restricted area.

All the three provided networks processed 128x128 RGB images as input, providing
detection and classification as output. They differ for the implemented architectures
(i.e. VGG, Inception and MobileNet architectures). Moreover, they have been able to
achieve different levels of accuracy; they are characterized by different complexities
and require a specific amount of computational resources.

In Y3 NEURAghe, and in particular its ONNXparser (formerly ONNX2C) feature, has
been adopted in an almost automated toolchain, together with MDC and with Vivado
HLS from Xilinx (details are provided in section 6.11). This toolchain is intended for
supporting designers of neural network adaptive hardware accelerators, going from
widely adopted application development frameworks down to the corresponding
accelerator implemented on FPGA. The toolchain has been adopted within the scope
of UC1 to provide an adaptive accelerator for a convolutional neural network capable
of classifying humans and animals.

6.5. TTA-Based customized soft core accelerators

Transport-triggered architectures (TTA) are a promising avenue in the field of soft
processors. Compared with a traditional operation-triggered architecture, TTA has a
simpler implementation, leading to lower logic requirements and higher frequency.
Furthermore, the instruction encoding describes explicit parallelism without requiring
complex decoding logic.

However, the processor design toolset for TTA-based co-processors, TCE, was
primarily targeting ASIC implementations. FPGA architectures are more constrained in
their logic, memory and routing resources. While the fine-grained logic components
and their associated registers can theoretically implement any digital logic circuit,
specifying the logic in such a way that it maps to the special-purpose blocks leads to
significantly better synthesis results, both in terms of area and frequency.

These special-purpose blocks vary in complexity, from the ripple-carry logic or
multiplexers associated with the look-up tables of the fine-grained logic to the pipelined
multiply accumulate blocks with internal feedforward paths. The memory is similarly
constrained: the high-density hardened memory blocks in modern FPGAs feature at
most two bidirectional ports, and while the read port count of the smaller memories can
be higher, they are limited to a single write port. This makes the implementation of
complex memory components, particularly those required for dynamic caches, difficult
on FPGAs.

We set out to optimize the individual components of our TTA implementation for FPGA
devices. First, the interconnection network was examined. A complex interconnection
network can be the largest individual component in a TTA processor, and it may affect
the critical path within any function unit as their logic can be moved across the
registers to the inter-connect or vice versa. Therefore, its efficient implementation is

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 71 of 148

© FitOptiVis Consortium public

paramount to a high-performance TTA design. The default implementation did not map
efficiently on to FPGA hardware.

For the FPGA optimization, the input socket side of the inter-connect, originally
implemented with an AND-OR network performing what is essentially a multiplexing
operation, was replaced with an explicit switch-case structure in the RTL code. In
addition to mapping better to the dedicated multiplexing logic of the FPGA device, the
decode process needs to examine the source fields of a single bus, rather than the
source fields of every bus a given input socket is connected to. This reduces the
number of inputs to the logic function required to determine the control signals and,
subsequently, the number of logic elements required to implement it.

The load-store unit (LSU) optimization was somewhat more straightforward. For scalar
LSUs, the logic implementation had nothing specifically designed for FPGAs.
However, lock signals are an issue on FPGAs, as they have a high fan-out, essentially
enabling or disabling every function unit pipeline register. Therefore, fixed-latency
LSUs are a better fit for FPGAs. This also discourages us from using dynamic caches,
opting for scratchpads memory instead. For vector LSUs with a wide external bus, the
bottleneck was found to be the word select from the wide read word to the scalar-width
output. This can be alleviated by separating the scalar data output to its own port and
increasing the architectural latency of scalar loads. Another approach allows us to get
completely rid of the word select multiplexer. This can be achieved by having 2
separate different-sized LSUs connected to the same address space. We tested this
by arbitrating the second port of the dual-port block ram between external AXI access
and TTA’s scalar LSU. Area improvement was significant with this approach.

The optimizations have been integrated to the TCE toolchain and can mostly be
enabled without modifications to the processor architecture. Some recommendations,
primarily those concerning LSUs, may require architectural changes. While the
changes were aimed primarily for FPGA implementations of TTA processors –
especially the modifications to the interconnect implementation – may also aid ASIC
synthesis tools to reach better results.

The FPGA-centric optimizations were evaluated through synthesis on TTA processors
with and without each optimization to determine the individual effects of the changes.
The biggest difference was found to be from the interconnection network optimizations,
where the network itself required up to 54 % less logic to implement with the
optimizations than without. Taking all the optimizations into account, the logic
utilization of the entire core was reduced by up to 30 %.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 72 of 148

© FitOptiVis Consortium public

Figure 43: Maximum clock frequency of the synthesized processors.

Vector function units are an easy way to exploit the data level parallelism on programs.
To this end, we evaluated the scalability of the TTA approach to large SIMD widths.
The most important function units to vectorise are the load-store unit and the ALU. The
ALU can utilize FPGA’s hardened DSP blocks in parallel to implement efficient MUL
and MADD operations.

Overall, SIMD processors share a challenge of complex inter-lane connectivity which
is needed when passing data between the vector lanes, typically using so called
“shuffle operations”. To minimize the impact of a complex shuffle network required by
a fully dynamic shuffle unit (runtime defined vector indices for the lane data), we
implemented a few preselected static shuffle patterns based on the needs of the
program, which matches the idea of a reduced programmability layer on top of the very
dynamic FPGA fabric. Communication between scalar and vector busses was
implemented with broadcast and element extraction function units.

By the end of project, we managed to show that the TTA-SIMD approach can quite
easily scale up to 1024-bit SIMD lanes with over 100 MHz clock frequency on a small
and cheap FPGA (Zynq 7020 SoC of the PYNQ board). Figure 43 shows the clock
frequency trend with different lane widths up to 1 kbit vector width.

A performance comparison against the ARM hard processor system with NEON
instruction set integrated on the same SoC showed that we can reach up to 2.4x
speedup in some workloads, overcoming the 650 MHz clock frequency advantage of

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 73 of 148

© FitOptiVis Consortium public

the ARM core with additional data level parallelism. The benchmarking was done using
OpenCL vector datatypes, so we simultaneously demonstrated the easy OpenCL
programmability of SIMD-TTA processors in our platform.

In further analysis work in the final year of FitOptiVis, we found several low hanging
fruits related to critical paths which will bring additional clock frequency improvements.
However, it was also made very clear that beating CPUs and GPUs with FPGA-based
SIMD workloads on standard arithmetic is a major research challenge. For example,
the recent ARM processors introduce SVE that has better support for SIMD, after
which it becomes even more challenging to demonstrate speedups with FPGA-based
designs for data parallel workloads. However, it seems FPGA-based implementations
might be able to demonstrate better energy-efficiency in cases where it’s possible to
trade more parallelism to lower clock frequencies (and possibly lower operating
voltages).

Figure 44: Simplified view of the wide-SIMD TTA template.

In order to evaluate the scalability of the TTA SIMD template to larger FPGAs and to
demonstrate a real-life scenario, we presented a case study with application-specific
optimizations targeting CNN inference.

Since TTAs present excellent instruction-level parallelism scalability potential, and also
the SIMD usage shows a lot of promise, the final common degree of parallelism, that
is, the thread level parallelism would complete the template in its goal of exploiting all
forms of concurrency available in the application description for performance benefits.
To this end, there was a research track where the homogeneous multicore support,
initially added to the TCE toolchain over 10 years ago, was optimized for FPGA soft
core use.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 74 of 148

© FitOptiVis Consortium public

A master’s thesis project of Topi Leppänen was supported with FitOptiVis funding to
study the immediate scalability bottlenecks of TTA-based multicores on FPGA fabrics.
The master’s thesis work on purpose did not utilize the SIMD support, but used very
small scalar cores to find the multicore scaling bottlenecks as the first priority.

The intermediate result of this thesis work was an 8-fold increase in performance
achieved with 24 cores with scalar function units, compared to an equivalent single
core system. The external memory bandwidth could be utilized with 11.4% efficiency
even with the scalar load-store units in these cores. The remaining bottlenecks of the
multicore soft processors were reported in the thesis which are being solved to
unleash the full potential of customized multicore systems, potentially already within
the FitOptiVis extended timeline. However, the most important bottleneck identified
was not truly multicore related, but simply coming from the fact that scalar LSUs are
not ideal when attempting to utilize wide memory buses and their burst modes: the
scalar access to the external memory was shown to be a very inefficient way to utilize
the external memory bandwidth, thus combining SIMD and multicore soft cores should
yield the best utilization results, which is being studied currently.

Multicore scalability of the TTA SIMD approach was initially demonstrated on a Zynq
UltraScale+ board in the beginning of the FitOptiVis project. In this experiment we fit
14 customized SIMD cores reaching up to 48.5 GOPS total real application
performance while running a face-detection neural network. However, co-optimizing
combining SIMD and multicore for FPGA soft core use was left for the future work at
this stage.

AutoExplorer (AEx)

The design space explorer tool is a part of the TCE framework. Its purpose is to run
various exploration algorithms defined as plugin modules to find best possible
architecture configurations for a given application. All exploration results are stored in
a database as configurations in terms of processor architectures and its cost (clock
cycle count, area, power). Each result is verified using framework compilation and
simulation tools.

Figure 45: Simplified TCE Exploration process of AutoExplorer.

At the beginning of the exploration the application and the requirements are given by
the processor designer. Usually starting point is some architecture configuration that
can be compiled and simulated. The configuration architecture is later modified by
merging or pruning its components producing multiple different designs that meet the
requirements or improve the performance. A specific estimator algorithm is used to
select best configuration that meets the requirements. The exploration is finished until
there are no better configurations that can be generated.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 75 of 148

© FitOptiVis Consortium public

AutoExplorer (later AEx) is a design space exploration flow researched within the
FitOptiVis project. Its goal is to generate application specific processors by analyzing
the application automatically. Processor designer can specify multiple design
restrictions given as parameters. Several different algorithm stages are performed to
produce several possible architecture component combinations by pruning and
merging them and return them as configuration ids. AEx drives multiple exploration
plugins in a sequence, and picks best possible configuration from each stage based on
estimation information and uses configuration id as an input for the next plugin stage.
The advantage of the automated exploration is that it can evaluate several hundreds of
different designs before finding optimal solution. This allows automated rapid
prototyping of different architectures for specific application set.

First, the algorithm creates huge processor architecture with all possible operations
found from the TCE hardware database. For each operation depending on a given
parameter one or more function units are created. The register files are set to the huge
enough size to avoid register spilling. The purpose of this stage is to create starting
design exploration point, where pruning and merging of components can begin.

In the next stage, the application is compiled for the architecture generated previously
and simulated. From the compiled application we can analyze which operation are
being used and prune the function units and register files of certain width which are not
used. This simple trick greatly reduces the compilation and simulation times for further
exploration stages. We can reduce operations even further by analyzing simulation
results and prune function units for operations of which execution times are under
certain threshold. Several operations such as multiplication, of which usage might be
below the given threshold are given a higher priority, so they are not removed
declining the results.

After unused components are pruned, we create a VLIW-like connected architecture,
where each function unit input and output ports are connected to the register files. It
results in a huge interconnection network which will be reduced in the later stages by
merging function units, buses and ports. Also the dummy unconnected bus is created
to provide the slot for long transfers.

Figure 46: Un-optimized architecture (left), final best possible architecture (right).

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 76 of 148

© FitOptiVis Consortium public

Figure 46 depicts a part of the huge VLIW-like architecture where the components are

not yet pruned and merged and the final desired result of the auto-exploration.

The next stage is optional and it simply splits the register files into two parts.

Several function units might not be used simultaneously and can be merged together.
The algorithm produces the covariance matrix for the function unit executions from the
previous simulation results and merges the function unit pair with the lowest
covariance. The compilation and simulation process is repeated until all function units
are merged into one. The AEx’s job is to estimate the best amount of merged function
units and to pass the configuration id to the next exploration plugin.

To further reduce the architecture, the buses and register file ports are also merged
based on the same covariance matrix calculation algorithm each after another. The
exploration stage ends until there is one bus left and register files with one write and
read port. AEx here again estimates the best combination of buses and register files
ports. After this the merging is done and the architecture looks much simplified than at
the beginning of exploration.

At the beginning we set register file sizes huge enough to avoid register spilling. At this
stage the size is reduced and simulated until it does not affect the performance
significantly.

To inflate the instruction word size even further we split long immediate bus over all
buses in the architecture. This is the final stage where the best possible architecture
for the application is generated and can be further optimized manually by designer.

The processor architecture can be then fed into the platform integrator tools to
generate it into the hardware description language and generate program image for
FPGA verification tools like Vivado.

AEx2: User Inputs Only the Target Frequency and Target Execution Time

The next generation of AEx we call AEx2 was developed in the latter part of the
FitOptiVis project. The overall goal for the new algorithm was to simplify the usage so
that the end user simply defines the desired target frequency and execution time
parameters to efficiently prune design space configurations, which cycle count does
not fit. At each pipeline pass, only suitable configurations are left and the ones with the
minimal resource usage are picked for the next pass (phase) or selected as the final
architecture presented to the designer. If at some point of the pass pipeline there is no
single suitable configuration that can deliver the targeted execution time with the given
target clock frequency, AEx2 backtracks to the previous pass and picks configurations
with more hardware resources. It can fall back through multiple passes until a suitable
configuration is selected, or report of an error saying that there are no single fitted
configuration could be found that suits the designer’s input parameters. This process is
illustrated in Figure 47.

This heuristic slightly increases the design space, but it gets rid of “magic threshold
numbers” in the first AEx version, which were hand-picked based on empirical
observations, and used in several algorithmic passes to prune configurations that do
not fit the cycle count.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 77 of 148

© FitOptiVis Consortium public

Figure 47: AEx2 result pruning between passes.

The configurations marked in Figure 47 in green can reach the targeted execution time with
the targeted clock frequency.

AEx2: SIMD processor generation with LLVM auto-vectorization

The auto-generation of efficient SIMD architectures was implemented utilizing LLVM’s
auto-vectorization support. LLVM’s offers two auto-vectorizers, one that operates on
loops and the SLP vectorizer which works on basic block level. Both focus on different
optimizations and use different techniques. Loop vectorizer widens instructions inside
the loops and handles multiple consecutive iterations simultaneously. SLP vectorizer
simply merges several scalar operations it finds inside a basic block into a vector
operation. If the vector operations are found from in generated LLVM IR code, then
during the operation pruning pass these operations are added to the generated
architecture and their particular sized register files. Initial tests show around 20%
improvement in execution time for certain CHStone tests using vector architectures.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 78 of 148

© FitOptiVis Consortium public

AEx2: “I/O-Skeleton” Starting Point Architectures

To support different memory interfaces, the exploration can be started using a pre-
defined architecture “skeleton” containing only some function units with specific
operations, delays and address spaces. The skeleton approach is useful when
integrating the produced core to a predefined system bus or memory hierarchy: In that
case it can contain mainly the load-store units used to access the addresses through
the buses. While creating the initial huge architecture, other function units for
operations are simply added to this predefined architecture, without adding existing
operations found in predefined units. The predefined function units are kept untouched
during FunctionUnitMergePass, while other units can be merged based on their
parallel usage.

AEx2: Miscellaneous Improvements vs AEx

 During the VLIW-connectivity pass, additional connections from each function
unit to the boolean register files and the immediate unit are now made. That
should help the compiler optimization and minimizes the use of temporal
registers.

 The significantly long compilation time of the first pass has been reduced.
Compiling huge architecture with thousands of function units took too much
time and memory. Instead of adding N-multiple function units for each
operation, only a single unit is added. Then after the operation pruning pass,
when used operations are known the needed N-1 function units are added.

A publication was made of the AEx2 to the FitOptiVis special issue of JSPS. In this
publication, we analyzed the current performance and the remaining bottlenecks that
are feasible to tackle with well-identified future work. See Figure 48 for conclusive
numbers for a set of single thread benchmarks with the various different means to
execute on the FPGA fabric, including a commercial Vitis HLS flow.

Figure 48: Overall runtime comparison.

Figure 48 presents overall runtime comparison between MicroBlaze, AEx (initial
version), Arm and Vitis HLS tool. MicroBlaze runtime values presented in Figure 48
are truncated.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 79 of 148

© FitOptiVis Consortium public

In order to find the bottlenecks that limit reaching the Vitis HLS output (a non-
programmable fixed function design per application) with a programmable TTA soft
core, there was also a hand-optimized TTA for one of the most “FPGA-potential” of the
applications (aes). In the publication we thoroughly identified analyzed these
bottlenecks and found out that they are within reach, thus, it should be possible to
reach close to fixed function commercial HLS results after those issues have been
tackled. The publication is pending review, and since we believe the results have
commercialization potential details of those findings cannot be reproduced here due to
this report being a public one.

6.6. Object detection on FPGA using Waldboost algorithm

We developed an IP Core for object detection in video based on Aggregated Channel
Features (the particular variant of the algorithm is WaldBoost with decision trees over
aggregated channel features). The models for the IP core can be trained with the
WaldBoost package described above.

In the last period of the project, the detector IP was slightly modified for its easy
integration into applications. The input interface was extended to include an image
header that stores the image ID and its dimensions, the time of capture and other
capture information. The image ID is also stored in the detection results, simplifying
the association of the corresponding detection and image in the processing stream. By
knowing the size of the image from the header, the detector can process images of
different sizes without the need for settings in the registers. If the width of the image is
larger than the memory size the image is cropped and an error is signaled in the
detection results.

Figure 49 Accelerator in an example project in Vivado.

The IP core has been extended to support simultaneous detection of objects of
multiple types. This is advantageous, for example, in traffic applications for detecting
one and two row license plates which require separate models. Also, the IP
configuration library has been extended to support multiple models.

The detector allows you to configure up to 30 different parameters that affect speed,
maximum image size and object size range, accuracy, and resources (logic and
memory) for a specific application. For this reason, a python script was created to
estimate the required configuration and resources based on the application
parameters and the results from training. In the script, it is possible to set the number
of detectors, their properties, the maximum image resolution, the object size range,
and the required maximum processing time for a given resolution. The script generates
a configuration file in VHDL language.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 80 of 148

© FitOptiVis Consortium public

Finally, the detection IP kernel was tested in a traffic application, where it detected
single-line and double-line license plates with high accuracy. The test was performed
in difficult lighting conditions under bright sunlight in a scene with sharp shadows. Out
of 150 passing cars, the detector correctly detected 148 cars – detection rate > 98 % in
this particular traffic application.

The detection IP core can process video up to 4K resolution, classify up to 8 different
object classes, and provides sufficient performance to process FullHD video at 60
frames per second. It has low resource consumption, achieves high detection
accuracy and can be synthesized on even the cheapest FPGA, enabling fast and
robust object detection even on low power platforms.

6.7. HDR image acquisition, merging and tone-mapping

The HDR image acquisition is composed from three main blocks: image capturing,
HDR merging and tone-mapping (See Figure 50). The image capturing part is driving

the exposure time and is grabbing the images from the sensor. HDR merging
processes multiple images (in our architecture three) into the HDR frame. The tone-
mapping block is compressing the high dynamic range into the standard, 8-bit image
while preserving the details from HDR. We provide two of the main blocks in the form
of IP core, the Merging (with de-ghosting) and Tone-mapping.

Figure 50: Overall schematics of HDR acquisition pipeline.

The individual blocks create a dataflow pipeline, which is configured through AXI Lite interface
from ARM CPU.

Figure 51: Vivado schematics of ghost-free HDR merging block.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 81 of 148

© FitOptiVis Consortium public

“Ghost detection” and HDR merging blocks are divided into separate IP cores in Figure 51.

The input of the Ghost detection block are three separate image streams (in the form
of AXI Video stream), which have to be synchronized (as can be seen in Figure 51) for

pixel-by-pixel processing. The input is in the fixed-point arithmetic, by default in the
representation of 12.8 bits - 12 fixed point bits and 8 fractional. It provides sufficient
accuracy with minimal resource consumption - compared to floating point arithmetic.
Both blocks are written in HLS and, thus, provide an easy change of configuration,
input image number and format and also data representation (which depends on
previous parameters and desired HDR bit depth). The output stream (also in the form
of Axi Video stream) consists of HDR pixels; therefore, we provide it in 16.12 bits
format.

Figure 52: (left) standard merging algorithm, (right) output of our algorithm.

 Implementation of the IP made in Y3allows the full parametrization of IP cores through
the AXI4-Lite interface. It is possible to change the parameters regarding the exposure
time of individual images and, therefore, to adapt it for desired input sequence /
dynamic range in the input.

Table 3 shows the resources consumed by our Ghost free merging IP cores. The

overall utilization is related to the FPGA XC7Z020 on the ZC702 development kit, for
which we compiled the demo design. The table contains post-implementation resource
consumption.

 Merging Tonemapping (Durand)

Flip-flops (FF) 2025 9018

Look-up tables (LUT) 1259 15269

Look-up tables as RAM (LUTRAM) 222 97

BlockRAM (BRAM) 1 24

DSP multipliers 16 76

Table 3: Resources consumed by our Ghost free merging IP cores.

6.8. Convolutional HW accelerator

This accelerator core performs convolutional filtering on image data. The user
selectable design time option uses limited precision number space with high dynamic
range (compared to the number of bits used). The details were derived in the

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 82 of 148

© FitOptiVis Consortium public

modelling task 3.1, after a suitable parameter space had been found, based on
simulations. Other parameters were left to the runtime domain, because many CNN
applications scale the image or data array during iterations. Therefore, resolution, or
array dimensions in case of non-image data, is best left as a runtime configurable
option.

The core is compatible with CNN based image / video content analysis, and in the
future, it is planned to be integrated with YOLO open source content analysis software.
Description of the YOLO can be found in [6.11].

Especially CNN like algorithms will benefit from the reduced precision approach, but
the system can be used for other convolutional operations also. Main concern is the
precision required. For some applications this approach will be sufficient, while others
will suffer from the quality degradation. This means that any user adopting the
methods developed here must be aware of this trade-off.

Using a hardware approach also allows performing several operations in parallel. This
is especially valuable in case of neural network running several convolutional kernels
over the same input image, most likely in iterative manner. In hardware, especially with
limited prevision, several of these convolution kernels can be run in parallel. This will
reduce the number of memory accesses to retrieve the image / video data for the
kernel, thus, improving energy efficiency.

The accelerator core has been implemented in FPGA for prototyping and testing and
also netlisted for silicon implementation. The core has the same external interfaces
and programming model, regardless of which arithmetic option is selected. This allows
the designers to freely choose the implementation, and even reconsider the selection
after preliminary tests. This flexibility is most useful in FPGA designs, but can be used
during ASIC simulation stages also. As an added bonus, the identical interfaces and
programming model allow the core to be used in dynamic reconfiguration applications,
where the arithmetic type can be swapped on the fly.

Besides the IP core in VHDL and a QRML model, the work here has produced two
M.Sc. theses directly discussing this topic and one paper is currently in review for
publication. As future extensions we are considering nesting of convolutions and also
other arithmetic units using limited precision number space. The nesting would pass
results of one unit directly to the next, without memory accesses. This would be very
useful in deeper neural networks, in layers that do have only single layer after them.
The limited precision approach could be applied to almost any data, even if images are
the main target at this time. However, if the numbers are in the limited precision scale
for this core, then all other arithmetic operations should support it to avoid unwanted
conversions to and from simple binary. Therefore designing more units with support for
the approach is vital for wider success.

6.9. Video-based Point Cloud Compression

During the last two years Nokia has worked on the development of Video-based Point
Cloud Compression (V-PCC) as main part of Virtual Reality use case. This use case
has been utilised and tested in MPEG standardisation forum. The upcoming MPEG
standard for video-based point cloud compression is built around 2D video encoding
technology. The standard video coding technology can be utilised with existing

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 83 of 148

© FitOptiVis Consortium public

hardware mobile phone solutions and distribution infrastructure, i.e. existing hardware
video encoders and decoders, available on any modern mobile handset, can carry the
bulk of the processing operations.

The Test Model video-based point cloud compression (V-PCC) is project that was
started after the Call for Proposals (CfP) for Point Cloud Coding in MPEG [6.6], [6.7].
The core encoding and decoding process for V-PCC were inherited from the solution
that demonstrated the highest compression efficiency among all proponents as was
agreed during the MPEG 119 meeting in Macau.

We will describe shortly the main architecture structures and essential technical blocks
used in V-PCC model. The description of the encoding strategies is also provided. The
block structure shown in Figure 53 is used for encoding while for decoding the block

structure in Figure 54 is used instead.

Figure 53: V-PCC encoding structure.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 84 of 148

© FitOptiVis Consortium public

Figure 54: V-PCC decoding structure.

At the encoding stage input point, cloud frame is processed in the following manner.

First, the volumetric 3d data must be represented as a set of 3d projections in different
components. At the separation, stage image is decomposed into far and near
components for geometry and corresponding attributes components, in addition, an
occupancy map 2d image is created to indicate parts of an image that shall be used.
The 2d projection is composed of independent patches based on geometry
characteristics of the input point cloud frame.

Patch generation method, patch packing strategies and padding methods are out of
the scope of the standard. Nokia has been studied their implementations in the best
practices. After the patches have been generated and 2d frames for video encoding
were created the occupancy map, geometry information, attribute information and the
auxiliary information may be compressed.

The reconstructed geometry information may be smoothed outside the encoding loop
as a post processing step. Additional smoothing parameters that were used for the
smoothing process may be transferred as supplemental information for the decoding
process. At the end of the process, the separate bit streams are multiplexed into the
output compressed binary file.

Decoding process starts form demultiplexing of the input compressed the binary file
into geometry, attribute, occupancy map and auxiliary information streams. The
auxiliary information stream is entropy coded and the detailed description of coding
methods for auxiliary information compression is provided in WP6.

Occupancy map is compressed using video compression and must be upscaled to the
nominal resolution. The nearest neighbour method is applied for upscaling. Geometry
stream is decoded and in combination with occupancy map and auxiliary information,
smoothing may apply to reconstruct point cloud geometry information.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 85 of 148

© FitOptiVis Consortium public

Based on the decoded attribute video stream and reconstructed information for
smoothed geometry if present, occupancy map and auxiliary information the attributes
of the point cloud can be reconstructed. After attribute reconstruction stage additional
attribute smoothing method is used for point cloud refinement.

In WP3 tasks 3.1-3.3 Nokia has been profiling of algorithms in design time from
system performance point of view. The main goal is to optimize execution of
algorithms in the point cloud system environment. This means the identification of
sequential and parallel execution of tasks in different design phases. In this way, the
main benefit is to understand the main computational challenges when implementing
V-PCC system and standard.

Nokia has been focused on acceleration of individual algorithms in combination of
GPU and CPU. This has been done in image processing in the latest GPU generations
from ARM (Mali) and Qualcomm (Adreno). The algorithms have been covered
rendering, decoding reconstruction and filtering operations as discussed before in V-
PCC architecture description.

Also, some special challenges as bottlenecks exist in the synchronisation and
buffering of the parallel video streams have been studied in very detail HW and SW
levels. A particular problem is the handling of decoded video outputs on Android
devices. Here, FitOptiVis will improve over the existing standard with an efficient and
effective synchronisation solution, enabling V-PCC real-time decoding and playback
on modern Android handsets.

Based on the results of WP3 tasks Nokia can provide the analysis for profiling and
optimization, implementation recommendations, and performance understanding in the
V-PCC system and algorithm levels. As the results of these research studies Nokia’s
V-PCC demo source code is available for other partners [6.12]

Our experiments have shown that most modern mobile handsets are capable of
achieving real-time decoding of at least 25 frames per second as well as real-time AR
rendering, thus, proving the general claim of real-time capability of V-PCC system.

6.10. Acceleration of face detector on GPU and DSP

The implementation of the face detector is based on RetinaFace project [6.13] which
has achieved state-of-the art performance in benchmarks [6.14]. RetinaFace is a
single stage detector. This architecture means that object localization and classifying
are both conducted on each inference cycle. This branch of CNN object detectors has
been growing rapidly over the last couple years. The system relies on usage of
predefined anchor boxes that are used for bounding box placement in the decoding
phase where detections are mapped into an image plane. The minimum dimension
requirements for detection are approximately 30 x 40 and the maximum is around
1000 x 1000 in pixel width and height.

CNN algorithms are often computationally expensive and the most power consuming
parts in applications. To meet this challenge, it is nowadays common to integrate
several different computing devices in a single chip each accelerating specific
algorithms. Designing, implementing, and tuning new algorithms for ISPs has
remained a high-cost exercise. Therefore, a more general purpose solution such as

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 86 of 148

© FitOptiVis Consortium public

mobile graphics processing units (GPUs) and digital signal processors (DSP) that
handle image and video processing tasks is desired.

In this work, scalability of the solution using mobile GPUs and DSPs helps to achieve
improved energy efficiency and low power dissipation which is needed when dealing
with battery powered devices. In our experiments, we have evaluated the detector
implementations on a mobile development board. The optimization act here is a
balancing one between model complexity and inference optimization. Inference can be
optimized using quantization method, which means dropping the accuracy and
specificity of used variables by using smaller variable sizes.

The results were measured on the Qualcomm’s Snapdragon 855 mobile platform. The
CPU in this platform is Kryo 485 CPU, Octa-core CPU with clock speed up to 2.84
GHz and the GPU is an Adreno 640. The DSP is Qualcomm Hexagon™ 690
Processor with Hexagon Vector eXtensions (HVX) and Hexagon Tensor Accelerator.

The measured computation time for the CPU implementation was 1020 ms with the
image size 4096x2156. Using the GPU implementation, the processing time was
293ms. Power consumption was measured as the total system power on the platform.
We used the National Instruments NI 4065 measurement device for measuring the
electric current. First, the baseline system current without the algorithm running was
measured in order to determine the actual power consumption of the algorithm. The
baseline current was 207mA. Next, we measured electric current of the CPU and GPU
versions of the algorithm using image resolution 4096x2156. Figure 55 and Figure 56.

The measured average electric current for CPU implementation was 294mA and for
GPU implementation it was 241mA. Thus, energy efficiency is much better with the
GPU implementation.

Figure 55: Power consumption in case of CPU implementation.

Figure 55 presents measurement when running face detector for (4096 × 2156) size frames
with CPU implementation. X-axis shows time and Y-axis shows current in the range between 0
and 1100 mA.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 87 of 148

© FitOptiVis Consortium public

Figure 56: Power consumption in case of GPU implementation

Figure 56 presents power consumption measurement when running face detector for (4096 ×
2156) size frames with GPU implementation. X-axis shows time and y-axis shows current in
the range between 0 and 1100 mA.

We will continue GPU/DSP/CPU inference optimization of native implementation,
embedded and real-time (video) detection implementation. Also re-training the detector
with GPU/DSP supported operations and training heavier models is considered.

6.11. Automated Toolchain for Adaptive Neural Network
Accelerator

During Y3, with the aim of delivering support and design automation for the
development of adaptive Neural Network (NN) accelerators, a toolchain has been
assembled by interfacing different tools and frameworks available in literature and in
the market. As depicted in Figure 57, the toolchain adopts MDC (see Section 6.3),

NEURAghe (see Section 6.4) and Vivado HLS [6.15]. The entry point of the toolchain
is a NN model in ONNX format (widely adopted NN exchange format), easily
generated from the main NN development frameworks (Pytorch, Keras, etc.)
commonly used by NN application developers. A dataflow based flow is adopted, for
which application are modelled as graphs, whose nodes are computational units
according to operations involved in the application (actors), which connections are
point to point buffered links between computational units which are described through
an XML file (network) compliant with MDC input format. NN described in ONNX can be
directly mapped into such dataflow formalism: actors reflect NN layers and dataflow
connections reflect NN tensors between layers. Adaptivity is implemented through the
definition of different set points for the application, which means different NN or
dataflow models, each presenting a different behavior under different metrics (e.g.
latency, consumption, quality, etc.). Two parallel flows are envisioned starting from
input ONNX model(s) of application or application set points:

 Actor (blue flow in Figure 57):

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 88 of 148

© FitOptiVis Consortium public

o A1: ONNX model(s) are automatically converted into the corresponding C
implementation through the ONNXparser, which is part of the NEURAghe
software stack, to provide C description of actors (NN layers);

o A2: refactoring and pragmas are applied by the user on top of the
generated C actors in order to i) optimize them to obtain the best execution
efficiency; ii) provide different set points to shape adaptivity (e.g. actors with
different consumption versus latency trade off). Figure 57 gives overview of
the assembled toolchain for adaptive NN hardware accelerators.

o A3: Vivado HLS is then exploited to automatically generate the hardware
description (in HDL) corresponding to C actors (and in turn NN layers), to
be used in the final NN adaptive hardware accelerator.

 Network (red flow in Figure 57):

o N1: ONNX model(s) is(are) converted (1 to 1 matching) into dataflow
network(s), and, if necessary, new dataflows are modelled according to
the way the user is shaping adaptivity (each dataflow model
corresponds to one application set point);

o N2: dataflow networks are automatically combined together by MDC
front-end sharing common resources through multiplexer logic, and
generating a reconfigurable dataflow network capable of executing all
the different input dataflow networks;

o N3: MDC back-end automatically generates the reconfigurable
hardware accelerator for Xilinx environment whose computing core is
corresponding to the reconfigurable dataflow network using the
hardware description of the actors generated within step A3.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 89 of 148

© FitOptiVis Consortium public

Figure 57: Adaptive NN hardware accelerators

The toolchain is almost fully automated, only the steps where users can shape
adaptivity (A2 and N1) are left manual, since they depend on their specific needs. All
the other steps are performed automatically, and the final result is a ready-to-use
accelerator which can be implemented and easily adopted in the practice on Xilinx
FPGA devices thanks to the provided scripts and drivers coming from the MDC
performed N3 step.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 90 of 148

© FitOptiVis Consortium public

The assembled toolchain is being used by UNICA, UNISS and AITEK within the scope
of UC1 – Water Supply to provide an adaptive CNN accelerator capable of classifying
humans and animals to monitor accesses on the targeted critical infrastructure.

7. Design Time Support for Methodologies and
Tools

This chapter describes design time support for methodologies and tools released in Y3
by FitOptiVis WP3 partners and general public in Y3 of the project in [7.15]-[7.20].
These released design time resources are also summarised in section 10.8 as “Design
Time Resource Integrator of Model Composer IPs (DTRiMC) Technology” These
activities have been developed in tasks T3.1, T3.2 and T3.3.

Development evolution

In Y1, project released support for Xilinx Zynq systems with these specific features:

 ZynqBerry system presents small, low cost system with design time support
being developed in FitOptiVis [7.1]. It has the RaspBerry form factor and works
with the (28nm) Xilinx 32bit Zynq device with small programmable logic area.

 Medium size 16nm 64bit Zynq UltraScale system with design time support
being developed in the FitOptiVis [7.2]. It is re-using the carrier board and the
Full HD video I/O FMC card used in the Almarvi project.

 Large 16nm 64bit Zynq UltraScale system with design time support being
developed in the FitOptiVis [7.3]. It is re-using the video Full HD video I/O FMC
card used in the Almarvi project. The carrier has the Mini ITX form factor.

Table 4 summarizes the progress made by the FitOptiVis partners in the WP3 from M1

to M12.

 ALMARVI - end of project:

 FitOptiVis – Y1:
 Zynq 7000 family (28nm)

 Stand-alone only

 + Zynq Ultrasscale+ 16nm
+ Small: ZynqBerry 28nm

 + PetaLinux OS
+ Debian FS support

 ALMARVI limitations: FitOptiVis progress:
 Limiting PL size of Zynq
 no VCU, no GPU
 no USB support
 no Ethernet board 2 board

communication framework

 + Large PL of Ultrascale+
 + VCU, + GPU,
 + USB
 + Ethernet board 2 board

 communication based on
 Arrowhead Framework

Table 4: Progress made in FitOptiVis in WP3 in Y1. Comparison to ALMARVI.

The FitOptiVis Y1 design time resources have been described in D3.1.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 91 of 148

© FitOptiVis Consortium public

The technology developed in Y1 is summarized in section 10.7 of this D3.2 deliverable
as the “Design Time Resource Configurator (DTRC) technology” [7.1], [7.2], [7.3].

In Y2, WP3 partners developed, documented and released for public use the second
release of the design time resource support for a family of Xilinx Zynq and Zynq
Ultrascale+ systems. See [7.12] and [7.13]. This is summary of the new features
developed in Y2:

 Support for designs with Xilinx SG for DSP data streaming IPs for Zynq

 Support for designs with Xilinx SG for DSP data streaming IPs for Zynq
Ultrascale+

 Geneation of data movers for external IP blocks based on SDSoC 2018.2

 Export of generated Vivado/SDSoC HW sub-systems as shared C++ SW
library API

 SW developer can program „main“ applications without SDSoC 2018.2
compiler license with the standard g++ compiler and „make“.

 Swap of complete programmable logic during run-time, while Debian OS based
application continues to run.

The FitOptiVis Y2 design time resources have been described in D3.2. All these Y2
design time resources worked with fixed, precompiled HW. There was no possibilty for
the end-user to extend the precompiled HW platform with own custom HW.

In Y3, the design time resources released by UTIA removed this restriction. The
(DTRiMC) Technology released in Y3 for public access in [7.15]-[7.20] work with open
Vivado 2018.2 and 2017.4 HW projects. The end-user can extend the initial HW
platform with own custom HW IPs, configure and compile complete system with
DTRiMC tool support. See Figure 58.

This compilation of HW projects requires the commercial Xilinx SDSoC 2018.2
compiler license. It also requires UTIA license for the 8xSIMD HW accelerator IP.

To ease these license-related requirements, the Y3 released design time resources
[7.15]-[7.20] also include precompiled fixed HW designs which are ready for use by the
user SW code without license.

UTIA provides the evaluation versions of the 8xSIMD HW accelerator IPs in the pre-
compiled HW designs [7.15]-[7.20]. These evaluation versions of HW accelerators
have built-in HW limitation of the number of operations which can be executed. If this
HW limit expires, power-down circle is needed to re-activate evaluation IPs.

Application notes and evaluation packages released in Y3 [7.15]-[7.20] also
demonstrate the run-time re-configurability of systems with 8xSIMD HW accelerators
operating in parallel to the HW accelerated video processing. Different firmware
programs program are compiled, downloaded and executed in each video processing
frame (in 16 ms = 60x per second). These programs test vector operations supported
by the 8xSIMD HW accelerators.

Parallel processing is possible due to the asynchronous nature of the implemented SW
API. Video processing HW is processing each video frame autonomously, without
blocking of ARM A9 or A53 processor cores. These processing cores are used for re-

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 92 of 148

© FitOptiVis Consortium public

compilation of firmware, program transfer, data transfer and control of execution of the
8xSIMD HW accelerators.

Figure 58: Block diagram of DTRiMC supported design flow.

Both these parallel computing processes/activities (HW accelerated processing of the
video frame and computation in 8xSIMD HW accelerators) are joined and ended
before the end of each incoming video frame and started again with the next in-coming
video frame. See Chapters 7.1 – 7.4 and the application notes and evaluation
packages [7.15]-[7.20] for the details.

7.1. DTRiMC for TE0820-3CG and TE0820-4EV modules

This section presents released application notes and evaluation packages [7.15] and
[7.16]. It is design time resource integration of model composer DTRiMC tool for
TE0820-3CG and for TE0820-4EV device. See Figure 58. It serves for integration of
two 8xSIMD, FP03x8, floating-point, run-time-reconfigurable HW accelerators for the
Zynq Ultrascale+ TE0820-02-3CG-1E module [7.16] and for TE0820-03-4EV-1E
module [7.15] on TE0701 carrier board. The TE0820 modules and the TE0701 carrier
board are designed and manufactured by the company Trenz Electronic.

The supported initial HW platform for Zynq Ultrascale+ ZU3CG and ZU4EV devices is
described in Figure 59. It contains FULL HD HDMI video input and video output HW
IPs, Sobel video processing filter, SDSoC 2018.2 matrix multiplication HW accelerator
and two 8xSIMD FP32 run-time reprogrammable accelerators. ILA IP serves as in-
circuit logic analyser. The DTRiMC tool scripts create this platform project. User can
extend it with its own IPs. Next steps involve platform creation, PetaLinux kernel

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 93 of 148

© FitOptiVis Consortium public

configuration, export of SDSoC 2018.2 platform, data mover creation in the SDSoC
2018.2 and finally export of HW kernel se shared object for the standard C or C++
Debian user space SW application.

The two devices (ZU3CG and ZU4EV) have been selected for detailed documentation
in [7.15] and [7.16] to compare the impact of dual core and quad core A53 processing
system.

Figure 59: HW platform for Zynq Ultrascale+ ZU3CG and ZU4EV devices.

Figure 60 presents running systems with HW accelerated video processing and
parallel FP32 matrix multiplication accelerated by the two 8xSIMD run-time
reprogrammable HW accelerators.

Figure 60: SW application running on Zynq Ultrascale+ ZU3CG and ZU4EV devices.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 94 of 148

© FitOptiVis Consortium public

Comparison of matrix multiplication performance on Zynq Ultrascale+ ZU3CG and
ZU4EV devices:

System Function MFLOPs

ZU03-CG-1E 8x mmult use B1..B4, include parallel copy of B1..B4 5039
 8x mmult use B1..B8, include parallel copy of B1..B8 4862
 SW mmult Scilab MEX style, 4 threads (on 2 cores) 807

ZU04-EV-1E 8x mmult use B1..B4, include parallel copy of B1..B4 5047
 8x mmult use B1..B8, include parallel copy of B1..B8 4883
 SW mmult Scilab MEX style, 4 threads 1521

I7 PC 3.0 GHz SW Ubuntu, SciLab C MEX style, 1 thread: 1933

The video input FPS is 60.0 FPS (see Figure 60). This is defined by the information
received from the Full HD HDMI video input sensor. The video output is also fixed, 60
FPS and this is defined in the video output HW IPs (See Figure 59).

Power ZU04EV
Power [W]

ZU03CG
Power [W]

Linux system is running with all HW (See Figure 59).
present in the device. No user app.

7,32 7,08

As above, with user interface in Full HD HDMI desktop. 8.88 8.16

Linux system is running with all HW (See Figure 59) present
in the device. SW app. sobel_all.elf is running. It performs
HW accelerated edge detection and scrolls through tests of
two 8xSIMD HW accelerators.

9,84 9,24

As above (sobel_all.elf is running.), with user interface in
Full HD HDMI desktop.

11.4 10.44

Table 5: Power consumption of ZU04EV and ZU03CG systems

Power consumption is measured on input power line 12V. Power difference presented
in Table 5 is related to the dual core (ZU03CG) and quad core (ZU04EV) A53
processing systems. See details in [7.15] and [7.16].

7.2. DTRiMC for TE0808-15EG and TE0808-09EG-ES1

This section describes results of application notes and evaluation packages [7.17] and
[7.19] for the Design Time Resource integration of Model Composer DTRiMC tool. See
Figure 1. It serves for integration of eight 8xSIMD, FP03x8, floating-point, run-time-
reconfigurable accelerators for Zynq Ultrascale+ TE0808-15EG-1EE module and
TE0808-09EG-ES1 module on TEBF0808 carrier board.

We have selected these two devices to demonstrate support for different Xilinx tool
chain versions (Vivado HLS and SDSoC 2017.4 and 2018.2). Xilinx device ZU09-EG-
ES1 device requires in the design phase the Xilinx Vivado tool version 2017.4. This
tool must have enabled support for the Xilinx ZU09-EG-ES1 device. The Xilinx Vivado
2017.4 is the last Xilinx toolchain still supporting the ZU09-EG-ES1 device. We have
selected this device, because UTIA owns three TE0808-09EG-ES1 modules systems
with this device.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 95 of 148

© FitOptiVis Consortium public

Created DTRiMC support enabled use of these modules by UTIA researchers and
PHDs for research of mapping of DSP algorithms to the array of eight 8xSIMD HW
accelerators.

The initial HW platform (See Figure 61) created by DTRiMC tool scripts serves for
integration of eight 8xSIMD, FP03x8, floating-point, run-time-reconfigurable HW
accelerators for the Zynq Ultrascale+ TE0808-15EG-1EE module on TEBF0808 carrier
board. The TE0808 module and the TEBF0808 carrier board are designed and
manufactured by the company Trenz Electronic.

Figure 61: HW platform for Zynq Ultrascale+ ZU15EG device.

The supported initial HW platform for Zynq Ultrascale+ TE0808-15EG-1EE device is
described in Figure 61. It contains FULL HD HDMI video input and video output HW
IPs, LK Dense Optical Flow video processing algorithm, SDSoC 2018.2 matrix
multiplication HW accelerator and eight 8xSIMD FP32 run-time reprogrammable
accelerators. ILA IP serves as in-circuit logic analyser.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 96 of 148

© FitOptiVis Consortium public

The DTRiMC tool scripts create this platform project. User can extend it with its own
IPs. Next steps involve platform creation, PetaLinux kernel configuration, export of
SDSoC 2018.2 platform, data mover creation in the SDSoC 2018.2 and finally export
of HW kernel se shared object for the standard C or C++ Debian user space SW
application.

Figure 62: SW (Sobel and LK DOF) on the Zynq Ultrascale+ ZU15EG device.

Comparison of matrix multiplication performance for Zynq Ultrascale+ ZU15EG:

System Function MFLOPs

ZU15-EG-1EE 8x mmult use B1..B4, include parallel copy of B1..B4 19111
 8x mmult use B1..B8, include parallel copy of B1..B8 15417
 SDSoC HW mmult use B1..B8, include copy of A, B, Z 6366
 SW mmult Scilab MEX style, 4 threads 1364
 SW mmult C style, 1 thread 895
 SW Scilab C MEX style , 1 thread 166
I7 PC 3.0 GHz SW Ubuntu, SciLab C mex, 1 thread: 1933

Power consumption is measured on input power line 12V. All power supply is derived
from this single power source.

Power consumption Power [W]

Linux system is running with all HW interfaced by the library
libte02_4x2_async_mulf64_sgdma_hw.so is present in the device.
No user app is running

14,64

Linux system is running with all HW interfaced by the library
libte02_4x2_async_mulf64_sgdma_hw.so is present in the device. SW
app. sobel_all.elf is running. It performs HW accelerated edge detection
and scrolls through all tests of all 8 8xSIMD HW accelerators. These
tests are controlled by 4 SW threads.

17,04

Linux system is running with all HW interfaced by the library
libte02_4x2_async_mulf64_sgdma_hw.so is present in the device. SW
app. sobel_mmultf1_4xB.elf is running. The application performs It
performs HW accelerated edge detection and in parallel it also performs
repeated tests of HW accelerated floating point matrix multiplications on
eight 8xSIMD HW accelerators. These tests are controlled by 4 SW

18,72

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 97 of 148

© FitOptiVis Consortium public

threads.

Linux system is running with all HW interfaced by the library
libte03_4x2_async_mulf64_sgdma_hw.so is present in the device.
No user app is running

14,64

Linux system is running with all HW interfaced by the library
libte03_4x2_async_mulf64_sgdma_hw.so is present in the device. SW
app. dof_all.elf is running. In each frame, the application performs first
the HW accelerated dense optical flow controlled from single SW thread
and then performs sequence of repeated tests of supported firmware
operaions on all eight 8xSIMD HW accelerators.

17,52

Linux system is running with all HW interfaced by the library
libte03_4x2_async_mulf64_sgdma_hw.so is present in the device. SW
app. dof_mmultf1_3xB.elf is running. This application performs the HW
accelerated dense optical flow controlled from single SW thread and in
parallel it also performs repeated tests of HW accelerated floating point
matrix multiplications on 6 8xSIMD HW accelerators. These tests are
controlled by 3 SW threads. Two 8xSIMD HW accelerators are not
used.

19,32

Table 6: Power consumption of Zynq Ultrascale+ ZU15EG system.

Table 6 documents the increase of power consumption related to the increased
complexity and increased DDR data traffic of the HW accelerated LK DOF algorithm in
comparison to the simple HW accelerated Sobel filter video processing. We can also
see the increased power consumption related to the HW accelerated FP32 matrix
multiplication performed in parallel to the HW accelerated video processing on the
eight 8xSIMD run-time reprogrammable HW accelerators.

7.3. DTRiMC for TE0726-03M and TE0726-03-07S board

This chapter describes results of application note and evaluation packages for the
Design Time Resource integration of Model Composer DTRiMC tool [7.18] and [7.20].
It serves for integration of 8xSIMD, FP03x8, floating-point, run-time-reconfigurable
accelerator for Zynq device on TE0726-03M board [7.18] and support for HW data-
movers on the TE0726-03-07S board [7.20].

Figure 63: Two HW platforms for Zynq 7000 device: 8xSIMD accelerator and FIFO.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 98 of 148

© FitOptiVis Consortium public

We have selected these tow platforms to demonstrate portability of the DTRiMC tool to
the Zynq 7000 family of devices.

The platform for the TE0726-03-07S Zynq 7000 device was selected to demonstrate
and document complete the DTRiMC tool supported design process without UTIA
8xSIMD HW IPs. User can use the FIFO HW IP or replace it with own HW IP.

Left part of Figure 64 is presenting running TE0726-03M board performing matrix
multiplication accelerated by single 8xSIMD HW accelerator together with ILA display.
Right part of Figure 69 is presenting running TE0726-03M board performing also the
matrix multiplication accelerated by single 8xSIMD HW accelerator with X11 display on
a remote desktop and power measurement. The remote desktop is running on an
Ubuntu PC connected by 100 Mbit Ethernet to the TE0726-03M board by standard
PuTTY client.

Figure 64: SW (floating point benchmark) on Zynq 7000 device.

Comparison of matrix multiplication performance for TE0726M board:

System Function MFLOPs

TE0726M HW accelerated matmul() on 1x 8xSIMD, 1 thread 1269
 SW matmul(); Scilab MEX style, 1 thread. 225
I7 PC 3.0 GHz SW Ubuntu, SciLab C MEX style, 1 thread. 1933

Power consumption Power [W]

Debian OS system is running with all HW interfaced by the library
libfp01x8_v26x1_hw.so is present in the device. Remote desktop with
user terminal and mousepad editor open. No user application is running.

2,8

Linux system is running with all HW interfaced by the library
libfp01x8_v26x1_hw.so is present in the device. SW application
fp01x8_v26x1_sw.elf is running. It performs HW accelerated matrix
multiplication on one 8xSIMD HW accelerator.

3,3

Table 7: Power consumption of Zynq zc7z010 with 8xSIMD accelerator.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 99 of 148

© FitOptiVis Consortium public

Table 8 presents measured HW data mover performance on the TE0726-03-07S Zynq
7000 board. It is compared with the optimized (-O3) ARM host SW implementation of
SW data copy of a single precision floating point matrix [64x64] from user space
memory to linear addressable non-cacheable memory area and back to user space
memory. See details in [7.18].

TE0726M-07S MByte/s

ZC HW data movers 170.4

ZC SW copy 19.9

DMA HW data movers 151.1

DMA SW copy 19.9

SG HW data movers 79.1

SG SW copy 19.9

SG-malloc HW data movers 9.8

SG-malloc SW copy 229.6

Table 8: Measured performance of HW data movers for Zynq xc7z07s device.

We can see HW acceleration over the SW implementation of data copy in case of ZC,
DMA and SG HW data movers performing data copy from/to the reserved un-
cacheable linear addressable memory area.

SW implementation significantly outperforms the SG-malloc HW implementation of
data movers in case of data copy from/to the cacheable standard Debian OS user-
space memory area. See details in [7.20].

7.4. Tool development directions after the end of project

In Y3, the development of design time resources has been affected by wider context of
the development directions taken by Xilinx. In 2019, Xilinx SDSoC compiler
development stopped with the last ver. 2019.1. In 2020, Xilinx moved to a unified Vitis
2019.2 Acceleration flow with OpenCL. See the roadmap of Xilinx SW/HW design tools
in Figure 65.

Figure 65: Time frame and roadmap of Xilinx SW/HW design tools.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 100 of 148

© FitOptiVis Consortium public

In Y3, based on this context, UTIA with WP3 partners decided to continue support for:

 Xilinx Vivado HLS ver. 2017.4 and SDSoC ver. 2017.4 by DTRC and DTRiMC
tools (Zynq, ZU+, ZU+ ES1 devices). See [7.14], [7.19].

 Xilinx Vivado HLS ver 2018.2 and SDSoC ver. 2018.2 by DTRC and DTRiMC
tools (Zynq, ZU+ devices. See [7.12], [7.13], [7.15]-[7.18] and [7.20].

In 2021, UTIA with WP3 partners also started an initial, exploratory work on support for
the Xilinx Vitis 2019.2 acceleration flow (named as Vitis-2019.2 DTRC) to support at
least some custom Zynq Ultrascale+ modules.

On April 20-th 2021, UTIA presented preliminary results to the FitOptiVis partners in
form of an internal tutorial demonstrating an initial support for Zynq Ultrascale+ device
ZCU04-EV on industrial grade modules TE0820 and TE0803 manufactured by
company Trenz Electronics.

Figure 66 and Figure 67 present measured memory bandwidth in developed te0820-
04ev and te0823-04ev Vitis 2019.2 platform. In the figures, the horizontal axis is size
of transferred data in Mbytes. The vertical axis is the achieved bandwidth in MBytes/s,
(logarithmic scale).

Figure 66: Measured memory bandwidth in te0820-04ev Vitis platform.

The measured bandwidth is presented in Figure 66 and Figure 67, by different colors,
parametrized by the device programmable logic clock in ranges 50, 100, 150, 200 and
250MHz. The bandwidth includes the ARM SW overhead needed to start and stop
each data transfer transaction.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 101 of 148

© FitOptiVis Consortium public

The quad core ARM A53 processing system is running with 1.2 GHz clock. The data
width is set to the maximal possible value supported by Vitis 2019.2 compiler: 512 bits.

Figure 67: Measured memory bandwidth in te0803-04ev Vitis platform.

The te0803-04ev module has better bandwidth due to the 2x wider DDR4 data
interface implemented on the larger te0803-04ev module. See Figure 66 and Figure
67.

At the end of the project, both developed Vitis 2019.2 Zynq Ultrascale+ HW platforms
support only the HW acceleration Vitis 2019.2 compiler flow. The effective interface to
custom input and output video frame buffers with video content defined by the HW
VDMA data movers remains unsolved for both developed custom Vitis 2019.2
platforms.

The effective interface to custom input and output video frame buffers with video
content defined by the HW VDMA data movers is solved and documented for the
SDSoC 2018.2 platforms in released application notes and evaluation packages
[7.15]-[7.17].

UTIA plans to continue this development, documentation and creation of evaluation
packages for the Vitis 2019.2 Zynq Ultrascale+ custom, industrial grade HW modules
also after the end of the FitOptiVis project.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 102 of 148

© FitOptiVis Consortium public

8. Conclusions

This deliverable describes the status of design time methodologies, frameworks and
strategies developed by FitOptiVis project partners up to the end of the project. It
collects the results achieved in tasks T3.1 “Model-driven engineering techniques for
energy performance and other qualities” in Chapter 4, T3.2 “Programming and
parallelization support” in Chapter 5, and T3.3 “Accelerator support” in Chapter 6.

8.1. Main achievements in WP3 of the FitOptiVis project

8.1.1. UTIA

For UTIA, the main achievement in FitOptiVis is the development, documentation and
release of the board support packages [7.15]-[7.20] for a wide range of custom Zynq
(28 nm) and Zynq Ultrascale+ (16 nm) modules together with the DTRiMC tool
developed in the project. The DTRiMC tool serves for support of integration of custom,
run-time reprogrammable, SIMD, floating point HW accelerators into Debian systems
with Full HD HDMI HW-accelerated video processing capability together with support
for compilation of HW accelerators by the Xilinx SDSoC system level compiler.

8.1.2. BUT

The main achievement for BUT is the successful development of real-time object
detection technology - ACF Core. The tools around ACF Core allow to easily create
custom detectors and to configure them for a wide range of target platforms. In certain
configurations (e.g. known object size or low image resolution) we support even low-
end FPGAs with limited resources. The technologies developed in WP3 were
successfully integrated in WP5 in license plate detection component, and
demonstrated in Traffic surveillance use case in WP6.

8.1.3. TUT

The main quantitative achievements related to TCE soft core work were received from

the optimization of SIMD support and multicore support: Since an FPGA is a highly

parallel customizable structure, in addition to the automated customization work done

with AEx, it is essential to utilize the data and task level parallelism to maximum with

minimal overheads; this is in addition to the scalable instruction-level parallelism of the

TTA approach. The biggest numerical difference was found to be thanks to the

interconnection network optimizations: the network itself now takes up to 54 % less

logic to implement and the entire core up to 30 % less, when reflecting to the start of

the project.

8.1.4. UCAN

Important design time resource development made in Y3 by UCAN is the RIE

methodology and C++ library for component-based implementation of embedded

systems. RIE supports runtime reconfiguration of the software components described

in the QRML modelling language developed in WP2. It is possible to generate RIE

code from the WP2 QRML language and UML/MARTE models from the S3D – Single

Source Design Framework. The library classes are used to implement components

and monitors. Additionally, the library also simplifies component deployment in the

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 103 of 148

© FitOptiVis Consortium public

cloud and edge. See Sections 4.1, 5.8 and Sections 10.5, 10.6 in the appendix.

8.1.5. UNIVAQ

In the context of the ECSEL FitOptiVis project (WP3), UNIVAQ has extended the

HEPSYCODE methodology to consider energy-aware requirements, metric, and cost

function in the design space exploration step. User energy requirements can be

related to the possibility to find system implementations based on a dedicated

heterogeneous/homogeneous multi-processing system (D-HMPS) that consumes as

little energy as possible, or to find D-HMPSs that consumes less energy than a

given threshold, while considering also other non-functional requirements (e.g.,

timing, cost, etc.). The considered energy metric is the J4CS, while the design space

exploration analyzes alternative solutions by means of an evolutionary algorithm that

considers, at the same time, with a weighted sum method, several objectives. So,

taking into account different processor technologies (GPP, ASP, SPP), HEPSYCODE

is able to find a HW/SW partitioning, to define a HW architecture and to suggest a

mapping potentially able to satisfy all the requirements. Finally, HEPSYCODE is able

to estimate timing performances and energy consumption by means of a SystemC

simulator that considers the results found by the evolutionary algorithm. In this way,

HEPSYCODE is also able to identify, at design-time, suitable “configurations” for

different trade-offs (e.g., timing vs energy/power) by considering a heterogeneous set

of processors.

8.1.6. TUE

The key achievements in the course of the FitOptiVis project are (i) integrally

considering parallelism and pipelining in the analytical SPADe framework in optimizing

the quality of control of image-based control loops, (ii) extending the SPADe

framework to take into account several practical aspects such as work-load variation,

inter-frame dependencies, and resource limitations making the flow usable in a wider

set of use cases (iii) making necessary adaptation for implementation/integration in

industrial platforms (iv) integration of the design flow in the existing toolchain IMACS.

These steps brought the developed method/technique one step forward for wider

applicability, usability and higher maturity in terms of TRL.

8.1.7. UNISS

Regarding UNISS contribution to WP3, the main achievements can be summarized as

follow: 1) definition of a runtime monitoring extension of MDC mature enough for

publication on an ACM transaction, 2) maintenance of the MDC repository and

publication of a journal paper describing all the MDC features with step-by-step

examples, 3) the design and the implementation of an SMT-based approach for

automated consistency checking and inconsistency finding of configuration

specifications, and 4) the design and the implementation of a tool for automated test

suite generation (ReqT).

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 104 of 148

© FitOptiVis Consortium public

8.1.8. HURJA

The main achievement for HURJA is the successful development of design-time

optimization and programming strategies of Hurja’s Salmi Care Platform for better

utilization of computing resources (CPU/GPU) of HoloLens 2 AR-glasses as well as

UC3 integration by utilizing FIVIS tool to centralize the gathering of rehabilitation data

in UC3.

8.1.9. UTU

The accelerators designed in WP3 were proven correct in both simulations and in

FPGA implementation. The performance of both arithmetic models was measured and

evaluated against software implementations running on the RISC-V core. The SW

reference designs included versions running plain RISC-V instruction set and also

improved version using the vector extensions, to ensure proper comparison. In all

cases the HW acceleration was faster and especially the reduced precision version

provided significant savings in terms of power usage.

8.1.10. NOKIA

Nokia demonstrated compression and real-time visualisation of dynamic point cloud

data at the International Broadcasting Convention 2019 and gained lots of interest

from the industry. International Broadcasting Convention, more commonly known by its

initials IBC, is an annual trade show and "the World's Most Influential Media,

Entertainment & Technology Show", aimed at broadcasters, content

creators/providers, equipment manufacturers, professional and technical associations,

and other participants in the general broadcasting, entertainment and technology

industry. Nokia’s paper on “real-time decoding and AR playback of the emerging

MPEG video-based point cloud compression standard” won the highly prestigious best

technical paper award for IBC 2019. In this paper the essential achievements of WP3

design and implementation research work has been presented in detail in the word

wide.

Also based on WP3 trial learnings the demonstration of the Augmented Reality

extension of the evaluation platform has been used in MPEG (ISO/IEC JTC1

SC29/WG11) standardization process, highlighted the importance of extended reality

in the future media codec standardization. These design and tool aspects have

become one of the core evaluation criteria for the upcoming standard for immersive

multimedia.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 105 of 148

© FitOptiVis Consortium public

Figure 68: Nokia Technology demonstrating point cloud compression technology at
IBC 2019.

Figure 69: Sebastian Schwarz (middle) and Mika Pesonen (right) from Nokia
Technology received the IBC 2019 Best Technical Paper Award for their work on point
cloud compression and visualisation.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 106 of 148

© FitOptiVis Consortium public

8.1.11. CUNI

The key achievement for CUNI in the FitOptiVis project related to WP3 has been the

FIVIS data monitoring platform, analysis and visualization platform. We developed

support for the QRML models and enabled engineers to visualize the online and offline

data measured on FitOptiVis components. The integration with QRML allows visually

relating the monitoring data with with particular components or their ports (as defined

in QRML). In the scope of WP3, this enables engineers to understand how their

component behaves at runtime and provides insights for design time optimization.

8.1.12. TASE

TASE’s main achievement in the course of WP3 in the whole project have been the

integration of RIE components into the UC10. It allowed an easy integration of

components developed by UCAN into the use case. Another key achievement has

been the use for the very first time of VITIS in the Space Industry for demonstration

purposes. This tool has allowed the adoption of easy design-time support techniques

for the development of video components.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 107 of 148

© FitOptiVis Consortium public

9. References

[4.1] F Herrera, J Medina, E Villar, Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach. Handbook of
Hardware/Software Codesign, 141-185. 2017.

[4.2] Wasif Afzal et al, The MegaM@Rt2 ECSEL Project: MegaModelling at
Runtime – Scalable Model-Based Framework for Continuous Development
and Runtime Validation of Complex Systems, DSD 2017.

[4.3] V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice,
“CC4CS: an Off-the-Shelf Unifying Statement-Level Performance Metric for
HW/SW Technologies”, In Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering (ICPE '18), ACM, New York, NY,
USA, 2018, pp. 119-122.

[4.4] L. Pomante. “HW/SW Co-Design of Dedicated Heterogeneous Parallel
Systems: an Extended Design Space Exploration Approach”. IET Computers
& Digital Techniques, Institution of Engineering and Technology, 2013, Vol.
7, Iss. 6, pp. 246–254.

[4.5] Sphinx Needs Requirements, Bug, Test Case suite.
https://sphinxcontrib-needs.readthedocs.io/en/latest/

[4.6] IBM Rational DOORS tool for requirements management.
https://www.ibm.com/us-en/marketplace/rational-doors

[4.7] Using JIRA for requirements management.
https://confluence.atlassian.com/jirakb/using-jira-for-requirements-
management-193300521.html

[4.8] Haugen, Ø., Wąsowski, A. and Czarnecki, K., 2013, August. CVL: common
variability language. In Proceedings of the 17th International Software
Product Line Conference (pp. 277-277). ACM.

[4.9] Haugen, Ø. and Øgård, O., 2014, September. BVR–better variability results.
In International Conference on System Analysis and Modeling (pp. 1-15).
Springer, Cham.

[4.10] https://www.tensorflow.org/ - Google TensorFlow Deep Learning framework.
[4.11] http://torch.ch/ - Torch Deep Learning framework.
[4.12] https://github.com/jcjohnson/densecap - DenseCap image recognition

description Deep Learning network.
[4.13] https://github.com/CMU-Perceptual-Computing-Lab/openpose

CMU OpenPose network for recognition of human pose and gestures.
[4.14] Sander Stuijk, Marc Geilen, Bart D. Theelen, Twan Basten: Scenario-aware

dataflow: Modeling, analysis and implementation of dynamic applications.
ICSAMOS 2011: 404-411

[4.15] IMACS is an open-source framework for performance evaluation of IMAge
in the Closed-loop System: www.es.ele.tue.nl/ecs/imacs

[4.16] Róbinson Medina Sánchez, Juan Valencia, Sander Stuijk, Dip Goswami,
Twan Basten: Designing a Controller with Image-based Pipelined Sensing
and Additive Uncertainties. TCPS 3(3): 33:1-33:26 (2019)

[4.18] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice and D. Sciuto, "Affinity-
driven system design exploration for heterogeneous multiprocessor SoC," in
IEEE Transactions on Computers, vol. 55, no. 5, pp. 508-519, May 2006.

[4.19] L. Pomante. “System-Level Design Space Exploration for Dedicated

Heterogeneous Multi-Processor Systems”. IEEE International Conference on

Application-specific Systems, Architectures and Processors, Santa Monica,

September 2011.

javascript:void(0)
javascript:void(0)
https://sphinxcontrib-needs.readthedocs.io/en/latest/
https://www.ibm.com/us-en/marketplace/rational-doors
https://confluence.atlassian.com/jirakb/using-jira-for-requirements-management-193300521.html
https://confluence.atlassian.com/jirakb/using-jira-for-requirements-management-193300521.html
https://www.tensorflow.org/
http://torch.ch/
https://github.com/jcjohnson/densecap
https://github.com/CMU-Perceptual-Computing-Lab/openpose

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 108 of 148

© FitOptiVis Consortium public

[4.20] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of Heterogeneous
Multiprocessor Dedicated Systems”. International Journal of Information
Systems, Journal ISSN Online: 2356-5896, Vol. 1, July 2014.

[4.21] Luigi Pomante, Vittoriano Muttillo, Marco Santic, Paolo Serri, SystemC-

based electronic system-level design space exploration environment for

dedicated heterogeneous multi-processor systems, Microprocessors and

Microsystems, Volume 72, 2020.

[4.22] Embedded System Design: A Unified Hardward/Software Introduction: A
Unified Hardware/Software. Frank Vahid, Tony D. Givargis, John Wiley &
Sons Inc, 2001. Chapter 7: Digital Camera.

[4.23] D. Ciambrone, V. Muttillo, L. Pomante, G. Valente. “HEPSIM: an ESL
HW/SW Co-Simulator/Analysis Tool for Heterogeneous Parallel Embedded
Systems”, In 6th EUROMICRO/IEEE Workshop on Embedded and Cyber-
Physical Systems (ECYPS’2018), 2018.

[4.24] V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice,

“CC4CS: an Off-the-Shelf Unifying Statement-Level Performance Metric for

HW/SW Technologies”, In Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering (ICPE '18), ACM, New York, NY,

USA, 2018, pp. 119-122.

[4.25] http://www.pomante.net/sito_gg/HEPSYCODE_DC_timing_energy.zip
[4.26] I. Ungurean and N. C. Gaitan, "Performance analysis of tasks

synchronization for real time operating systems," 2018 International
Conference on Development and Application Systems (DAS), 2018, pp. 63-
66, doi: 10.1109/DAAS.2018.8396072.

[4.27] K. Mikhaylov and J. Tervonen, "Evaluation of Power Efficiency for Digital
Serial Interfaces of Microcontrollers," 2012 5th International Conference on
New Technologies, Mobility and Security (NTMS), 2012, pp. 1-5.

[4.28] Sajid Mohamed, Dip Goswami, Vishak Nathan, Raghu Rajappa, Twan
Basten: A scenario- and platform-aware design flow for image-based control
systems, Microprocessor and Microsystems, 2020.

[4.29] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice and D. Sciuto, "Affinity-
driven system design exploration for heterogeneous multiprocessor SoC," in
IEEE Transactions on Computers, vol. 55, no. 5, pp. 508-519, May 2006.

[4.30] L. Pomante. “System-Level Design Space Exploration for Dedicated

Heterogeneous Multi-Processor Systems”. IEEE International Conference on

Application-specific Systems, Architectures and Processors, Santa Monica,

September 2011.

[4.31] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of Heterogeneous
Multiprocessor Dedicated Systems”. International Journal of Information
Systems, Journal ISSN Online: 2356-5896, Vol. 1, July 2014

[4.32] Luigi Pomante, Vittoriano Muttillo, Marco Santic, Paolo Serri, SystemC-
based electronic system-level design space exploration environment for
dedicated heterogeneous multi-processor systems, Microprocessors and
Microsystems, Volume 72, 2020.

[4.33] Embedded System Design: A Unified Hardward/Software Introduction: A

Unified Hardware/Software. Frank Vahid, Tony D. Givargis, John Wiley &

Sons Inc, 2001. Chapter 7: Digital Camera.

[4.34] D. Ciambrone, V. Muttillo, L. Pomante, G. Valente. “HEPSIM: an ESL
HW/SW Co-Simulator/Analysis Tool for Heterogeneous Parallel Embedded

http://www.pomante.net/sito_gg/HEPSYCODE_DC_timing_energy.zip

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 109 of 148

© FitOptiVis Consortium public

Systems”, In 6th EUROMICRO/IEEE Workshop on Embedded and Cyber-
Physical Systems (ECYPS’2018), 2018.

[4.35] V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice,

“CC4CS: an Off-the-Shelf Unifying Statement-Level Performance Metric for

HW/SW Technologies”, In Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering (ICPE '18), ACM, New York, NY,

USA, 2018, pp. 119-122.

[4.36] http://www.pomante.net/sito_gg/HEPSYCODE_DC_timing_energy.zip
[4.37] I. Ungurean and N. C. Gaitan, "Performance analysis of tasks

synchronization for real time operating systems," 2018 International
Conference on Development and Application Systems (DAS), 2018, pp. 63-
66, doi: 10.1109/DAAS.2018.8396072.

[4.38] K. Mikhaylov and J. Tervonen, "Evaluation of Power Efficiency for Digital
Serial Interfaces of Microcontrollers," 2012 5th International Conference on
New Technologies, Mobility and Security (NTMS), 2012, pp. 1-5.

[4.39] S. Mohamed, D. Goswami, S. De, T. Basten. Optimising Multiprocessor
Image-Based Control Through Pipelining and Parallelism. IEEE Access.
9:112332-112358, August 2021.

[5.1] Python package for training object detectors:
https://github.com/RomanJuranek/waldboost

[5.2] http://SoChub.fi
[6.1] Dollár, Piotr, et al. "Fast feature pyramids for object detection." IEEE trans-

actions on pattern analysis and machine intelligence 36.8 (2014): 1532-
1545.

[6.2] P. Musil, R. Juránek, M. Musil and P. Zemčík, "Cascaded Stripe Memory
Engines for Multi-Scale Object Detection in FPGA," in IEEE Transactions on
Circuits and Systems for Video Technology. doi:
10.1109/TCSVT.2018.2886476

[6.3] Nosko, S., Musil, M., Zemcik, P. et al.,” Color HDR video processing
architecture for smart camera”, Journal of Real-Time Image Proc (2018).
https://doi.org/10.1007/s11554-018-0810-z

[6.4] Durand, Frédo, and Julie Dorsey. "Interactive tone mapping." Rendering
Techniques 2000. Springer, Vienna, 2000. 219-230.

[6.5] Ozan Aydin, T.; Stefanoski, N.; Croci, S.; et al.: Temporally Coherent Local
Tone Mapping of HDR Video. vol. 33. 11 2014: pp. 1–13.

[6.6] PCC Test Model Category 2v0, ISO/IEC JTC1/SC29/WG11 N17248, Macau,
China, October 2017.

[6.7] S. Shwartz, P. Chou, I Shinharoy, D. Flynn Common test conditions for point
cloud compression. ISO/IEC JTC1/SC29/WG11 N17766, Ljubljana, SI, July
2018.

[6.8] The Multi-Dataflow Composer (MDC) tool: a dataflow-to-accelerator design
suite. Get MDC link https://github.com/mdc-suite/mdc
Documentation link https://github.com/mdc-suite/mdc/wiki
Video Lecture link https://youtu.be/_cyYFJCDR3U
Tutorials link https://github.com/mdc-suite/mdc/wiki/MDC-Tutorial

[6.9] Italian project using MDC http://www.cluster-prossimo.it/progetti-partner/
[6.10] EU project using MDC https://www.cerbero-h2020.eu/
[6.11] Joseph Redmon, Ali Farhadi.: YOLOv3: An Incremental Improvement.

Technical report. Cornel university. https://arxiv.org/abs/1804.02767
[6.12] V-PCC demo source code: https://github.com/nokiatech/vpcc
[6.13] RetinaFace project: https://arxiv.org/abs/1905.00641

https://github.com/RomanJuranek/waldboost
http://sochub.fi/
https://github.com/mdc-suite/mdc
https://github.com/mdc-suite/mdc/wiki
https://youtu.be/_cyYFJCDR3U
https://github.com/mdc-suite/mdc/wiki/MDC-Tutorial
http://www.cluster-prossimo.it/progetti-partner/
https://www.cerbero-h2020.eu/
https://arxiv.org/abs/1804.02767
https://github.com/nokiatech/vpcc

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 110 of 148

© FitOptiVis Consortium public

[6.14] RetinaFace benchmarks:
 http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html

[6.15] Xilinx Vivado High-Level Synthesis:
https://www.xilinx.com/support/documentation-navigation/design-
hubs/dh0012-vivado-high-level-synthesis-hub.html

[7.1] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time
Resources for the ZynqBerry Board TE0726-03M with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2

[7.2] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time
Resources for Zynq Ultrascale+ TE0820-03-4EV-1E with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2

[7.3] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: “Design Time and Run Time
Resources for Zynq Ultrascale+ TE0808-04-15EG-1EE with SDSoC 2018.2
Support”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2

[7.4] Lukas Kohout, Jiri Kadlec, Zdenek Pohl: “Video Input/Output IP Cores for
TE0820 SoM with TE0701 Carrier and and Avnet HDMI Input/Output FMC
Module”, Application note and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=te0820-hio-ho

[7.5] Trenz Electronic, "TE0726 TRM," [Online].
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-
DDR3L-and-SDSoC-Voucher?c=350

[7.6] Documents for Arrowhead Framework
Available: https://forge.soa4d.org/docman/?group_id=58

[7.7] Trenz Electronic, "MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2
GByte DDR4 SDRAM, 4x5cm", [Online].
https://shop.trenz-electronic.de/en/TE0820-03-04EV-1EA-MPSoC-Module-
with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm

[7.8] Trenz Electronic, "UltraSOM+ MPSoC Module with Zynq UltraScale+
XCZU15EG-1FFVC900E, 4 GB DDR4", [Online].
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-
MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-
DDR4?c=450

[7.9] Trenz Electronic, “”=UltraITX+ Baseboard for Trenz Electronic TE080X
UltraSOM+” [Online].
https://shop.trenz-electronic.de/en/TEBF0808-04-UltraITX-Baseboard-for-
Trenz-Electronic-TE080X-UltraSOM?c=261

[7.10] Trenz Electronic, “Carrier Board for Trenz Electronic 7 Series” [Online].
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-
Electronic-7-Series?c=261

[7.11] Lukas Kohout, Jiri Kadlec, Zdenek Pohl: Video Input/Output IP Cores for
Xilinx ZCU102 with Avnet HDMI Input/Output FMC Module , Application note
and Evaluation package [Online].
http://sp.utia.cz/index.php?ids=results&id=zcu102-hio

[7.12] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: FP01x8 Accelerator on TE0726-
03M
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-
te0726_fp01x8_short.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8

http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=te0820-hio-ho
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-SDSoC-Voucher?c=350
https://shop.trenz-electronic.de/en/27229-Bundle-ZynqBerry-512-MByte-DDR3L-and-SDSoC-Voucher?c=350
https://forge.soa4d.org/docman/?group_id=58
https://shop.trenz-electronic.de/en/TE0820-03-04EV-1EA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-04EV-1EA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4?c=450
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4?c=450
https://shop.trenz-electronic.de/en/TE0808-04-15EG-1EE-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4?c=450
https://shop.trenz-electronic.de/en/TEBF0808-04-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
http://sp.utia.cz/index.php?ids=results&id=zcu102-hio
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 111 of 148

© FitOptiVis Consortium public

[7.13] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: Two serial connected evaluation
versions of FP03x8 accelerators for TE0820-03-4EV-1E module on TE0701-
06 carrier board
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-
te0820_fp03x8x2s.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s

[7.14] Jiři Kadlec: Eight FP03x8 accelerators for TE0808-09-EG-ES1 module on
TEBF0808 carrier board.
AppNote-2017_4-te0808_fp03x8_4x2.pdf (utia.cz)
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=TS74fp03x8

[7.15] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: DTRiMC tool for TE0820-03-4EV-
1E module on TE0701-06 carrier board
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/Ap
pNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_
DTRiMC_zu4ev

[7.16] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout: DTRiMC tool for TE0820-02-3CG-
1E module on TE0701-06 carrier board
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/Ap
pNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_
DTRiMC_zu3cg

[7.17] Jiři Kadlec, Zdenek Pohl, Lukas Kohout: DTRiMC tool for TE0808-15-EG-
1EE module on TEBF0808 carrier board.
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/Ap
pNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_fp03x8_4x2_ila_
mulf64_DTRiMC

[7.18] Jiři Kadlec, Raissa Likhonina: DTRiMC tool for TE0726-03M board.
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/AppNote_2018
_2_te0726_fp01x8_ila_DTRiMC.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRi
MC

[7.19] Jiři Kadlec, Raissa Likhonina: DTRiMC tool for TE0808-09-EG-ES1 module
on TEBF0808 carrier board.
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/Ap
pNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_
mulf64_DTRiMC

[7.20] Jiři Kadlec, Zdeněk Pohl, Lukáš Kohout, Raissa Likhonina: Data Movers in
DTRiMC tool for TE0726-03M-07S board
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_2018_2_
te0726_07s_ila_DTRiMC.pdf
Evaluation package download page:
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_07s_ila_DTRiMC

http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s
http://sp.utia.cz/results/TS74fp03x8/AppNote-2017_4-te0808_fp03x8_4x2.pdf
http://sp.utia.cz/index.php?ids=results&id=TS74fp03x8
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/AppNote_2018_2_te0726_fp01x8_ila_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/AppNote_2018_2_te0726_fp01x8_ila_DTRiMC.pdf
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_2018_2_te0726_07s_ila_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_2018_2_te0726_07s_ila_DTRiMC.pdf
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_07s_ila_DTRiMC

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 112 of 148

© FitOptiVis Consortium public

10. Appendix: FitOptiVis Design Time Support
Tools

The tools developed in WP3 for design time support for new co-processors, hardware
accelerators and SoCs each serve their own specific design spaces and purposes.
This appendix summarizes all the tools developed in the project along with their key
features, inputs and outputs, as well as intended users.

Figure 70: FitOptiVis Design Support Tools.

In order to put the tools to a big picture, an interesting way to visualize them is to map
them by their two main characteristics: The granularity and their software/hardware-
orientation. When dealing with the accelerator or “SoC component” development tools,
the “flexibility” or “the programmability” of the accelerators the tool produces is also an
interesting aspect since it affects the reuse of the produced components. The overall

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 113 of 148

© FitOptiVis Consortium public

view is shown in Figure 70: Table 9 present status of usage of WP3 tools by project

partners in Y3 of the project.

The tools can be categorized according to their granularity: whether they are used
assisting the design of the whole system of a chip or a single component (an
accelerator or an “IP block”) inside the system. Further, some of the system design
tools are more software oriented, some focus on hardware, some on both.

For the accelerator design tools, an interesting characteristic is the flexibility of the
designed components in the scale of single function hardware accelerators to fully
compiler programmable co-processors that can support any C/C++/OpenCL C
program from high-level languages. E.g. MDC can generate CGRAs that support
multiple functions whereas the programmability of TCE-generated accelerators varies
from single function to fully compiler programmable.

Detailed descriptions of the tools listed in Table 9 are shown in the following

subsections 10.1 – 10.11.

Table 9: Use of WP3 tools and technologies by project partners.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 114 of 148

© FitOptiVis Consortium public

10.1. TTA-Based Co-design Environment (TCE)

Tool/Technology in a Nutshell

An open application-specific instruction-set toolset. It

can be used to design and program customized

processors based on the energy efficient Transport

Triggered Architecture (TTA). The toolset provides a

complete re-targetable co-design flow from high-level

language programs down to synthesizable processor

RTL (VHDL and Verilog back-ends supported) and

parallel program binaries. Processor customization

points include the register files, function units,

supported operations, and the interconnection

network.

Key Features –
FitOptiVis Starting Point

TCE has been developed and maintained in various

research projects since 2002.

Some of the key features at the start of FitOptiVis:

 Complete runtime re-targetable tool flow from

source code down to customized processor and

its target-specific binaries

 LLVM-based compiler at version LLVM 5.0

 Component library based RTL generation to

VHDL and Verilog

 Manual processor customization tool steps that

can be invoked from the command line to assist in

processor design

TRL level @ 2018 – 6/7 for the previous features, 2/3
for the new

Intended Users

 Designers of hardware accelerators who could

benefit from the flexibility of a software

programmed customized co-processor instead

 Developers of FPGA soft IP who benefit from the

easier way to describe the control using software

instead of FSMs

 Target at the end of FitOptiVis : Software

engineers with no hardware skills that need to

develop accelerators: co-processors generated

totally automated from software sources with

minimal target-specific pragmas etc.

Benefits for the User

 Software programmable, yet very energy efficient

accelerators

 No “vendor lock-in” of commercial tools since

output is targetable to and efficient on different

FPGAs and ASIC technologies

Tool/Technolo Inputs C (some C++ supported), OpenCL C

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 115 of 148

© FitOptiVis Consortium public

gy
Requirements

 HDL description of special function units

Outputs

 RTL (VHDL or Verilog) along with

integration/project files for different flows, one of

which is AlmaIF which is an IP wrapper

developed in ALMARVI project and further

developed in FitOptiVis

 Architecture description file that drives the

different target-specific tools

 Program binaries produced from the re-targetable

compiler

Target Any ASIC or FPGA technology

Dependencies

 HW synthesizer, i.e. Vivado or Synopsis tools.

 Multiple open source libraries available with

liberal licenses (LLVM, wxWidgets, Boost

libraries, editline)

Tool/Technolo
gy Block

Diagram(s)

TCE Design
Flow

Co-processors
in AlmaIF IP

interface

Example 1:
Custom DSP for

Binaural Speaker Localization
Custom DSP targeted to hearing aid devices with

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 116 of 148

© FitOptiVis Consortium public

support for advanced algorithms. 32 x int32 SIMD
(1024b) datapath. Synthesized on 28 nm FDSOI. 12
mW at 50 MHz, 1V. 2-split SIMD RF, 1 write port
each. Only 10.5% of total power thanks to software
bypassing and DRE. Published in 2016 IEEE
International Conference on Electronics, Circuits and
Systems (ICECS).

Example 2:
A 5.3 pJ/op Approximate TTA

VLIW Tailored for Machine
Learning

Minimum energy point 0.35 V near threshold
operating voltage for ultra low power execution.
Features for approximate computing. Detect errors in
computation, replace with safe values. Manufactured
on 28 nm FDSOI. About 320 µW (incl. memories) on
ML workloads. Published in Elsevier Microelectronics
Journal 61 (2017) 106–113.

Example 3:
LordCore: High Performance

Low Power Wide-SIMD Floating
Point SDR Multicore

32-element FP16
SIMD FUs. Quite
generic design,
only a few special

instructions.
OpenCL C

programmed.
Quad core: 28 nm
FDSOI power
analysis: 280 mW
at 900 MHz, 237
GFLOPS (846
GFLOPS / W).
Approx. 18%
datapath energy

savings through the TTA programming model. Three
orders of magnitude more power efficient than
GPU designs. Closer to fixed function HW power
efficiency scale. Published in IEEE TVLSI in 2019.

FitOptiVis Technological
Advances

Implemented technology additions:

 AEx: Fully automated co-processor

exploration. This allows using TCE as an HLS

engine which produces re-programmable IPs

as an output.

 Improved FPGA efficiency on the end results

for more beneficial soft core use.

 More extensive OpenCL support and ONNX

input for AI.

 Compiler improvements, enable programming

also CGRAs with TCE compiler.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 117 of 148

© FitOptiVis Consortium public

TRL level of the new planned features @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

Use

Virtual Reality Use Case:

 To produce compiler programmable co-

processors for FPGA acceleration of low

latency high resolution frame streaming

compression using texture compression

algorithms

 Foreseen Links

Multi-source Streaming:

 Programmable wide-SIMD FPGA soft cores

Autonomous Exploration:

 Custom wide-SIMD multicore DSP for

eventual ASIC implementation and custom

SoC integration

Open-Source http://openasip.org

Licence Type https://opensource.org/licenses/MIT

Commercial license N/A

http://openasip.org/
https://opensource.org/licenses/MIT

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 118 of 148

© FitOptiVis Consortium public

10.2. HW/SW CO-DEsign of HEterogeneous Parallel
dedicated SYstems (HEPSYCODE)

Name
HW/SW CO-DEsign of HEterogeneous Parallel dedicated
SYstems (HEPSYCODE)

Tool in a Nutshell

HEPSYCODE is a prototype toolchain that aims to
support the design of embedded applications. It is based
on a System-Level methodology for HW/SW Co-Design of
Heterogeneous Parallel Dedicated Systems.
HEPSYCODE uses Eclipse MDE technologies, a
customized SystemC simulator and an evolutionary
genetic algorithm for HW/SW partitioning, architecture
definition and mapping activities, all integrated into an
automatic framework that drives the designer from the
specification to the implementation.

Key Features –
FitOptiVis Starting Point

HEPSYCODE toolchain drives the designer from an
Electronic System-Level (ESL) behavioral model, with
related NF requirements, including real-time and mixed-
criticality ones, to the final HW/SW implementation,
considering specific HW technologies, scheduling policies
and Inter-Process Communication (IPC) mechanisms. It
has been adopted and extended within several European
project (i.e., EMC² - Embedded Multi-Core systems for
Mixed Criticality applications in dynamic and changeable
real-time environments, https://www.artemis-emc2.eu/;
MegaM@Rt2 - MegaModelling at Runtime,
https://megamart2-ecsel.eu/; AQUAS - Aggregated
Quality Assurance for Systems, https://aquas-project.eu/),
while it will be improved during FitOptiVis .
Features at the start of the project:

 HEPSYCODE defines a behavioral modeling

language, named HML (Hepsy Modeling Language),

based on the Communicating Sequential Processes

(CSP) Model of Computation (MoC) and SystemC. By

means of HML it is possible to define the System

Behaviour Specification (SBS), composed by the

System Behavior Model (SBM), a set of Non

Functional Constraints (NFC) and a set of Reference

Inputs (RI) to be used for simulation-based activities.

The SBM is a CSP-based executable model of the

system behavior that explicitly defines also a model of

communication among processes (PS) using

unidirectional point-to-point blocking channels (CH) for

data exchange.

 Designers select basic HW components available to

build the final HW platform based on the selected

Target Template Architecture (TTA). The final HW

platform is composed of several basic HW

components. These components are collected into a

Technologies Library (TL). TL can be considered as a

https://www.artemis-emc2.eu/
https://megamart2-ecsel.eu/
https://aquas-project.eu/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 119 of 148

© FitOptiVis Consortium public

generic “database” that provides the characterization

of the available processor technologies.

 HEPSYCODE evaluates and estimates some system

metrics that exploits as much information as possible

about the system by analysing the SBM, while

considering the available basic HW components (i.e.,

timing performance, cost, energy/power, area).

 Finally, HEPSYCODE reference co-design flow

reaches the DSE step. Starting mainly from

Application Model and Platform Model, it includes two

iterative activities: (1) “Search Methods”, that consider

HW/SW partitioning, architecture definition and

mapping using a genetic algorithm that allows to

explore the design space looking for feasible

architecture/mapping items suitable to satisfy imposed

constraints; (2) “Timing Co-Simulation”, that considers

suggested mapping/architecture items to actually

check for timing constraints satisfaction.

Intended Users

 Embedded systems engineers and designers

 Software developers

 Hardware architects

 EDA industries

Benefits for the User

 Reduce design productivity gap: focus on system-level

requirements and get suggestions from the framework

about possible implementations able to satisfy them.

 Reduce time to market: compare embedded systems

designers experience-based intuitions with the ones

proposed by the framework to avoid costly early-stage

errors.

 Find the best design metrics trade-off: define

designers’ custom library of basic HW components

and let the framework propose how to use them.

Tool
Requirements

Inputs

 High-level application models (HML - CSP)

 UML models represents system behaviour

 HW basic components in terms of processors,

memories and communication links – XML

 Input F/NF requirements and constraints

 Test-benches

 SystemC behaviour implementation

Outputs

 HW/SW final architecture:

o HW/SW CSP process partition on a

Heterogeneous multi-processor embedded

system composed by different HW

components that fulfil architectural constraints,

and the mapping between CSP processes and

HW components, able to satisfy input

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 120 of 148

© FitOptiVis Consortium public

constraints.

o Logical and physical links allocation and

mapping that fulfil input constraints

Target

 COTS (i.e., Common-Off-The-Shelf) General-Purpose

Processors (GPP, e.g., ARM, MIPS, MicroBlaze, Nios

II, etc.);

 COTS domain-oriented processors (e.g., DSP, Digital

Signal Processor; GPU, Graphical Processing Unit;

etc.);

 Custom domain-oriented processors (ASIP,

Application Specific Instruction-set Processor);

 COTS Single-Purpose Processors (SPP, e.g., AES

coder, JPEG coder, UART/SPI/I2C Controller, etc.);

 Custom Single-Purpose Processor (SPP, i.e., the

actual ad-hoc developed digital HW components)

Dependen
cies

 EMF technologies

 SystemC Library

 Embedded Linux Distributions (Petalinux, Gaisler

Buildroot)

 HW synthesizer, i.e. Vivado

 (optional) High Level Synthesis tool to generate the

HDL Components

Tool Block
Diagram(s)

HEPSYCO
DE Design

Flow

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 121 of 148

© FitOptiVis Consortium public

Results

Example:
FIR Variable TAP8 filter

(FIR8)
FIR Variable TAP16 filter

(FIR16)
Greatest Common Divisor

(GCD)

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 122 of 148

© FitOptiVis Consortium public

Fir-Fir-GCD is a synthetic application that takes in input
two values (triggered by Stimulus), makes two filtering
actions (FIR8 and FIR16) and then makes the greatest
common divisor (GCD) and displays the result.
Figure at the top shows the data flow model associated to
the application.
Figure at the center is the FIR-FIR-GCD HML model,
where the application is composed of eight processes and
twelve channels. Two more processes (Stimulus and
Display) and three more channels are then used to
describe and connect the testbench (represented by 2
input channel i1 and i72 and 1 output channel o1).
Finally, it is possible to realize the System Behavioral
Model (SBM), represented by the CSP shown in Figure at
the bottom, that provides a schematic view of FirFirGCD
system, composed of eight processes and twelve
channels. Two more processes and three more channels
are then used to describe and connect (input signals) the
test-bench (output signal).
Stimuli are numerical and random values that represent
the system input. This data are sent to two distinct blocks:
Fir8 and Fir16. These blocks represent two FIR filters
(Finite Impulse Response). The outputs of the filtering
operations are then transferred to a GCD block, which
evaluates the maximum common divisor of the two
values. The FIR blocks computation is divided into two
parts: one performs a certain number of multiplications
using coefficients (FIR evaluation), while the other part
performs shifting operations (FIR shifting).

FitOptiVis Technological
Advances

Expected additions:

 DSE able to consider power/energy constraints at

system level

 Monitoring support based on AIPHS in order to

validate the methodology

 Possible runtime adaptive design points based on

DSL specifications

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 123 of 148

© FitOptiVis Consortium public

Use within
FitOptiVis

Demonstrato
rs

Use Under Evaluation

Open-Source
Git repository: https://bitbucket.org/vittorianomuttillo87/tool-
hepsycode/src/master/
Official website: http://www.hepsycode.com

Licence Type GPL2

Commercial license N/A

https://bitbucket.org/vittorianomuttillo87/tool-hepsycode/src/master/
https://bitbucket.org/vittorianomuttillo87/tool-hepsycode/src/master/
http://www.hepsycode.com/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 124 of 148

© FitOptiVis Consortium public

10.3. Multi-Dataflow Composer (MDC) tool

Name Multi-Dataflow Composer (MDC) tool

Tool/Technology in a
Nutshell

MDC tool is an automated dataflow-to-hardware tool for
the generation and system integration of Coarse-Grained
Reconfigurable datapath/accelerators

Key Features –
FitOptiVis Starting Point

MDC tool is the primary outcome of a Sardinian Regional
project concluded in 2012 (http://sites.unica.it/rpct/). Along
the years, and throughout its adoption within the
CERBERO H2020 project (https://cerbero-h2020.eu), it
has been extended to its actual definition.
Features at the start of FitOptiVis :

 composition of different high-level abstract functional

specification to be implemented on a single accelerator

(implementable both on ASIC and FPGA), based on

coarse-grained reconfigurable technologies

 automatic resource minimization

 automatic reconfiguration management

TRL level @ 2018 – 3/4

Intended Users

 Software developers/embedded system engineers with

little to no knowledge of the hardware

 Hardware architects/embedded system engineers

requesting for additional features (e.g. power

optimization)

Benefits for the User

 design automation from high level models (dataflows,

i.e. xdf files) to hardware

 handling of complex and time consuming design

issues, such as topology exploration or power

optimization

 easy system integration within Xilinx platforms

Tool/Technolo
gy

Requirements

Inputs

 high level models (dataflow) of functionalities to be

implemented - XDF, Cal

 HDL description of the components (HDL Components

Library, HCL) corresponding to the dataflow actors,

manually or automatically generated - Verilog, VHDL

 hardware communication protocol between

components - XML

Outputs

 (baseline) HDL description corresponding to the multi-

functional model - Verilog, VHDL

 (optional) multi-functional model resulting from the

combination of the input applications models - XDF,

Cal

 (optional) Xilinx IP wrapper logic, scripts and drivers -

XML, Verilog, Tcl, C

http://sites.unica.it/rpct/
https://www.cerbero-h2020.eu/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 125 of 148

© FitOptiVis Consortium public

Target
 ASIC (baseline, profiling, and power management)

 FPGA (baseline, power management, accelerator

deployment)

Depende
ncies

 HW synthesizer, i.e. Vivado.

 (optional) High Level Synthesis tool to generate the

HDL Components Library, i.e. Vivado HLS or CAPH.

....

Tool/Technolo
gy Block

Diagram(s)

MDC
Baseline

Flow

MDC
Accelerat

or

Example:
FIR Variable TAP filter

Example: Given 2 input dataflows (2-tap and a 3-tap FIR
filters). Output: accelerator capable of switching among the
filters. Four switching elements are inserted automatically
to manage reconfiguration (configuration pattern size: 4
bits). APIs for filter delegation are provided.

FitOptiVis Technological
Advances

Expected additions:

 Multi-Level monitoring support based on AIPHS 2.0

 OpenCL APIs extension

TRL level @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

Use

Water Supply Use Case:

 build, manage and monitor application specific HW

accelerators

Open-Source
Git access to be provided soon, executable and tutorials
already available: http://sites.unica.it/rpct/download/

Licence Type https://opensource.org/licenses/BSD-3-Clause

Commercial license N/A

http://sites.unica.it/rpct/download/
https://opensource.org/licenses/BSD-3-Clause

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 126 of 148

© FitOptiVis Consortium public

10.4. The SAGE Verification Suite (SAGE-VS)

Name The SAGE Verification Suite (SAGE-VS)

Tool in a Nutshell
The SAGE Verification Suite (SAGE-VS) is a set of SW
tools aimed to accomplish different formal verification
tasks at design time.

Key Features –
FitOptiVis Starting Point

The SAGE-VS has been designed and developed (from
TRL 0/1) in the context of the CERBERO H2020 project
(https://cerbero-h2020.eu.
At the start of FitOptiVis , it was composed of the following
tools:

 ReqV: a tool for formal consistency checking of

requirements.

 Hydra: a domain-independent tool for Goal-

Oriented control of Cyber-Physical Systems.
TRL level @ 2018 – 3/4

Intended Users

 [ReqV] Requirements engineers without any prior

knowledge related to formal methods.

 [ReqV] Software developers without any

knowledge of formal methods and logical

languages.

 [ReqV] System engineers interested to formally

verify a model w.r.t. some properties.

 [Hydra] System engineer interested in generating

controllers from a system model.

 [ReqT] Software developers without any knowledge

of formal methods and logical languages.

Benefits for the User

 [ReqV] Automated consistency checking of a set of

requirements written in controlled natural language.

 [ReqV] No prior knowledge related to specification

languages is required to input the requirements

(GUI support).

 [ReqV] Human-readable feedback in the case of

inconsistent requirements.

 [ReqV] Domain and application independent.

 [Hydra] Domain independent through the use of

high level models of the system.

 [Hydra] No prior knowledge of the inner working of

planning algorithms.

 [ReqT] Automated testing of the implemented

system with respect to the requirements formalized

and verified in ReqV.

Tool
Requirements

[ReqV]

Inputs

Set of requirements in natural (controlled English)
language, formulated as Property Specification Patterns
for Linear Temporal Logic (LTL) extended to constrained
numerical signals

Outputs Consistency result (yes/no). In the case of inconsistency,

https://www.cerbero-h2020.eu/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 127 of 148

© FitOptiVis Consortium public

the tool returns the minimalset of requirements that causes
the inconsistency.

Tool
Requirements

[ReqT]

Input
A set of requirements formalized and verified with ReqV
and the system to test.

Output
A list of tests (i.e., sequences of inputs and outputs
assignments) executed on the system under test (SUT)
and their corresponding evaluation (passed/failed).

Tool
Requirements

[Hydra]

Inputs

Requires a hybrid model of the system:

 definition of the state of a system

 definitions of the system’s capabilities

o available discrete actions and their effect on

the system and its environment

o operating limits of the controller

 safety limits

Specification of a target problem: initial state, goal state of
the system and invariants that should hold.

Outputs

A yes/no answer on whether the system can be used to
achieve the tested use case.
A yes answer comes with a correct by design plan to
achieve the given objective. The plan accounts for both the
discrete and continuous limits of the system so that the
plan is valid and guaranteed to be executable and thus
constitute a proof that the system has the targeted
capability.

Examples

[ReqV] A requirement engineer has to start the
requirements definition of a new system. She opens the
browser, logs in into ReqV and creates a new project. In
the project, she starts adding requirements one by one,
with the support of the GUI. When she has finished, she
presses the verification button, and finds out that the
specification is inconsistent. Therefore, she runs the
inconsistency explanation task, and after few minutes
ReqV returns a list of few requirements that are conflicting.
The engineer inspects those requirements and fixes the
problem. She runs again the verification button and this
time ReqV reports that everything is ok. One month later, a
client asks for the introduction of a new feature. The
requirements engineer enters in ReqV again and inserts
the new requirements. Running the verification task, she
finds out that one of such requirements conflicts with an
old one. She returns to the client and discuss the issue.
They decide to modify the old requirements so to be
compliant with the new ones. The requirements engineer
updates the requirements in ReqV accordingly, and this
time the verification process returns a positive answer.

[Hydra]: Let us consider a robotic manipulator. The mobile
manipulator must be operated in a constrained

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 128 of 148

© FitOptiVis Consortium public

environment in order to move objects into target locations.
The system engineer has a specification of the controller
which include the discrete actions (e.g. release object,
scan environment) and limits of the system and of its
controller (e.g. joint limits, maximal acceleration).Based on
this model, the system engineer can test whether the
currently designed system is capable of fulfilling a
particular use case where Hydra will autonomously explore
the set of possible high-level and low-level controls to
achieve the target task. This would allow verifying that the
system design is adapted to the targeted use case and
catch modeling errors early in the design process. Once
the de-sign process is finished, Hydra can also be used as
a goal-oriented controller to exploit the system.

[ReqT]: After the system has been implemented, the
software engineer wants to check if the implemented
system is compliant with the requirements defined at the
beginning of the design process. Firstly, the user exports
the formalized and verified requirements from ReqV and
save them in a text file. Secondly, the user writes a small
wrapper to let ReqT interact with the system (also called
System Under Test, or SUT for short). Therefore, the user
starts ReqT on her/his desktop and a simple GUI appears,
in which the user can select the requirement file, the SUT
wrapper and set few more options. Once the user finished,
she/he presses the run button and ReqT starts to generate
and executed some tests on the SUT. At the end of the
process a report appears, showing the executed tests and
their status. The user discovered that few tests fail, so
she/he double clicks on them to see the details of the
execution. Hence, the user returns to the system source
code and checks the faulty behaviours. She/he finds a bug
and fixes it, then, she/he repeats the test execution. This
time all tests are successful, so the users can finally
deploy the system.

FitOptiVis Technological
Advances

Expected additions:

 ReqV: extend the expressivity of input PSPs to

allow the translation in a logic language for hybrid

systems and improve the usability of the GUI.

TRL level @ 2021 – 4/5

Use within
FitOptiVis

Demonstrato
rs

 Use

Water Supply Use Case:

 build, manage and monitor application specific HW

accelerators

Open-Source
https://gitlab.sagelab.it/sage/ReqV
https://gitlab.sagelab.it/sage/ReqT

Licence Type LGPL

Commercial license N/A

https://gitlab.sagelab.it/sage/ReqV
https://gitlab.sagelab.it/sage/ReqT

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 129 of 148

© FitOptiVis Consortium public

10.5. RIE – Re-configurable Implementation of Embedded
systems

Name
RIE – Re-configurable Implementation of Embedded
systems

Tool in a Nutshell

Methodology and C++ library for component-based
implementation of embedded systems. The library classes
are used to implement components and monitors. RIE
provides support for runtime re-configuration of software
components. In the RIE methodology, a component could
have several implementations that are selected at runtime.
Additionally, the library also simplifies component
deployment in the cloud and edge.

Key Features –
FitOptiVis Starting Point

The library development has been started in FitOptiVis .
Therefore it is a complete FitOptiVis result.

Intended Users
 Component-based embedded system developers that

require software component reconfiguration at runtime.

Benefits for the User

 Simplify and standardize component-based

development.

 Integrate software reconfiguration

 Provide a common framework to access different

monitoring strategies. By default, the library supports

lttng monitors on linux but it could be adapted to other

methodologies. Currently, we are working with UAQ to

support hardware monitors. We plan to support CUNI

monitors.

Tool
Requirements

Inputs A system description that uses RIE-based component.

Outputs
 A system implementation that can be reconfigurable

and traced at runtime.

Target Networked embedded systems.

Depende
ncies

 C++11 compiler. For edge computing, protocol buffer

and grpc. For linux event monitoring, lttng.

....

Tool Block
Diagram(s)

MDC
Baseline

Flow

MDC
Accelerat

or

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 130 of 148

© FitOptiVis Consortium public

Example:
FIR Variable TAP filter

FitOptiVis Technological
Advances

 Simplify component-based development

 Support data-flow and service-oriented

architectures.

 Provide software re-configuration capability

 Support different types of monitor implementation.

Use within
FitOptiVis

Demonstrato
rs

Already
Planned

Use

 RIE is used to implement the autonomous

exploration use case.

Potential
Foreseen

Links
TBD. Available 1Q-2020

Open-Source Yes

Licence Type GPL after publication

Commercial license Yes

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 131 of 148

© FitOptiVis Consortium public

10.6. S3D – Single Source Design Framework

Name S3D – Single Source Design Framework

Tool/Technology in a Nutshell
UML/MARTE based framework that provides model
capture, performance analysis and SW code
synthesis.

Key Features –
FitOptiVis Starting Point

The S3D framework is mainly oriented to service
architecture (SOA). The framework has been extended
in FitOptiVis to efficiently support video/image
processing application with software-reconfiguration
capabilities.

Intended Users
 HW/SW system development

 Embedded system application designers

Benefits for the User

 Use an UML standard for software development

 Performance analysis integration (VIPPE)

 Automatic software synthesis (essyn) that support

different MoCs (model of computations).

Tool
Requirements

Inputs UML/MARTE models

Outputs

 Performance estimation of different

implementations

 C++ implementation templates

Target Edge and cloud computing

Dependencies Eclipse, Papyrus, llvm.

....

Tool Block
Diagram(s)

MDC Baseline
Flow

MDC
Accelerator

Example:
FIR Variable TAP filter

FitOptiVis Technological
Advances

Example:
 Performance estimation

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 132 of 148

© FitOptiVis Consortium public

Use within
FitOptiVis

Demonstrato
rs

 Use Use in Autonomous Exploration use case

Open-Source Yes. Visit http://umlmarte.teisa.unican.es/

Licence Type Free for research

Commercial license Contact villar@teisa.unican.es

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 133 of 148

© FitOptiVis Consortium public

10.7. Design Time Resource Configurator (DTRC)
Technology

Name Design Time Resource Configurator (DTRC) technology

Technology in a Nutshell

DTRC technology is design-time resource for configuration and
system integration of FitOptiVis design time resources for Zynq
and Zynq Ultrascale+ systems with Debian OS and HW
accelerators which can be generated from C/C++ by Xilinx
SDSoC system level compiler.

Key Features –
FitOptiVis Starting Point

DRTC technology extends the board-support bring-up scripts
provided by company Trenz Electronic
https://www.trenz-electronic.de/
for Zynq and Zynq Ultrascale+. See:
http://sp.utia.cz/index.php?ids=projects/almarvi
ECSEL JU project ALMARVI. Features at the start of FitOptiVis :

 Support for Xilinx SDSoC 2015.4 standalone Zynq modules

without OS with Python 1300 Video sensor or Full HD HDMI

Video I/O. TRL level @ 2017 – 4/5.

Intended Users

 Software developers/embedded system engineers with
little to no knowledge of the hardware

 Hardware architects/embedded system engineers
requesting configuration of the Debian OS and support for
HW accelerator design flow which can be generated from
C/C++ by Xilinx SDSoC system level compiler.

Benefits for the User
 design automation of configuration of Debian OS with

SDSoC support

 integration of Full HD video input and Video output

Tool/Technolo
gy

Requirements

Inputs

 HW module description files from Trenz Electronic
https://www.trenz-electronic.de/

 Petalinux configuration files

 SW C/C++ functions and main programs for the SDSoC
compiler.

Outputs

 Board support package describing HW for Petalinux OS
kernel, Debian OS file system and for the SDSoC compiler.

 Configured and compiled Xilinx Petalinux kernel with
installed and compiled Xilinx SDSoC support drivers for the
DMA and Scatter Gather (SG) DMA data transfers to/from
HW accelerators.

 Configured and compiled Debian OS file system in form of
SD card image with two partitions:

 FAT32 Win7/Win10 compatible partition for file transport

 Configured and populated Debian file system partition

 Configured support for X11 Desk top GUI on separate Full
HD Display

 Configured SW projects for the SDSoC compiler. Project can
be executed with actual video I/O in SW on ARM. Projects
can be compiled by SDSoC compiler and then executed in

https://www.trenz-electronic.de/
http://sp.utia.cz/index.php?ids=projects/almarvi
https://www.trenz-electronic.de/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 134 of 148

© FitOptiVis Consortium public

HW with ARM SW support and video I/O.

 Support for Arrowhead framework 4.0 compatible C/C++
SW clients.

Targets

 Module with Xilinx Zynq 7010 in Raspberry Pi Form Faktor
ZynqBerry PCB TE0726-03M
https://shop.trenz-electronic.de/en/TE0726-03M-
ZynqBerry-Module-with-Xilinx-Zynq-7010-in-
Raspberry-Pi-Form-Faktor?c=350

 MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2
GByte DDR4 SDRAM
https://shop.trenz-electronic.de/en/TE0820-03-
4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-
ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
Carrier Board for Trenz Electronic 7 Series
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-
Board-for-Trenz-Electronic-7-Series?c=261

 UltraSOM+ MPSoC Module with Zynq UltraScale+
XCZU15EG-1FFVC900E, 4 GB DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-
A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-
XCZU15EG-1FFVC900E-4-GB-DDR4

 UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+
https://shop.trenz-electronic.de/en/TEBF0808-04A-
UltraITX-Baseboard-for-Trenz-Electronic-TE080X-
UltraSOM?c=261

Depende
ncies

 Xilinx Vivado HLS High Level Synthesis tool version 2018.2

 Xilinx SDSoC system level compiler version 2018.2

 Xilinx Petalinux version 2018.2

Open
source

 Debian “Stretch” repositories for 32bit ARM A9 and 64 bit
ARM A53

 Ubuntu 16.04 LTE is needed for the automated
configuration of Xilinx Petalinux kernel and for generation
of Debian file system.

Tool/Technolo
gy

DTRC
Baseline

Flow

 On Win7/Win10/Ubuntu 16.04: Compile HW and export hdf
file.

 On Ubuntu 16.04: Configure and compile Petalinux and
Debian.

 On Win7/Win10/Ubuntu 16.04: Compile in SDSoC 2018.2
HW accelerators from C/C++ functions to HW. Run on
supported boards.

DTRC
Packages

and
Applicati

on
notes

[7.1] Design Time and Run Time Resources for the
ZynqBerry Board TE0726-03M with SDSoC 2018.2
Support

[7.2] Design Time and Run Time Resources for Zynq
Ultrascale+ TE0820-03-4EV-1E with SDSoC 2018.2
Support

[7.3] Design Time and Run Time Resources for Zynq

https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0726-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0820-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 135 of 148

© FitOptiVis Consortium public

Ultrascale+ TE0808-04-15EG-1EE with SDSoC 2018.2
Support

TRL level @ 8.2019 – 5/6

FitOptiVis Technological
Advances

Expected additions:
Support for runtime reconfiguration of complete programmable
logic part of the device with Quick-time GUI
TRL level @ 2019 – 3/4, @ 2020 – 4/5, @ 2021 – 5/6

Use within FitOptiVis
DRTC technology and boards are evaluated by 8 FitOptiVis
partners (6x ZynqBerry board, 2x Zynq Ultrascale+ board):
UNIVAQ, UNICA,VISIDON, CUNI, TUT, UWB, UTU and UTIA

Use within
FitOptiVis

Demonstrato
rs

Links
Robotic Use Case:
Build HW accelerators on the ZynqBerry board

Access http://sp.utia.cz/index.php?ids=projects/fitoptivis

Licence Type

Open Source license with these exceptions: (1) UTIA video I/O
drivers provided as pre-compiled libraries. (2) Vivado HLS and
SDSoC 2018.2 require commercial license from Xilinx:
https://www.xilinx.com/ .

http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=results&id=FitOptiVis-te0808-SDSoC-2018_2
http://sp.utia.cz/index.php?ids=projects/fitoptivis
https://www.xilinx.com/

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 136 of 148

© FitOptiVis Consortium public

10.8. Design Time Resource Integrator of Model Composer
IPs (DTRiMC) Technology.

Name
Design Time Resource Integrator of Model Composer IPs (DTRiMC)
Technology

Technology in a
Nutshell

DTRiMC technology [7.12], [7.13] serves for FitOptiVis system integration
of IPs designed, modelled and validated in Xilinx Model Composer (MC)
and Xilinx System Generator for DSP (SG for DSP).
DTRiMC technology supports integration of MC IPs into Zynq (32bit) and
Zynq Ultrascale+ (64bit) systems by support of automated generation of
(1) HW data movers IPs; (2) SW API needed for the 32bit DMA or SG DMA
or Zero Copy based data movers.
 DTRiMC tool automates generation of needed HW support for
communication with the user defined C/C++ SW applications. SW
applications run in user space of Debian OS on Arm A9 (Zynq) or on Arm
A53 (Zynq Ultrascale+).
DTRiMC technology targets platforms supporting the Xilinx SDSoC 2018.2
compiler for Zynq and Zynq Ultrascale+. These platforms are generated by
the FitOptiVis Design Time Resource Configurator (DTRC) technology.

Key Features –
FitOptiVis Starting

Point

DTRiMC technology is extending the Board support bring up scripts
provided by company Trenz Electronic https://www.trenz-electronic.de/
for Zynq and Zynq Ultrascale+. See
http://sp.utia.cz/index.php?ids=projects/almarvi
ECSEL JU project ALMARVI. Features at the start of FitOptiVis:

 Support for Xilinx SDSoC 2015.4 standalone Zynq modules without OS

with Python 1300 Video sensor or Full HD HDMI Video I/O. TRL level @

2017 – 4/5.

Intended Users

 Software developers/embedded system engineers with little to no

knowledge of the hardware.

 Hardware architects/embedded system engineers requesting DMA

connections of Debian application with HW accelerator IP. The

integrated HW IP is imported from MC via SG for DSP.

Benefits for the
User

 DTRiMC technology supports integration of HW IPs from Xilinx MC and

SG for DSP models by automation of DMA connection to Debian app.

 DTRiMC technology supports integration of MC HW IPs with Full HD

video input/output for Zynq and Zynq Ultrascale+ systems with Debian

OS.

Key features of the supported Xilinx Model Composer framework:

https://www.trenz-electronic.de/
http://sp.utia.cz/index.php?ids=projects/almarvi

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 137 of 148

© FitOptiVis Consortium public

MODEL COMPOSER supports fast modelling of blocks written in C

MODEL COMPOSER supports models with Video data from file system

MODEL COMPOSER supports Computer Vision and Math blocks

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 138 of 148

© FitOptiVis Consortium public

MODEL COMPOSER supports generation of IP cores for:

 Xilinx VIVADO (in form of packed RTL HDL IP cores)

 Xilinx SG for DSP (in form of RTL HDL subsystems)

 Xilinx Vivado HLS compiler (in form of synthesizable C++ code)
Model Composer (MC) and System Generator for DSP (SG for DSP) are
commercial tools provided by Xilinx.
https://www.xilinx.com/video/hardware/model-composer-product-
overview.html
https://www.xilinx.com/products/design-
tools/vivado/integration/sysgen.html
MC supports model based design, simulation and HW IP generation. It
targets Xilinx FPGAs/SoCs via generated IP cores for Vivado flow.
MC targets the Vivado design flow directly (in form of Vivado HLS SW) or
indirectly via the integration/simulation in the SG for DSP. MC and SG for
DSP work both with support from Matlab and Simulink. SG for DSP
supports finite state machines and logic blocks defined as user defined
special Matlab m-code functions. These m-code functions are compiled via
conversion to C source code into binary format to accelerate simulation.
Complete system composed from these blocks can be compiled to HDL
RTL. SG for DSP targets Xilinx FPGAs/SoCs via generated packed IP cores for
Vivado design flow.
SG for DSP supports bit-exact and cycle accurate modelling. It is usually
an order of magnitude faster than the bit-exact and cycle-accurate
simulation of hdl RTL code in tools like Questa or the Vivado hdl simulator).
SG for DSP supports inclusion, bit-exact and cycle accurate simulation and
RTL IP generation from user-defined SW blocks coded in Vivado HLS C++.
SG for DSP supports inclusion, bit-exact and cycle accurate simulation and
RTL IP generation for RTL hdl subsystems exported from Xilinx Model
Composer to Xilinx SG for DSP. SG for DSP serves in this case as a common,
bit-exact and cycle accurate simulation environment.
MC supports only bit-exact modelling. MC blocks can process large
objects like matrices or video frames and process them by algorithms
defined in C SW code. MC simulation can be an order of magnitude faster
than the cycle accurate simulation in the SG for DSP. Acceleration is
significant, especially for modelling and design of video processing IPs.
MC supports video I/O from/to files, visualisation of video with relatively
high FPS.

https://www.xilinx.com/video/hardware/model-composer-product-overview.html
https://www.xilinx.com/video/hardware/model-composer-product-overview.html

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 139 of 148

© FitOptiVis Consortium public

Tool/Tech
nology

Requirem
ents

Inputs

 User defined HW IP designed and tested in MC and exported via the SG

for DSP into HW IP core for Vivado 2018.2. The HW IP must have:

o One 32bit AXI-stream input.

o One 32bit AXI-stream output.

o One 32bit AXI-lite interface to 32bit control registers.

 HW module description files (version 2018.2) from Trenz Electronic.

Configuration files for Xilinx Petalinux (version 2018.2)

 User defined application SW C/C++ for the Debian OS user space.

Input to the DTRiMC tool: Exported MC IP block in base Zynq system.

Output
s

 Board support package describing HW for Petalinux OS 2018.2 kernel,

Debian OS file system and for the SDSoC 2018.2 compiler with

integrated user defined IP designed and tested in Xilinx Model

Composer.

 Configured and compiled Xilinx Petalinux kernel with installed and

compiled Xilinx SDSoC support drivers for the DMA and Scatter Gather

(SG) DMA data transfers to/from HW accelerators.

 Configured and compiled Debian OS file system in form of SD card

image with two partitions:

 FAT32 Win7/Win10 compatible partition for file transport

 Configured and populated Debian file system partition

 Configured support for X11 Desk top GUI on separate Full HD Display

 Configured SW projects for the SDSoC compiler. Project can be

executed with actual video I/O in SW on ARM. Projects can be

compiled by SDSoC compiler and then executed in HW with ARM SW

support and video I/O as user defined app. Code for Debian.

 Support for Arrowhead framework 4.0 compatible C/C++ SW clients for

authentication and management of Ethernet access rights.

 Support for FiVis compatible C++ clients for Ethernet data transfer and

visualisation via FiVis server. FiVis server generates graphical

visualisation pages accessible from standard www browsers.

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 140 of 148

© FitOptiVis Consortium public

Output from DTRiMC: MC IP block integrated with DMA I/O to Debian

Targets

 Module with Xilinx Zynq 7010 in Raspberry Pi Form Faktor ZynqBerry

PCB TE0726-03M

https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-

Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-

Faktor?c=350

 MPSoC Module with Xilinx Zynq UltraScale+ ZU4EV-1E, 2 GByte DDR4

SDRAM

https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-

MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-

DDR4-SDRAM-4-x-5-cm
Carrier Board for Trenz Electronic 7 Series

https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-

Trenz-Electronic-7-Series?c=261

 UltraSOM+ MPSoC Module with Zynq UltraScale+ XCZU15EG-

1FFVC900E, 4 GB DDR4

https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-

UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-

1FFVC900E-4-GB-DDR4
UltraITX+ Baseboard for Trenz Electronic TE080X UltraSOM+
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-
Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261

Depend
en-cies
comme

rcial
tools

 Matlab, Version 9.3 (R2017b) MathWorks (commercial tool)

 Simulink Version 9.0 (R2017b) MathWorks (commercial tool)

 Fixed-Point Designer toolbox Version 6.0 (R2017b) MathWorks

(commercial tool)

 System Generator for DSP toolbox 2018.2 Xilinx (commercial tool)

 SG for DSP 2018.2 Xilinx (commercial tool)

 Vivado HLS High Level Synthesis tool 2018.2 Xilinx (commercial tool)

 SDSoC system level compiler 2018.2 Xilinx (commercial tool)

Depen-
dencies

Open
source
tools

 FitOptiVis Design Time Resource Configurator (DTRC) tool (UTIA)

 Petalinux 2018.2 (Xilinx)

 Debian “Stretch” repositories for 32bit ARM A9 and 64 bit ARM A53

 Ubuntu 16.04 LTE is needed for the automated configuration of

Petalinux kernel and for generation of the Debian file-system.

https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0726-03M-ZynqBerry-Module-with-Xilinx-Zynq-7010-in-Raspberry-Pi-Form-Faktor?c=350
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0820-03-4DE21FA-MPSoC-Module-with-Xilinx-Zynq-UltraScale-ZU4EV-1E-2-GByte-DDR4-SDRAM-4-x-5-cm
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0701-06-Carrier-Board-for-Trenz-Electronic-7-Series?c=261
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TE0808-04-BBE21-A-UltraSOM-MPSoC-Module-with-Zynq-UltraScale-XCZU15EG-1FFVC900E-4-GB-DDR4
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261
https://shop.trenz-electronic.de/en/TEBF0808-04A-UltraITX-Baseboard-for-Trenz-Electronic-TE080X-UltraSOM?c=261

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 141 of 148

© FitOptiVis Consortium public

 FitOptiVis FiVis tool for remote data visualisation (optional)

 ArrowHead Framework 4.0 tool for access management (optional)

Tool/Tech
nology

DTRiMC
extends
 DRTC

techno-
logy

DTRiMC app. notes and evaluation packages [7.12], [7.13] released in Y2
have extended FitOptiVis DTRC [7.1], [7.2], [7.3].
DTRiMC app. notes and evaluation packages [7.14], [7.15], [7.16], [7.17]
[7.18], [7.19], [7.20] released in Y3 have extend FitOptiVis DRTC [7.12],
[7.13].

Base
DTRC

Packag
es

[7.12] http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8

[7.13] http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s

[7.14] http://sp.utia.cz/index.php?ids=results&id=TS74fp03x8

[7.15] http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_
fp03x8_1x2_ila_DTRiMC_zu4ev

[7.16] http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_
fp03x8_1x2_ila_DTRiMC_zu3cg

[7.17] http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_
fp03x8_4x2_ila_mulf64_DTRiMC

[7.18] http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_
fp01x8_ila_DTRiMC

[7.19] http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_
fp03x8_4x2_ila_mulf64_DTRiMC

[7.20] http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_
07s_ila_DTRiMC

FitOptiVis
Technological

Advances

DTRiMC technology supports export of Model Composer IP (as SG for DSP)
IP to Zynq and Zynq Ultrascale+ SoCs .
DTRiMC technology generates DMA HW/SW data movers for of Model
Composer IPs.

Use within
FitOptiVis

DTRiMC technology is released for public access [7.12]- [7.20] for Zynq &
Zynq Ultrascale+. It is used by UTIA.

Use
within

FitOptiVis
Demonstr

ators

Links
App.

Notes

[7.12] FP01x8 Accelerator on TE0726-03M
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-
te0726_fp01x8_short.pdf

[7.13] Two serial connected evaluation versions of FP03x8
accelerators for TE0820-03-4EV-1E module on TE0701-06
carrier board
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-
te0820_fp03x8x2s.pdf

[7.14] Eight FP03x8 accelerators for TE0808-09-EG-ES1 module on

http://sp.utia.cz/index.php?ids=results&id=te0726_fp01x8
http://sp.utia.cz/index.php?ids=results&id=te0820_fp03x8x2s
http://sp.utia.cz/index.php?ids=results&id=TS74fp03x8
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_fp01x8_ila_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_07s_ila_DTRiMC
http://sp.utia.cz/index.php?ids=results&id=2018_2_te0726_07s_ila_DTRiMC
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/results/te0726_fp01x8/AppNote-FitOptiVis-te0726_fp01x8_short.pdf
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf
http://sp.utia.cz/results/te0820_fp03x8x2s/AppNote-FitOptiVis-te0820_fp03x8x2s.pdf

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 142 of 148

© FitOptiVis Consortium public

TEBF0808 carrier board.
AppNote-2017_4-te0808_fp03x8_4x2.pdf (utia.cz)

[7.15] DTRiMC tool for TE0820-03-4EV-1E module on TE0701-06
carrier board
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_
zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_
zu4ev.pdf

[7.16] DTRiMC tool for TE0820-02-3CG-1E module on TE0701-06
carrier board
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_
zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_
zu3cg.pdf

[7.17] DTRiMC tool for TE0808-15-EG-1EE module on TEBF0808
carrier board.
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_
DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_
DTRiMC.pdf

[7.18] DTRiMC tool for TE0726-03M board.
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/
AppNote_2018_2_te0726_fp01x8_ila_DTRiMC.pdf

[7.19] DTRiMC tool for TE0808-09-EG-ES1 module on
TEBF0808 carrier board.
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_
DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_
DTRiMC.pdf

[7.20] Data Movers in DTRiMC tool for TE0726-03M-07S board
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_
2018_2_te0726_07s_ila_DTRiMC.pdf

Access Evaluation SD cards for ZynqBerry TE0726, Ultrascale+ TE0820.

Licence Type

Open source license with these exceptions:
(1) UTIA Video I/O interfaces for boards supported by the
 FitOptiVis are provided only as pre-compiled Arm A9 and
 Arm A53 SW libraries.
(2) Vivado, SDSoC, MC , SG for DSP 2018.2 require licensing
 from Xilinx.
(3) Matlab, Simulink, Fixed-Point Designer require MathWorks
 license.
(4) Evaluation versions of integrated HW IPs have evaluation
 license enabling evaluation, but limiting permanent use of
 these IPs in the final applications.
(5) Release version of integrated HW IPs requires NDA with
 UTIA and commercial license from UTIA.

http://sp.utia.cz/results/TS74fp03x8/AppNote-2017_4-te0808_fp03x8_4x2.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu4ev.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
http://sp.utia.cz/results/2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg/AppNote_2018_2_te0820_fp03x8_1x2_ila_DTRiMC_zu3cg.pdf
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2018_2_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/AppNote_2018_2_te0726_fp01x8_ila_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_fp01x8_ila_DTRiMC/AppNote_2018_2_te0726_fp01x8_ila_DTRiMC.pdf
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC/AppNote_2017_4_te0808_fp03x8_4x2_ila_mulf64_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_2018_2_te0726_07s_ila_DTRiMC.pdf
http://sp.utia.cz/results/2018_2_te0726_07s_ila_DTRiMC/AppNote_2018_2_te0726_07s_ila_DTRiMC.pdf

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 143 of 148

© FitOptiVis Consortium public

10.9. IMACS (IMAge in the Closed-loop System)

Name IMACS (image in the closed-loop system)

Tool/Technology in a
Nutshell

A framework to design, analyse, validate and generate
code for systems where image-processing or other data-
intensive processing is in a closed-loop. It allows for
simulation of physics of various dynamic systems including
camera and other sensors, Matlab front-end for designing
feedback/supervisory control and processing, code
generation support for multi-core platforms, and (efficient)
implementation on platforms like CompSOC, MPSoC and
NVIDIA AGX Xavier.

Key Features –
FitOptiVis Starting Point

The basic infrastructure is developed under the Marie
Curie European project oCPS and ECSEL project I-MECH.
It has been further developed in FitOptiVis with specific
focus on the FitOptiVis objective.

Intended Users Embedded and cyber-physical systems developers

Benefits for the User

 Applications can be developed, tested, validated and

debugged in hardware-in-the-loop and software-in-the-

loop settings;

 Performance evaluation and prediction of image-based

systems;

 Automatic code generation (for CompSOC).

Tool
Requirements

Inputs

 Details of the image-in-the-loop applications; e.g.,

system model, scenarios of interest and so on;

 Camera and other sensor specifications;

 Platform details; e.g, processors, memory;

 Performance and quality requirements.

Outputs

 Controller design satisfying quality and performance

requirements;

 Generated code.

Target CompSOC and NVIDIA Xavier

Depende
ncies

Matlab and Simulink with embedded coder, physics
simulation engine (e.g., V-REP, Webots, LGSVL),
OpenCV

Tool/Technology Block
Diagram

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 144 of 148

© FitOptiVis Consortium public

FitOptiVis Technological
Advances

Implementation of FitOptiVis resource management
architecture developed under WP4. Moreover, it will cover
the quality management aspects where design-time
optimization techniques will used/validated along with
runtime reconfiguration/decisions.

Use within
FitOptiVis

Demonstrato
rs

Use
The results of design-time optimization in WP3 will be
partially implemented;

Links Reconfiguration solution of WP4 will also be a part of it.

Open-Source Yes

Licence Type Apache2.0

Commercial license N/A

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 145 of 148

© FitOptiVis Consortium public

10.10. HDR Processing accelerator (HDR Core)

Name HDR processing IP Cores

Tool/Technology in a
Nutshell

FPGA IP core for real-time ghost-free HDR image
acquisition and tone-mapping. It merges three standard
images into a single HDR frame. The Tone-mapping core
implements Durand operator.

Key Features –
FitOptiVis Starting
Point

The IP core did not contain the ghost-free algorithm. Tone-
mapping was just a reference implementation in C++ with
floating point arithmetic.

Intended Users Embedded system developers

Benefits for the User
Acquires ghost-free HDR images in real-time. The image
from sensor is much clearer with no motion artefacts.

Tool/Technol
ogy
Requirement
s

Inputs Sequence of three images with known exposure time

Outputs
HDR image with fixed point pixel format 16.12 (12
fractional bits) / RGB tone-mapped image (3x 8b)

Target 7-series Xilinx FPGA

Depend
encies

Vivado HLS 2016.4 and older

Tool/Technol
ogy Block
Diagram(s)

Vivado
Block
Diagram

Example:
HDR merge core

Example of HDR image without(left) and with (right) ghost-
free merging applied.

FitOptiVis
Technological
Advances

We implemented the ghost-free merging and tone-
mapping algorithms in FPGA. Tone-mapping algorithm
was redesigned for fixed point arithmetic. The implantation
run faster than real-time, achieves up to 96 FPS on FullHD

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 146 of 148

© FitOptiVis Consortium public

images. Therefore, it is feasible for traffic and industrial
applications.

Use within
FitOptiVis
Demonstrat
ors

Use
FitOptiVis Traffic surveillance use case (image acquisition
and pre-processing)

Links
This algorithm is well suitable for various platforms,
including CPU and GPU based machines and/or
embedded systems.

Commercial license Yes

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 147 of 148

© FitOptiVis Consortium public

10.11. Object detection accelerator (ACF Core)

Name Object detection accelerator (ACF Core)

Tool/Technology in a
Nutshell

FPGA IP core detection of objects. The accelerator is
purposed for low power embedded systems with low
resources (like Xilinx Zynq).

Key Features –
FitOptiVis Starting
Point

We started with old technologies developed in previous
projects. The detector core was based on LBP features
(high memory and logic footprint) and did not support any
configuration parameters.

Intended Users Embedded system developers

Benefits for the User

Easy-to-use IP core for robust detection of specific objects
in real-time. The type of object is defined by model (binary
data for the IP core) which can be trained with waldboost
algorithm. One of biggest benefits is that the algorithm for
detection of objects does not need to be re-developed by
the designer, only new model must be created. This
accelerator is suitable for rigid objects in controlled
conditions (which is common in industrial usage), for
example, license plates (which is demonstrated in
FitOptiVis), faces, markers, etc.

Tool/Technol
ogy
Requirement
s

Inputs Image data on AXI Video bus

Outputs

Detection results are written to RAM using DMA. The
results contain locations of detected objects, scores and
identifier of the source image (for synchronization
purpose). On CPU in the Linux OS, the results are
available on the block device associated with the DMA.

Target 7-series Xilinx FPGA

Depend
encies

Xilinx Vivado

Tool/Technol
ogy Block
Diagram(s)

Vivado
Block
Diagram

This block diagram shows the basic usage of the
accelerator.

FitOptiVis
Technological
Advances

In FitOptiVis , we completely re-designed the detection
engine. We dropped LBP feature-based algorithm and
changed it to decision tree-based algorithm. We developed
new static memory access scheduling scheme for
classifier evaluation. As a result, the classifier models used

WP3 D3.3, version V1.2

FitOptiVis

ECSEL 783162

Page 148 of 148

© FitOptiVis Consortium public

by the accelerator can be evaluated on many image
locations in parallel and the model size is very small
(thousands of parameters, compared to hundreds of
thousands when LBP features were used). The new
detection IP core fits even small FPGAs and can process
Full HD image at up to 60 frames per second.

Use within
FitOptiVis
Demonstrat
ors

Use
FitOptiVis Traffic surveillance use case – detection of
license plates (as a part of License plate detection
component)

Links
This algorithm is well suitable for various platforms,
including CPU and GPU based machines and/or
embedded systems.

Commercial license Yes

