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 Executive Summary 
This report represents deliverable D4.4 with updated results of D4.3 and final outcomes 
of Task 4.2 and Task 4.3 in WP4 of the FitOptiVis project. The main objective of WP4 is 
to deal with the complexity of application runtime management while considering a 
diverse set of heterogeneous platform components and configurations. Final 
achievements of Tasks T4.2-T4.4 are reported in this document, including monitoring, 
profiling and measuring techniques, and reconfigurability support. 
In this final reporting and iteration, we have updated the Iteration 2 outline reported in 
D4.3. This deliverable provides an overview of runtime reconfiguration and runtime 
monitoring mechanisms spanned over different levels of abstraction and serves to 
satisfy applications and use cases with diverse sets of requirements. In line with D4.3, 
the deliverable is split in two parts. The first part presents the overview of reconfiguration 
mechanisms in view of the FitOptiVis component abstraction framework and specific 
instances adapted by various partners. In the second part, the updated contributions of 
various monitoring mechanisms, developed by various partners, are reported. 
The content of this deliverable contributes to MS7 (Specification update – which is made 
based on the performance obtained in the first iteration) and MS8 (Final demonstrators 
– providing technologies and methods to be integrated in the final demonstration).  
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 Updates with respect to D4.3 
This chapter provides a brief summary of specific content that has been updated and 
added to D4.4 with respect to D4.3. Naturally, the Introduction and Conclusion have 
been updated to reflect the new content. 

2.1 Runtime reconfiguration 
The following sections have been updated with respect to D4.3: 

• 4.1 – Overview of runtime reconfiguration concepts in view of FitOptiVis 
Component framework 

o  Updated few concepts with examples 
• 4.2 – Dynamic reconfiguration in CompSOC  

o Updated with details of deployment framework of adding and removing 
applications at runtime 

o Provided the reconfiguration architecture capable of adding/removing 
applications in the runtime 

o Sketched the mathematical basics of the brokering and scalable Pareto-
optimization 

• 4.3 – Dynamic Reconfiguration using Multi-Dataflow Compositor 
o Updated with details of experimental results 
o Provided overview of static and dynamic parameter mapping from a 

dataflow graph to the corresponding hardware datapath 
• 4.4 – Reconfiguration in Nvidia Jetson embedded devices  

o Acceleration through PoCL-remote improved and updated 
o Reconfiguration model and experiments added for UC3 and UC9 

• 4.5 – Reconfiguration of Time Sensitive Network (TSN)  
o Updated with the details of the mechanism and experimental numbers  

on performance in UC3 and UC9 
• 4.6 – RIE-based reconfiguration method 

o Included a new RIE reconfiguration mechanism 
o Added remote component implementation description 

• 4.7 – Reconfiguration in Managed-Latency Edge-Cloud 
o Moved description of MECE adaptive loop from D4.2 to D4.4 

• 4.8 Situation-aware reconfiguration in closed-loop control 
o This is an additional work (with respect to D4.3) on situation-aware 

system reconfiguration for image-based control 

2.2 Runtime monitoring 
The following sections have been updated with respect to D4.3: 

• 5.1.1 - FIVIS data storage, visualization and analytics platform 
o Corresponding Section in D4.3 

 4.2.1 – FIVIS data storage, visualization and analytics platform 
o Updates 

 The section has been updated to reflect the status of FIVIS 
• 5.2.1 - Monitoring in 3D industrial inspection system 

o Corresponding Section in D4.3 
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 4.3.1 - Monitoring in 3D industrial inspection system 
o Updates 

 PoCL Telegraf JSON serializer plugin description added. 
• 5.2.2 - Heterogeneous Distributed Computing Adaptation Monitoring 

o Corresponding Section in D4.3 
 4.3.2 - Heterogeneous Distributed Computing Adaptation 

Monitoring  
o Updates 

 Monitoring Infrastructure: two new PoCL FIVIS tracing plugins 
described. 

 Data Storage, Analytics and Visualization: Described a new FIVIS 
PoCL visualization plugin. 

• 5.2.6 - Monitoring of Distributed Execution in the Virtual Reality Use Case 
o Corresponding Section in D4.3 

 4.3.6 - Monitoring of V-PCC in Virtual Reality 
o Updates 

 Description of the monitoring aspects and results of the 
augmented reality distributed rendering demo. 

• 5.2.5 - Monitoring of 4x2 array of 8xSIMD Floating point Accelerators 
o Corresponding Section in D4.3 

 4.3.5 - Monitoring of 8xSIMD Floating point Accelerators 
o Updates 

 This chapter describes how, UTIA SW support developed in Y3 
of the project for the 4x2 array of 8xSIMD floating point 
accelerators for larger Zynq Ultrascale+ device ZU15-EG and 
developed run-time support for parallel execution if these 
accelerators implemented as Debian OS posix pthreads. 

 Chapter describes SW frame for control of accelerators 
computing in parallel with the running, HW-accelerated Full HD 
video processing pipeline.   

 Performance results for sequence of floating point matrix 
multiplications are compared with Xilinx HLS HW accelerator 
with same count of floating point ADD and MULT units. 

 Details related to the run-time programming of 8xSIMD HW 
accelerators are removed. (This was already described in D4.3).  

• 5.2.3 - Monitoring systems for reconfiguration for Habit Tracking and Smart Grid 
o Corresponding Section in D4.3 

 4.3.3 - Monitoring systems for reconfiguration for Habit Tracking 
and Smart Grid 

o Updates 
 New hardware requirement qualities and reconfiguration modes 

added 
• 5.1.2 - QRML extension to express monitoring requirements 

o Corresponding Section in D4.3 
 4.2.2 - DSL extension to express monitoring requirements 

o Updates 
 Several examples have been added 

• 5.1.3 - JOINTER framework to build custom hardware monitoring systems 
o Corresponding Section in D4.3 
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 4.2.3 - AIPHS framework to build custom edge monitoring 
systems 

o Updates 
 Changed the structure of the whole framework to better meet 

state-of-art requirements about monitoring systems and to build 
monitor also for processors, memory, and interconnections. 

• 5.2.11 - Monitoring of high-performance embedded applications for Water-
Supply maintenance 

o  Corresponding Section in D4.3 
 4.3.11 - Monitor in Processor-Coprocessor systems 

o Updates 
 Added information about Water-Supply Use-case target. 

• 5.2.4 - Monitoring capabilities for object recognition in space applications 
o Corresponding Section in D4.3 

 4.3.4 - Monitoring capabilities for object recognition in space 
applications 

o Updates 
 The monitor description has been improved with the redefinition 

of the monitor mechanisms and the description of the tracing 
strategies. Additionally, the monitor requirement and physical 
platform lists have been extended and improved. 

• 5.2.7 - Monitoring in Salmi-Care System 
o Corresponding Section in D4.3 

 4.3.7 - Monitoring in Salmi-Care System 
o Updates 

 The section has been updated to reflect the current status of 
Salmi Care Platform. 

• 5.2.10 - Pose and facial recognition in Habit Tracking with edge-cloud adaptivity 
o Corresponding Section in D4.3 

 4.3.10 - Pose and facial recognition in Habit Tracking with edge-
cloud adaptivity 

o Updates 
 HIB has detailed the integration of the previous developments in 

the edge devices with their new approach for cloud processing 
that incorporates new pose estimation engine (PoseNet instead 
of openpose) and new layer of action recognition with artificial 
intelligence based on LSTM networks 

• 5.2.9 - Monitoring systems for localization in space applications 
o Corresponding Section in D4.3 

 4.3.9 - Monitoring systems for localization in space applications 
o Updates 

 Added the monitors regarding the video services provided by 
TASE components. The previous contributions only had monitors 
at system level and now TASE added monitors to study the image 
quality. 
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 Introduction  
Work package 4 addresses Objective 3 of the FitOptiVis project: 

Objective 3: Real-time multi-objective combinatorial optimisation; data and process distribution; 
run-time adaptation through virtualization; run-time quality and resource management; energy 
driven adaptations; workload (re-)distribution; support for run-time upgrades. 

In WP4, the consortium develops techniques for run-time resource management within 
the system architecture template outlined in WP2. There are two key technology 
enablers for successful realization of runtime management – measurement & 
monitoring, and reconfiguration mechanisms. These technologies are mainly 
investigated in the Tasks 4.2 and Task 4.3. 
This deliverable is an extension of D4.3 which reported an abstract view of 
reconfiguration and monitoring defined under the FitOptiVis reference framework 
followed by various instances developed by various partners. In D4.4, we mainly report 
further improvement and refinement of the technologies and methods reported D4.3 and 
use-case specific adaptation of them with results. Obviously, some new technologies 
are also developed over the last year of the reporting period which are also reported.  
In Chapter 4, we report of the reconfiguration mechanisms developed by various 
partners within the FitOptiVis project. Section 4.1 provides an overview of the three main 
categories of reconfiguration mechanisms being considered in the FitOptiVis project – 
adding/removing components, changing the component configuration, and changing the 
component compositions. It further shows an abstract view on how these mechanisms 
will be used the QRM framework.  
Section 4.2 presents a deployment framework a specific instance of the reconfiguration 
mechanism on the CompSOC platform (real-time mix-criticality platform) for 
adding/removing components at runtime. Section 4.3 presents a Multi-Dataflow 
Composer (MDC) tool-based reconfiguration mechanism targeting HW accelerators that 
allows for quality and budget adaptation in runtime and falls under second category of 
reconfiguration (i.e., changing the component configuration). Section 4.4 presents a 
reconfiguration mechanism for changing quality and budget (i.e., changing the 
component configuration) in runtime on Nvidia Jetson embedded devices and evaluated 
in Use case 3 (UC3) and Use case 9 (UC9). This falls under second category of 
reconfiguration. In Section 4.5, we describe a reconfiguration mechanism to adapt 
synchronization setting of a TSN and in essence, to reconfigure in terms of quality (i.e., 
quality of service). This falls under second category of reconfiguration. The method is 
applied to UC3 and UC9 and results are presented.  In Section 4.6, we present a RIE 
(of Embedded systems) based reconfiguration library which provides a general DSL 
framework for component implementation and reconfigurations. In Section 4.7, we 
present a reconfiguration mechanism for admission and deployment services between 
edge and cloud considering latency requirements. This falls under the first category of 
reconfiguration, i.e., adding and removing components. Finally, in Section 4.8, we 
present a situation-aware reconfiguration mechanism (under the second category) for 
embedded visual control for quality enhancement.  
In Chapter 5, we report on the runtime monitoring, profiling and measuring mechanisms 
developed by various partners within the FitOptiVis project. A table highlighting the 
usage of runtime monitoring systems within the FitOptiVis UC is also reported. Section 
5.1 highlights the importance of the runtime monitoring action with respect to the DSL 
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developed in WP2. In Section 5.2, three enabling solutions to perform monitoring in 
FitOptiVis are reported: enabling solution means that they are more identifiable as 
framework to support in the runtime monitoring actions, rather than specific instances of 
monitoring systems. Enabling solutions have been used by FitOptiVis partners to 
implement their desired monitoring systems. In Section 5.3, instances of monitoring 
systems, namely concrete solutions where monitoring systems have been adopted 
within FitOptiVis UC, are described. 

Connections with WP2  
In WP2, a reference architecture has been introduced that describes FitOptiVis systems 
in terms of their platform and application components, resource budgets, configurations 
and qualities. Additionally, a reference QRM framework is introduced in that WP that 
selects optimal configurations based on available resources and application 
requirements. Most of the aspects that are featured in this model and architecture are 
subject to dynamic variation and change. For various reasons their concrete values or 
states need to be observed and collected at run-time by a run-time monitoring 
infrastructure. It is important to know current availability of resources, status of a 
component, use of a budget, or application qualities, e.g., for active QRM and 
reconfiguration or to verify if requirements are sufficiently met. Monitoring further 
provides access to recent or long-term historic data for adaptive, calibration or 
verification purposes. 
Systems and components may be modelled in the QRML domain specific language. 
Such models provide a machine-readable, mathematical model of a system, its 
components, configurations and the various qualities and budgets. This enables data 
collected from a run-time monitoring infrastructure to be related back, automatically, to 
the QRML specification. This enables, e.g., automated verification of the requirements 
specified in the model, but also visualization of current or historic monitored data in the 
context of the QML system model. FIVIS includes visualization of monitored data in use 
case specific dashboards, but also the visualization of the structure of the QRML 
specification through the QRMLVis visualization component so that monitored data can 
be related to their counterparts in the formal QRML model. 
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 Runtime reconfiguration 
4.1 FitOptiVis reconfiguration framework 
We define system configuration as the set of components a system is composed of, their 
configurations (specified by their parameter set-points), and their compositions. In fact, 
such a composition is another component under the FitOptiVis component framework. 
Subsequently, we define reconfiguration as an action or a set of actions leading to a 
change(s) in system configuration. Therefore, based on the impact of actions, we 
categorize them into three classes as follows (see Figure 1): 
• Actions adding/removing components: These actions add/remove components 

to/from the system. A component can be one of the following entities: 
• Application 
• Virtual Resource (VR)/Virtual Execution Platform (VEP) 
• Resource/Execution Platform (EP) 
• Deployed Application (application + VEP) 
• Hosted VEP (VEP + EP) 
These actions are triggered by users, Quality and Resource Management (QRM) 
components, or applications themselves.  
Some examples are: 
 Adding a stream in the Multi-Source Streaming use case which is done by a 

surgeon. This adds either an application or a deployed application to the 
system. 

 Hot plugging a hardware component adds a resource to the system. 
 Creating a VEP by QRM components (e.g., hypervisor) to deploy an 

application. Based on the budget requirements of an application, a 
hypervisor creates a VEP to deploy the application. 

 Spawning an OpenCL kernel by an application. When an OpenCL application 
calls a kernel, it adds another task to the system which requires a certain 
budget (e.g., an Nvidia GPU) to execute. Following the kernel call, QRM 
components create a VEP to deploy and execute the kernel. 

 Modify the component implementation in order to use efficiently a particular 
execution resource. A component could be implemented in a GPU with a 
particular algorithm but an FPGA implementation could require a different 
approach. 
 

• Actions changing component configurations: Configurations of components are 
defined by set-points their parameters are set at. In general, a change in parameter 
set-points results in a change(s) to the following component properties: 
• Inputs/outputs 
• Required/provided budget 
• Qualities 
 
These actions are triggered either by users, QRM components, or applications. 
Some examples are: 
 Changing the output resolution of a video stream on surgeon’s demand. This 

affects the required budget of the stream (e.g., a higher resolution requires 
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more processing power, network bandwidth, and screen pixels to process, 
transmit, and display a stream). 

 
 

Execution Platform (EP)

Resource Resource Resource

Hosts

Deployed Application

Virtual Execution Platform (VEP)

VR VR VR

Application

Task Task Task

Deploys on

Hosted VEP

User

Quality and Resource 
Management (QRM)

Components

Parameters

Compositions

 
Figure 1: Overview of reconfiguration categories considered under FitOptiVis 

 Detecting workload transitions and asking for more/less budget. Based on 
input characteristics (e.g., framerate, resolution, number of streams, number 
of objects in a video), applications change their resource requirements, which 
is followed by reconfiguration of the VEP on which the application is deployed 
(done by QRM components). 

 Reducing voltage/frequency of an overheated processor by QRM 
components.  

 Changing the topology of a DNN when a different recognition accuracy is 
needed. This needs to reconfigure the recognition task as well as the VEP 
on which it is deployed, since the new topology may need more or different 
resources (e.g., GPU instead of CPU) to execute within the same time. 

 Switching profiles on the Jetson TX2 platform. QRM components can switch 
performance modes of Jetson TX2 to optimize system power consumption. 

 
• Actions changing component compositions: Compositions are vertical, 

horizontal, or free. Vertical compositions have to do with budget connections and are 
either deployments (application-to-VEP connections) or hostings (EP-to-VEP 
connections): 
• Deployments are established by i) finding application configurations whose 

required budgets are matched with a VEP’s provided budget (i.e., budget 
matching), ii) selecting one of the matched configurations, and iii) installing the 
chosen configuration. 

• A hosting is binding a VEP to physical resources in EP. This is also done by i) 
finding EP resources whose provided budgets are matched with the VEP’s 
required budget, ii) selecting the best mapping, and iii) binding the VEP on the 
chosen resources.  
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Horizontal compositions connect inputs and outputs (e.g., connecting outputs of a task 
to inputs of another one). Free compositions connect neither input/outputs nor 
provided/required budgets. Rather, they are done to constrain the way a set of 
components can be composed to other components (e.g., a processor and a memory 
which are coupled together by an interconnect can be only used together). 
The actions can establish, modify, or stop connections and are triggered by users, QRM 
components, or applications. 
Examples are: 

• Manual adding/removing VEPs done by users. 
• Adding/removing done by QRM components to optimize costs, resource utilization 

(e.g., load balancing), reliability, etc. 
• Removing a displayed video stream from the screen. 
• Reconfiguration of a crossbar changing the resources that are connected to it, which 

changes their free composition. 
• Reconfiguring the topology of a task graph, which changes horizontal compositions 

(e.g., changing the order of filters in an image processing application). 
In the following, we describe seven reconfiguration mechanisms developed targeting the 
above three categories of actions in Section 4.2-4.8. It covers a wide range of platforms 
and applications subject to reconfiguration mechanisms -- Real-time, mixed criticality 
embedded systems (Section 4.2 on CompSOC), HW acceleration (Section 4.3 on MDC), 
industrial embedded platforms and visual control (Section 4.4 and 4.8 on NVIDIA), time-
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Figure 2: Block diagram of the proposed QRM architecture in CompSOC 
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sensitive networked systems (Section 4.5), edge-cloud systems (Section 4.7) and 
software systems (Section 4.6).  

 

 
Figure 3: The architecture of the proposed framework and the deployment flow 

4.2 Dynamic Reconfiguration in CompSOC 
We employ the QRM architecture depicted in Figure 2 to perform dynamic 
reconfiguration in CompSOC platform. The architecture is designed in such a way that 
performing any type of reconfiguration action is possible. In the following, we first 
introduce the framework architecture. Then we discuss its two key operations, namely 
application deployment and Pareto optimization. 
 
4.2.1 Architecture 
The framework contains three layers (from left to right), namely i) operation, ii) 
management, and iii) orchestration, which are introduced in the following. 
Operation: This layer contains software and hardware components of three types, 
namely i) Applications, which are made up of Tasks, ii) Resources that are 
hardware/software components on top of which applications execute, and iii) Virtual 
Resources (VRs) that are spatial and/or temporal resource partitions to share resources. 
VRs are often implemented by schedulers, microkernels, virtualization, or (RT)OS on 
top of a hardware resource. Each application runs on a dedicated set of VRs called a 
Virtual Execution Platform (VEP). A VEP is a hierarchical component containing VR 
components. In this framework, we use the FitOptiVis component interface model 
proposed in WP2, shown in Figure 4, due to its flexibility in modeling applications and 
resources as well as its suitability for quality and resource management [HENDRIKS20]. 
In this modeling framework, component configurations are modeled with a set of points 



 
 

 
© FitOptiVis Consortium (Public Document) 

 

WP4 D4.3, version 0.1 

FitOptiVis 

ECSEL2017-2-783162 

defined on 𝑄𝑄𝑖𝑖𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑄𝑄𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 × 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 space 
where each dimension is a partially-ordered set (poset) and corresponds to one of the 
component interfaces. A partial order represents how quantities of a component 
interface are better than, worse than, or incomparable to other quantities of the same 
interface. For example, higher application quality levels, smaller required budgets, and 
larger provided budgets are considered better.  

 
Figure 4: Component model and bundle 

Management: The management layer prepares the operation layer for execution and 
consists of Application Managers (AMs) and Resource Managers (RMs). AMs are 
responsible for configuring, booting, starting, and stopping applications. This can be as 
simple as setting the image resolution or as complex as booting a virtualized OS. RMs, 
on the other hand, monitor resources and perform lifecycle management of VRs 
including creating/destroying (by allocating/deallocating budgets), configuring (by 
setting parameters), initializing/resetting VRs (by programming resources). 
Orchestration: The objective of the operation and management layers is to realize 
application deployments, which includes creating VEPs by partitioning resources, 
configuring the VEPs by setting resource parameters (e.g., processor frequency), 
initializing the VEPs (e.g., loading applications), configuring applications (e.g., setting 
parameters of an image filter), and executing them. Taking these steps requires knowing 
the size of resource partitions, application-to-resource bindings, resource and 
application parameters, and initial data of VEPs. All these are determined by the 
orchestration layer besides its other objective that is automating the deployment 
process. The orchestration part is comprised of several functional blocks briefly 
discussed in the following.  
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• The Orchestrator, the entry-point of the framework, accepts deployment requests 
and coordinates the operation of other functional blocks to plan and realize 
deployments. 

• The Broker determines the optimal application deployments including the optimal 
component configurations (i.e., application and resource configurations) and 
compositions (e.g., VR-to-resource bindings).  

• The Execution Platform Manager (EPM) coordinates creation, configuration, and 
destruction of VEPs by RMs. 

• Based on the component types, three databases exist that store component bundles. 
A component bundle contains the model of the component as well as initialization 
data required to load component instances with (e.g., application instructions and 
data, VM image, hardware parameters). As shown in Figure 4, component models 
are stored in the JSON format due to its readability and simplicity. Each database is 
composed of two sets, components and  compositions. The former contains bundles 
of atomic components (e.g., application tasks) and the latter demonstrates how 
composite components (e.g., applications) are made up of other components (e.g., 
A1 = T1 => T2, which means A1 is the horizontal composition of T1 and T2). A 
bundle of an atomic component contains a unique identifier and a set of 
configurations describing component properties. 

Distributing the orchestration tasks among multiple functional blocks lets us pipeline 
deployments, which improves the responsiveness of the system. Additionally, 
separation of resource management and coordination of RMs enables us to dynamically 
add resources and their managers to the system by just hooking RMs to the EPM at run-
time (using Data Distribution Service). This is highly beneficial for fog/edge settings 
where extra nodes can be dynamically added to the system.  
Initially, we have implemented an application deployment mechanism where the first and 
third category of actions are being used, which are adding/removing components and 
changing component compositions.   
 
4.2.2 Application Deployment 
We assume the deployment command is issued by the end user. In other words, the 
user decides to execute/stop an application. As shown in Figure 3, the flow is composed 
of ⑬ steps for deploying and ❼ steps for stopping an application. The separation of 
orchestration and management layers enables us to execute them on different 
platforms. For example, we can run the orchestration layer, which is more 
computationally intensive, on more powerful resources to speed up the deployment 
process. Additionally, in distributed systems, this design lets us have an RM for each 
subsystem, enabling them to operate in parallel and speeding up the deployment of 
distributed applications. The orchestration tasks are also distributed among three 
functional blocks, pipelining the deployment process. For instance, the deployment 
(done by EPM) and brokering of two consecutive deployment requests can be done in 
parallel. The deployment steps are explained in the following. 
Deploying Applications:  
⓪ An application deployment starts with registering the application bundle into the 
Application Database (ADB). This lets users dynamically introduce new applications to 
the system. Each application bundle can be instantiated multiple times independently. 
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① Once the bundle is stored in the database, a deployment request containing the 
application identifier and deployment constraints including set-points for application 
parameters (e.g., image resolution), minimum quality levels (e.g., minimum frame rate), 
and maximum deployment costs (e.g., overall power) is sent to the Orchestrator. 
②,③ The deployment request is forwarded to the Broker for deployment planning using 
the Pareto Calculator tool (http://www.es.ele.tue.nl/pareto/calc/) [GEILEN07]. The 
Broker builds the exploration space by fetching application and resource bundles from 
the ADB and Resource Database (RDB). This ensures that deployments use the latest 
system state. 
④ The optimization result is a VEP configuration (stored as a VEP bundle in the Virtual 
Resource Database, VDB) containing the optimal application configuration, resources 
the application is bound to, their optimal configurations, and the budget that must be 
allocated to the VEP. Updating the VDB is followed by budget reservations done by 
updating the remaining budget of resources in the RDB. Since remaining steps may take 
time, the status of resources are updated first to make sure that the subsequent 
deployment plannings are done based on the latest state of the system so that they can 
be done in parallel (pipelined). Additionally, the Broker sends the identifier of the 
reserved VEP (null in case of no feasible solution) to the Orchestrator. This lets the 
Orchestrator know the feasibility of deployment and it can inform the user. 

⑤ In case of a feasible solution, a deployment request containing the VEP identifier is 
sent to the EPM. 
⑥ The EPM fetches the VEP bundle from the VDB. 

⑦ It sends VR creation requests to RMs. Requests are sent per VR and contain an 
identifier (used for future reference), the budget that the VR is supposed to provide, and 
possibly existing VR parameters to set (e.g., vCPU frequency). Note that the VR-to-
resource bindings are included in the budget. 
⑧ Upon receiving the creation requests, RMs create VRs using resource-specific 
southbound APIs (concurrently). 
⑨ Once VRs are created, RMs respond with the remaining budget of resources 
expressed in possibly more detailed abstractions to retrieve the possibly lost budget 
details. 
⑩ The EPM sends loading requests for VRs that require to be initialized for their 
operation. Since loading VRs (⑪) is often slower than creating them (⑧), this step is 
done in parallel with updating the state of the system (i.e., remaining budget of 
resources). 
⑪ Once the VRs are initialized, the application is instantiated and ready to start. 

⑫,⑬ If the application has parameters to set, the EPM sends them to the AM and it 
configures the application using application-specific interfaces. 
Stopping Applications: 
Stopping entails first asking the AM to stop the application. Then all steps are reversed, 
omitting brokering. 

http://www.es.ele.tue.nl/pareto/calc/
http://www.es.ele.tue.nl/pareto/calc/
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4.2.3 Brokering: Pareto Optimization 
As explained above (Steps③,④), the goal of brokering is to determine a VEP 
configuration such that deployment constraints are satisfied and a cost function is 
optimized. To do so, the component configurations in the bundles are retrieved. The 
Pareto optimization is the following poset-algebraic expression:  

𝑣𝑣𝑣𝑣𝑝𝑝∗ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐶𝐶 ∩ 𝐷𝐷𝑄𝑄 ∩ (∪𝑖𝑖 (𝑣𝑣𝑣𝑣𝑝𝑝𝑖𝑖 ⇑ (𝑎𝑎𝑎𝑎𝑎𝑎 ∩ 𝐷𝐷𝑃𝑃)))) 

where all the operations are performed on the component interfaces (i.e., required and 
provided budgets). First, parameter constraints (𝐷𝐷𝑃𝑃) are applied to the application 
configuration points (𝑎𝑎𝑎𝑎𝑎𝑎). Next, a set of VEP candidates are built where each candidate 
(𝑣𝑣𝑣𝑣𝑝𝑝𝑖𝑖) is a component containing all the resources that the application requires and 
corresponding to an application-to-platform binding. All the candidates are vertically 
composed to the application (to perform budget matching) to build a configuration space 
containing feasible bindings, deployment costs, and application quality levels. Next, the 
possibly existing quality (𝐷𝐷𝑄𝑄) and cost constraints (𝐷𝐷𝐶𝐶) are applied (e.g., desired quality), 
resulting in a set of Pareto points. Finally, the Pareto frontier is minimized to one 
configuration (𝑣𝑣𝑣𝑣𝑝𝑝∗) by considering a certain policy (e.g., workload balancing) or by 
arbitrarily picking a point. 

Note that, as shown in Figure 5, the vertical composition operator (⇑) requires addition 
and subtraction operations to be defined on posets (i.e., component interfaces such as 
provided and required budgets). Hence, to find the optimal deployment, we need to know 
how to i) compare (≼), ii) add (+), and iii) subtract (−) two component interfaces (e.g., 
required/provided budget), which makes the framework generic and suitable for 
heterogeneous components. To achieve this, all the component interfaces are modelled 
with simple (name, value) pairs (e.g., (resolution, 720p)). A partial order is defined on 
the values of each quantity type as well as any Cartesian product of component 
interfaces. Budgets have an additional hierarchy (encoded as nested JSON objects). 
The hierarchical structure lets us model how the resources are coupled together without 
adding adhoc optimization constraints. For example, if we ask for a processing tile 
comprised of a processor and a memory, we want them to be mapped on the same tile; 
however, asking for a processor and a memory without the notion of tile does not enforce 
this constraint.  

 
Figure 5: The vertical composition of two components 
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An atomic budget is modeled with a (unit, type, value) tuple specifying the unit of the 
budget (e.g., cycles for processing power, bytes for memory capacity), the model of the 
budget (e.g., average_rate, TDM_Slot), and quantity of the budget (e.g., 20% for the 
CPU share). Similar to names, units of operands must be identical. Various resource 
models and abstractions are proposed in the literature (e.g., Latency-Rate, Service 
Curves). Budget abstraction is a trade-off between analysis time and accuracy (e.g. 
overhead). More specific budgets may be less likely to be granted. Our framework allows 
RMs to use specific provided budgets (for high efficiency) and at the same time allows 
applications to require abstract budgets (for mapping flexibility) by automatically 
converting between abstraction levels of budgets of the same type.  
For example, we still can do the budget matching if an application is profiled with average 
resource requirements (e.g., average processing rate) while resources are abstracted 
with Time-Division Multiplexing (TDM) tables. However, this comes at the cost of losing 
information when we add/subtract two budgets of different abstractions. For instance, if 
the required and provided budgets are expressed with the number of memory blocks 
and the address of blocks respectively, we only know the number of remaining blocks 
after subtracting the two budgets, unless we know how the memory manager allocates 
blocks to applications. However, including the allocation policies and implementation 
details slows down the optimization process. On top of that, the allocation algorithms 
may be proprietary and not be available. Therefore, we only allow budgets with less or 
the same details to be subtracted from (or compared with) other budgets and the 
abstraction of the result is similar to the less-detailed budget. In the allocation phase, 
RMs refine the abstracted budgets, and to solve the information loss problem, they 
report the remaining budget after allocating/deallocating budgets to/from VRs, and the 
RDB is updated with the retrieved abstractions (i.e., Steps ⑩ and ❼ in Figure 2). 

4.3 Dynamic Reconfiguration using Multi-Dataflow Composer 
The Multi-Dataflow Composer (MDC) tool, from UNISS and UNICA, starting from an 
input set of dataflow specifications, is able to generate Coarse-Grain Virtual 
Reconfigurable accelerators, able to execute the different functionalities specified with 
the dataflows. This belongs to the second type of action to change the configuration by 
modifying budget and quality of a component at runtime. It does not only offer the 
support for the deployment of Xilinx compliant IPs, ready to be used in a processor-
coprocessor system, but also the support for their management at run-time.  
The Coarse-Grain Reconfiguration offered by MDC is virtual in the sense that resources 
are always available in the accelerator, and they are multiplexed in time according to the 
identifier (ID) of the selected operation, to be properly driven by the user. So that, 
resource occupancy efficiency will be not very high in the resulting reconfigurable 
accelerator (resources and connections are not all reused and reconfigured among 
different configurations), but reconfiguration can be achieved very quickly, ideally in a 
single clock cycle, due to the limited set of configuration points.  
Reconfiguration, and in turn possible supported operations, are of two main types: 

• Functional-oriented (see Figure 6) – the accelerator offers different functionalities 
(e.g. different image processing algorithms).  
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Figure 6: Functional-oriented reconfiguration 

An example of functional-oriented reconfiguration where MDC has been successfully 
adopted is for neural signal processing [CAR13]. In this case, an algorithm for the 
denoising of a neural signal coming from the peripheral nervous system has been 
rolled and split into different sub-operations, these latter modeled as dataflow 
graphs. Then, a dynamic reconfigurable accelerator for such sub-operations has 
been assembled by MDC, resulting in substantial benefits in terms of resources and 
power consumption. As depicted in Errore. L'origine riferimento non è stata 
trovata., MDC dynamic reconfiguration (blue bar) allows saving about 40% area and 
power with respect to the corresponding non reconfigurable system where all the 
sub-operation graphs are instantiated in parallel (red bar). Moreover, it saves more 
than 86% of the same metrics if an unrolled implementation, where the denoising 
step is not split into sub-operations (green bar).

 
Figure 7: Area and power consumption histograms of the MDC generated denoiser (MDC Global Kernel) 

with respect to the corresponding non-reconfigurable denoiser (Static Global Kernel) and with respect to a 
unrolled atomic denoiser implementation (Cascaded WD). 

 
• Working point-oriented (see Figure 8) – the accelerator is able to execute the same 

functionality but with different trade-offs in terms of non-functional metrics (e.g. 
different image quality vs. power consumption profiles in encoding/decoding 
algorithms). 
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Figure 8: Working point-oriented reconfiguration 

An example of working point-oriented reconfiguration achieved through MDC is in 
the field of video coding [SAU17]. In this case, the fractional pixel interpolation filters 
adopted for motion estimation/compensation in the HEVC codec have been 
considered. In particular, approximate computing has been applied at the algorithm 
level to derive approximate filters by using a reduced number of taps, with respect 
to legacy values. For instance, considering the luma color component, two 
approximate filters have been derived by adopting 5 and 3 taps with respect to the 
legacy 8/7 ones. These filters have been modelled as dataflow graphs and 
processed by MDC in order to provide a reconfigurable filter able to switch among 
the different versions, from legacy to approximated. As depicted in Figure 9, the 
obtained reconfigurable filter has different working points offering a different trade-
off between quality and energy consumption. In particular, in terms of energy 
consumption, it is possible to have up to 27% savings with respect to the standalone 
legacy implementation, by employing only 3 taps instead of 8.  

 
Figure 9: Reconfigurable HEVC interpolation filter: the supported working points provide different energy 

versus quality (Inv. proportional to # of taps) trade-off. 

Dynamic Parameters 
The reconfiguration capabilities delivered by MDC accelerators have been enhanced by 
providing support for dynamic parameters. In the past, having parameters on the 
dataflow models taken as input by MDC was allowed, but these parameters mapped 
only static parameters on the final hardware specification. With static parameters we 
intend parameters that are fixed at design time and that cannot be changed at runtime. 
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Basically, they reflect Verilog parameters or VHDL generics, and they can also have an 
impact on the resulting system architecture, meaning that adopted resources can 
change if static parameters change.  
With dynamic parameters, we instead intend parameters which can be changed at 
runtime, then can create reconfigurations/modifications in the computation in a dynamic 
way. Those dynamic parameters are then reflected in the hardware specification as 
datapath inputs directly connected to the accelerator configuration registers. Such 
inputs, unlike the ones related to dataflow connections, are placed only on actors 
presenting them on the model, and do not follow a dataflow FIFO based protocol, but 
are driven directly by the values written in dedicated configuration registers. Errore. 
L'origine riferimento non è stata trovata. depicts how static and dynamic parameters 
are mapped into hardware. 
 

 
Figure 10: Overview of static and dynamic parameter mapping from a dataflow graph to the corresponding 

hardware datapath. 

To better understand how dynamic parameters are specified in the practice, it is 
necessary to give some details about the adopted dataflow formalism, the RVC-CAL, 
where the network is specified through XDF, an XML dialect, while actors are specified 
through CAL. On the XDF network it is possible to define variables and parameters, 
while on the CAL files only parameters are available. To support both static and dynamic 
parameters, according to the previous definitions, network level variables are used to 
specify exclusively static parameters, while network level parameters specify exclusively 
dynamic parameters. On the actor side, dataflow parameters are used to define both 
hardware static and dynamic parameters. The differentiation is made according to name 
matching with respect to variables and parameters defined at the network level. If no 
matching is found, the parameter is interpreted as static and the default value is 
assigned on the generated Verilog top module. 
Dynamic parameter support has been added to the MDC 0.0.2 release on 14/01/2021, 
available on https://github.com/mdc-suite/mdc. 
 

https://github.com/mdc-suite/mdc
https://github.com/mdc-suite/mdc
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4.4 Reconfiguration in Nvidia Jetson embedded devices 
UC3 (Habit tracking) and UC9 (Smart grid) use the NVidia Jetson embedded devices 
Jetson Xavier, Jetson TX2, and Jetson Nano. These Nvidia® devices support runtime 
adaptation for example, varying the operating frequency of the GPU and ARM-CPUs, or 
the number of active GPU cores. This adaptation enables energy consumption vs time 
performance trade-offs, also in terms of hardware requirements.  
In this case, the reconfiguration takes place by selecting different alternatives pre-
defined for some components or modifying provided budgets. For example, the 
reduction or increase in the budget provided by Jetson platforms to the application 
components that require them. This reconfiguration is activated by the system after 
monitoring power consumption over a period of time and when some components 
require a higher or lower quantity of resources provided by the platform in terms of 
compute capability.  
Habit tracking (UC3) 
Regarding UC3, we do reconfiguration to robustify the confidence for an inferred critical 
action. In order to improve the confidence, apart from using the RGB-input video stream, 
an Optical Flow stream is also analysed. Optical Flow comprises information about 
speed and angle of the movement of pixels between frames. This mid-level cue is fed 
to a neural network that is capable to recognize actions from this spatio-temporal flow. 
Critical action recognition is crucial. Therefore, we take advantage of the knowledge 
extracted by the Optical Flow stream to confirm whether potentially life-threatening 
situations occurred. Combining the RGB and Optical Flow streams leads to a more 
complex and accurate solution for action recognition (Two Stream I3D). Thus, the 
reconfiguration follows the dataflow represented in F. 
 

 

 

Figure 11: Diagram of tasks involved in action recognition (Two Streams) 

For instance, if we detect that the active model cannot properly distinguish whether a 
critical action such as falling down or lying on the floor occurred, we use an alternative 
with a more complex model that takes the RGB-stream and the OpticalFlow stream and 
infers a new label based on the results of a neural model that takes both.  
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Estimating optical flow from a video stream is a resource-intensive task even when 
computed by the GPU. For this reason, we have planned to compute this using pocl-
remote from TAU, offloading the optical flow processing to the cloud server. Thanks to 
pocl-remote, the resources of the cloud are seen as a local resource for the software 
application. In other words, this framework allows us to do calculations on an external 
GPU over the network in a transparent way using OpenCL. Considering that the Jetson 
devices have a limited amount of hardware resources (Jetson Xavier allocates 512 
CUDA cores) and the GPU in the Jetson devices will be used to do the inference of the 
neural network models. The pocl-remote framework offers us a way to accelerate 
computation and reduce power consumption on the embedded devices. Our external 
GPU in the cloud is an RTX2080Ti with 4096 CUDAcores.  
After some initial tests of using pocl-remote between the Jetson devices and the PC with 
the powerful GPU, we have observed an improvement in the performance of 50% in 
comparison of using the Jetson GPU when it is free and we are not doing inferences. In 
addition, we can see a significant improvement if we do the estimation through pocl-
remote compared to using the ARM-CPUs. In Figure 12, it shows that processing time 
improvement is about 12x estimating Optical Flow through pocl-remote compared to 
using the Jetson TX2 edge platform. 
 

 
Figure 12: Compare time required to estimate Optical Flow TV-L1 

After the initial tests with pocl-remote, the integration on the Jetson devices was 
optimized through OpenCV to accelerate the Optical Flow estimation even more. For 
example, for the NVidia Jetson Nano device, which is the most efficient and resource 
limited Jetson device, it obtains a 70% improvement with respect to using the device 
GPU when estimating Optical Flow, taking less than 0.8 seconds (See Figure 13). For 
testing purposes, we use a video configuration of 64 frames with 112x112 resolution. 
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Figure 13: Optical Flow TV-L1 estimation comparison: only CUDA device vs pocl-remote implementation 

 
In summary, pocl-remote speeds up computation of the Optical Flow, decreasing the 
amount of resources used on the Jetson edge device and consequently the energy 
consumption.  
The improvements obtained with pocl-remote, the integration with the FIVIS platform 
and the development of new Deep Learning alternatives that offer a different accuracy 
vs power consumption trade-off fostered the introduction of this new run-time 
reconfiguration for the reconfigurable action recognition system, that runs on Jetson 
embedded devices (see Figure 14). In the proposed system architecture, FIVIS is our 
Quality and Resource Management (QRM) tool that monitors the system qualities and 
triggers reconfigurations based on it. With the integration of these tools, we expect to 
close the loop for run-time reconfigurations. 

 
Figure 14: Reconfigurable CPS architecture for action recognition using FIVIS and pocl-remote 

As described above, this run-time reconfiguration follows two objectives: 1) Reduce 
power consumption; 2) Confirm critical actions, reducing false alarms.  
Firstly, we categorize the activities between temporally long (eg. cleaning the floor, 
eating or sleeping) and brief actions (standing up or sitting down). We switch to more 
efficient DL models when the system detects continuous long actions to reduce the 
power consumption and extend working time at the expense of losing some accuracy. 
Secondly, we designed a complex and more accurate DL model (Two Stream I3D) in 
order to confirm critical actions when they occur. This DL model analyzes the video using 
a RGB and a Optical Flow stream. In particular, the use of pocl-remote enables the 
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offloading of the Optical Flow estimation to a remote GPU, reducing resource usage on 
the node allowing the integration of the Two Stream architecture on the Jetson devices. 
Figure 14 shows how the use of pocl-remote accelerates the inference time by 47% 
compared to computing the whole Two Stream network on the Jetson Nano GPU with 
CUDA (also, reduces power consumption at the edge). 

 

 
Figure 15: Two Stream inference times when using pocl-remote compared to only using the device GPU 

Based on this, we designed the reconfiguration policy shown in the state transition 
diagram in Figure 15. The action recognition architectures involved in the presented 
system, in order from least to most accurate (and from most to least energy efficient), 
are as follows: 1) RGB 16 - 112 (Mode 1); 2) RGB 32 - 112 (Mode 2); 3) RGB 64 - 112 
(Mode 3); 4) Two Stream 64 - 112 (Mode 4).   

• The most power efficient alternative (RGB 16 - 112) is used when continuous 
(long) activities are recognized with high confidence. This enables reducing the 
system power consumption at the expense of losing some accuracy.  

• Mode 2 and 3 are active when identifying brief actions in regular operation. 
Depending on the remaining battery, a different Mode is selected. Note that 
Mode 3 (RGB 64 - 112) reaches higher accuracy at a greater energy cost. 
Switching to Mode 2 (RGB 32 - 112) when low battery levels are detected 
contributes to extend working time. 

• Finally, Two Stream 64 - 112 (Mode 4) is activated when FIVIS notifies that a 
critical action was identified with low levels of confidence. Therefore, the video 
again is analyzed with the most accurate alternative to confirm whether a life-
threatening situation really occurred.  

 
 Figure 16: State diagram of run-time reconfiguration policy  

Figure 16 shows an example of a reconfiguration triggered to confirm whether a fall 
occurred. Firstly, if only the RGB video is analyzed the system outputs that someone felt 
down with 0.27 confidence. Then the Two Stream network processes the RGB video, 
and the estimated optical flow (via pcl-remote) inferring that someone fell down with 0.99 
confidence. With this, false alarms are reduced and critical actions are correctly 
classified.  
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Figure 17: FIVIS reconfiguration to confirm critical actions 

Smart Grid 
Regarding UC9 (Smart-Grid), the video surveillance system resulting from our 
collaboration is dynamically adaptable.  The workflow of the system changes, taking into 
account the events that occur in the monitored facility and the logic of the program itself. 
So, for example, when the HumanDetector sub-component does not detect any target 
in the scene, the rest of the tasks included in the other sub-components of the system 
are not executed (green area in Figure 18). However, if it detects one or more targets, 
the tracking of these targets is carried out by the Tracker sub-component (blue area in 
Figure 18). Also, the execution of this other sub-component can trigger the generation 
of an alarm through the AlarmGenerator sub-component (red area in Figure 18). More 
details are given in Deliverable 5.2. 
 

 
Figure 18: Smart-Grid surveillance system component composition 

Our CPS has distributed processing between local nodes at the edge (Jetson platforms) 
and the central cloud server. At the edge, the local nodes are responsible for processing 
the video and streaming it to the cloud server. Figure 19 shows how the surveillance 
tasks and the processing are distributed between the nodes at the edge and the cloud 
server. 
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Figure 19: Re-configurable CPS architecture for Smart Grid CI protection 

In a CPS where all subsystems are networked, bandwidth is a critical resource for an 
operation that must be successful and reliable. However, video processing demands 
high data bandwidth, and it could cause delays in the transmission of alarms, or even 
video-surveillance results. In order to overcome this issue, the Smart Grid protection 
CPS is reconfigurable, including a QRM (Quality and resource management) 
component. In other words, our system changes its operation mode to adapt the amount 
of required resources according to the task or operation context. Table 1 lists the 
different operating modes, varying the video acquisition quality on each edge local node 
depending on the substation context. The QRM process is performed both at the cloud 
server and the local edge node levels: 
• QRM core: The decisions about the functioning mode of each of the local nodes are 

taken at the cloud server (Cloud in Fig. 18). This process takes into consideration 
aspects such as location and trajectory of the tracked person within the substation, 
distances to monitored perimeters and protection zones, distance from each camera 
and likelihood of finding the track within its FOV. Each time a decision is made about 
how each local node will operate; a command is sent specifying the required 
reconfiguration mode. 

• Video scaler: It is responsible for the adjustment of the quality of the captured video 
(spatial resolution and frame rate) from the surveillance camera on the local node 
according to the reconfiguration instruction received from the QRM core. 

As mentioned above, the different commands triggered by the QRM core of the cloud 
server result in re-configurations on the local nodes.  These different re-configurations 
or operation mode changes of the local nodes video scaling component are shown in 
Table 1. 
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Table 1: Edge re-configuration modes 

Edge operating 
modes 

Resolution (fps) Livestream video 
bandwidth 

Event(s) that 
triggers re-

configuration 

Mode 2  .1.1 1280x960 
(30)  .1.2 8,40 MB/s 

 .1.3 Confirmed 
intrusion 

 .1.4 Broken 
perimeter 

Mode 1  .1.5 640x480 (15)  .1.6 1,90 MB/s  .1.7 Posible intrusion 
 .1.8 Detection 

Mode 0  .1.9 320x240 (5  .1.10 0,41 MB/s 
 .1.11 Nothing 

relevant 
occurs 

 
Figure 20 shows a reconfiguration example for the Smart Grid protection CPS:  if nothing 
relevant happens (t1 in cam1 and t3 in cam2), the node operates in mode 0; if a person 
is detected (detection or pre-diction of the trajectory within the FOV of at least one 
camera), mode 1 is activated (t2 in cam1- blue area on the map - and t1 and t2 in cam2-
red area on the map); finally, mode 2 is activated with the intrusion in the secured 
perimeter (t3 in cam1- green area on the map). The aspects considered to carry out the 
reconfiguration of the nodes are the following: When a person is detected within the 
node FOV (t1 person within the FOV of the camera of local node 1 (cam1); blue area in 
Fig. 19-bottom), it changes its operation mode from 0 to 1. Next, when the trajectory of 
a tracked target points to the area of the predicted region with 95% confidence (Ellipses 
show the potential region in which with 95% confidence the track will be found in the 
next 200ms) being within the FOV of another camera (t2 with predicted trajectory within 
cam2 FOV; red area), the operation mode goes up to 2. Similarly, when the trajectory of 
a tracked target entries the perimeter of a secured area, the operation mode changes to 
2 (t3; green area). 

 
Figure 20: Reconfigurations example 

With respect to the overall system, reconfiguration is triggered to optimize the use of 
data bandwidth of the shared communication network in our multi-camera system. The 
use of data bandwidth directly depends on image resolution that is context-aware as 
shown in Table 1. Figure 21 shows a reconfiguration example for CPS cloud-edge 
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bandwidth use. Three local edges are dynamically reconfigured according to the events 
(arrow) of the monitored environment.  The gray area represents the bandwidth 
reduction (≈75%) with respect to no reconfiguration scenario. 
 

 
Figure 21: Bandwidth use vs reconfigurations 

4.5 Reconfiguration of Time Sensitive Network (TSN)  
Accurate and reliable time synchronization is key for guaranteeing deterministic Quality 
of Service in the presence of mixed critical traffics. Time synchronization is required not 
only in the end processing nodes, but also on the time-aware traffic shapers present on 
the forwarding nodes, to provide deterministic delivery. Early fault detection and fast 
switchover is required to minimize determinism violations. 
The generalized Precision Time Protocol (gPTP) defined on the IEEE 802.1AS defines 
protocol mechanisms to provide continuous monitoring of the synchronization status and 
overcome network eventualities, such link or node failures, including the grandmaster or 
network time reference.  
The monitoring mechanisms are described on Section 5.2.8. This section will discuss 
how these monitors are applied to adapt the behaviour of time-aware stations, starting 
from each individual active interface (port role). These mechanisms conform the so-
called Best Master Clock Algorithm (BMCA). 
The Best Master Clock Algorithm 
The Best Master Clock Algorithm (BMCA) determines the grandmaster (network time 
reference), as well as the behaviour of each time-aware station to spread the 
synchronization information along the network. As the breakup of this chain may imply 
determinism violations, the IEEE 802.1AS states that every TSN station must execute 
the BMCA periodically and be ready to replace the current grandmaster and provide 
synchronization to their peers in case of failure. 
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To this end, each time-aware station periodically compares itself with the grandmasters 
elected by their peers. The grandmaster eligibility is evaluated according to six 
attributes, namely the best master selection information, in the sequence listed on the 
table below: 

Table 2 

Attribute name Short description 

priority1 Most-significant priority declaration in the execution of 
the best master clock algorithm. 
Lowest values take precedence. Although all values are 
allowed, 0 and 255 are forbidden under normal operation 

ClockClass Traceability of the synchronized time (timing from GPS, 
Atomic clock, internal oscillator). 

ClockAccuracy Expected time accuracy 

offsetScaledLogVariance Representation of an estimate of the PTP variance 

priority2 Least-significant priority declaration in the execution 
of the best master clock algorithm 

Clock Identity The clock Identity is an 8-octet stream providing unique 
identification of the current node. 

These attributes can be classified as administrative or descriptive. Whereas descriptive 
parameters provide information regarding the precision capability, the administrative 
ones (priority1 and priority2) can be arbitrarily set and allow the control of BMCA for a 
given network 
The attributes of the elected grandmaster are propagated to the remote peers by means 
of Announce messages. Besides, each node participating on the election registers itself 
on the pathTrace field, conforming the time-synchronization spanning tree, which is the 
route followed by the synchronization information. 
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Figure 22: Announce message exchange and Best Master Clock election 

Besides, the Announce message propagation indicates the availability of the time-aware 
nodes present on the time-synchronization spanning tree. The Announce message is 
discarded after a given timeout (typically three times the configured announce message 
periodicity). The announce messages is not sent and not considered on reception if the 
propagation delay measurement is not completed successfully (i.e., asCapable flag is 
not true). Consequently, a link or node failure along the time-synchronization spanning 
tree results on its reconfiguration and eventually, on the election of a new grandmaster. 
The BMCA also should configure the port role on each active interface according to the 
resulted time-spanning tree. IEEE 802.1AS defines the following roles: 
 

Table 3 

Role Explanation 

Master Active interface sourcing synchronization information. 

Slave Active interface receiving and processing synchronization information 

Passive Active interface receiving synchronization information and backing the 
slave interface 

Disabled Non active interface or not available (PHY layer reporting disconnected 
status) 

 
Note that there is only one Slave Port on each interface, which corresponds to the 
interface with the shortest time-synchronization spanning tree. The Passive ports have 
longer spanning trees and back the Slave Port in case of network failure. This way, gPTP 
takes advantage of redundant network topologies. Master ports are present in the 
grandmaster and intermediate bridges and are responsible for spreading the 
synchronization information to attached peers. 
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Best Master Clock Algorithm application on UC3 and UC9 
The runtime configuration and the failover provided by the BMCA has been validated 
through different scenarios, considering the three-node ring deployment used on UC3 
and UC9. 

 
Figure 23: TSN ring deployment on UC3 and UC9. 

 
The gPTP configuration is summarized on the table below. The three TSN bridges have 
the same configuration and offer the same time reference (the internal oscillator). 
Consequently, the grandMaster eligibility is given by the lowest clockIdentity value. In 
normal function, this corresponds to TSN#08 node. If unavailable, the TSN#14 will take 
the grandMaster role and source timing to TSN#54.   

Table 4 

Parameter TSN#08 TSN#54 TSN#14 
priority1 250 250 250 

clockClass 13 13 13 

clockAccuracy 34 34 34 

offsetScaledLV 14208 14208 14208 

priority2 248 248 248 

clockIdentity aa:bb:cc:ff:fe:dd:ee:08 aa:bb:cc:dd:ff:fe:dd:54 aa:bb:cc:dd:ff:fe:dd:14 

 
To validate the BMCA, the port roles and the node configurations will be checked. 
Besides, the failover time will quantify the reliability against network failures. This 
measures have been considered along the time: 
To check the configuration and failover times, three different scenarios have been 
considered: 
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a) Normal function. The default network configuration and the initial convergence 
measures will be presented.  

b) Link TSN#08 – TSN#12 failure. In this scenario, the default synchronization path 
to the grandMaster is unavailable for TSN#12. The TSN#12 will readapt the port 
roles to receive synchronization from TSN#08 through TSN#54. 

c) Link TSN#08 -  TSN#54 failure. This scenario is similar than the previous one. 
However, the passive port on TSN#54 will automatically back the failed slave 
link, so the recovery is shorter. 

d) TSN#08 failure. This is the worst case scenario. In this case, the TSN#12 should 
become grandMaster and TSN#54 will readapt to receive synchronization from 
this node. 

4.6 RIE-based reconfiguration method 
Reconfiguration provides the principle on which autonomous systems can adapt to their 
changing environments. In a component-based system, the reconfiguration process 
consists mainly of adding or removing components, changing the connections among 
them or modifying their functional code. 
RIE (Runtime reconfiguration Implementation of Embedded systems) is a component-
based implementation methodology. It allows creating C++ components from an 
extension of the QRML DSL (SDSL, Service-oriented DSL) that was proposed in WP2 
[BERG20_1]. A generator creates a C++ implementation template in which components 
are implemented as classes that make use of the RIE library. RIE provides run-time 
reconfiguration capabilities that allow managing component implementations and 
configurations at runtime. Reconfiguration decisions are taken depending on some 
qualities that are traced at runtime.  
In the RIE-based methodology, a component may have several set points that define 
different implementations and configuration parameters. Every component is modelled 
with a C++ base class that define the component interfaces. All component 
implementations derive from this base class and share the same interfaces (provided 
and required services) and configuration parameters. The RIE library include several 
methods that allows access at runtime to the components and modify their set points.  
Each component may have different alternatives or implementations that can be 
exchanged at runtime. Each of these implementations represent a different component 
mapping of the application into a physical platform, this vertical composition may be 
changed dynamically in response to a monitoring result.  
In Figure 24, the RIE implementation strategy is shown. The RIE library provides the 
main infrastructure. For example, the methods that allow modifying the component 
allocation or accessing the component parameters are defined in this library. The basic 
components are derived from the RIE library classes. A basic component defines the 
interfaces and common parameters and qualities of a component. All the 
implementations of the basic component will share the same interfaces and common 
parameters/qualities. From this basic component, all the implementation are derived. 
These implementations could provide different algorithms or specific implementations 
for a particular hardware resource. They could also have specific parameters or 
qualities. For example, a Camera component could be a basic component. This 
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component could have several implementations (USB camera, Hardware camera, etc) 
that are derived from the base components and share the same interfaces. The base 
component and its implementations share a configuration list, a JSON string with all 
recognized component configuration. This list can be modified at runtime and new 
component implementations could be included. An example of camera configuration is 
presented in this code example: 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 24: RIE-based component implementation strategy 

 
Camera_configuration = [ 
 { "s0", {"RIE_Impl":"Camera","fps":30," RGB_W ":640, …  

{ "s1", {"RIE_Impl":"CameraUSB","fps":30," RGB_W ":640, …  
{ "s2" ,{"RIE_Impl":"CameraHW",… 
  

The list defines three set points (s0, s1 and s2). At runtime, the RIE library provide a 
method (reconfigure) that allows modifying the component set point and parameters. 
Some component parameters are defined in the RIE methodology. For example, the 
“RIE_Impl” parameter defines the derived class that will implement the basic component 
in a particular set point.  
During the last year, the RIE reconfiguration strategy has been improved. RIE-based 
reconfiguration approach is based on the instance concept. An instance is associated 
with a base component and acts as pointer to the current component implementation. 
Therefore, service interfaces remain connected in the same way during the whole 
execution process, while instances may change its associated component dynamically. 
This approach improves other strategies that requires redefine services during 
reconfiguration.  
Components may have several set-points or configurations. During the component 
initialization process, a default set-point is assigned. RIE reconfiguration process 
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consists in changing the current component set-point to another configuration from 
configuration list. 
The system execution process starts with the initialization and blocking of the 
components, therefore they still cannot provide services. Then the component execution 
is initialized, so all component services become active. When reconfiguration begins, 
only components which must be reconfigured are stopped. Afterwards, a new  instance 
of the reconfigured component is associated to the new component version. To begin 
the execution of the reconfigurated component, it is necessary to wait until old 
component provided services have already finished. This even is indicated with an 
specific flag. When the flag indicates that old component provided services have ended, 
the new components begin the execution, starting to provide services. Finally, the old 
component version is removed. 
 

 
Figure 25: RIE Reconfiguration mechanism 

 
RIE also supports edge component implementations. In this case, the component 
configuration has to include three parameters: 

• RIE_Impl: This parameter defines the local implementation of the remote 
component. This implementation is a wrapper that includes the local 
infrastructure that is required to execute remote procedures. For this purpose, 
grpc services are used. https://grpc.io/ 

• RIE_RemoteSetPoint: Set point of the remote component. 
• RIE_URL: The component configuration does not define the remote server that 

will provide the component services. The configuration only includes a label 
(RIE_URL) that has to be defined at runtime. During reconfiguration, the RIE 
library uses this label to find the remote server in which the component is 
implemented.  

RIE-based methodology supports remote component implementations and its dynamic 
reconfiguration. There are two different platforms (local system and remote component 
server) and a DNS server to translate from the identifier that is included in the component 
configuration parameter to the component server IP address and port where component 
is implemented, as shown in next Figure. 

https://grpc.io/
https://grpc.io/
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Figure 26: Remote component infrastructure 

 
Local system is implemented in the host platform that manages system reconfiguration, 
while the remote component server implements a set of components that may be used 
on local platform. Component server IP address and port are unknown at design time, 
since components are developed independently from the application. To solve this 
problem, a configuration parameter (“urlSink”) is included to specify the component 
remote configuration. Furthermore, component configuration may include the remote 
implementation set-point with the configuration parameter “RIE_Impl_Remote”. 
At runtime, a DNS server receives queries with an “urlSink” component parameter and 
returns the IP address and the port to establish the connection between local platform 
and remote component server. After that, the communication between both platforms is 
initiated. By default, component implementation connections uses gRPC services for 
remote procedure calls, although other approaches (e.g. Linux sockets) are also 
available. 
RIE methodology introduces two elements (RIEInterfaceSource and RIEInterfaceSink) 
for remote component connection. A RIEInterfaceSink object performs a rpc call 
received by a  RIEInterfaceSource object and vice-versa.The approach is presented on 
Figure 27. 
The RIEInterfaceSource class receives an rpc call that is transformed into a call to a 
certain component interface. The RIEInterfaceSink class is a specific component 
interface that receives requests to provided services and transforms them into remote 
procedure calls. This approach facilities automatic component implementation 
generation. In fact, the remote versions can be automatically generated from the 
component SDSL model. 
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The remote component implementations use remote interfaces to provide and require 
services. These remote interfaces are classes deriving from the component interfaces, 
where service calls are implemented with RIEInterfaceSource and RIEInterfaceSink. 
Therefore, the remote interface transforms a remote call into a local service call, due to 
the existence of a component implementation both on the local platform and on the 
server. 
 

 
The local platform implementations are common to all remote implementations because 
the remote implementation is an instance of the local component in another platform. In 
fact, they are also managed in the same way that local instance. For this reason, there 
is a RIE class, RIERuntimeInterface, that is responsible for executing the remote 
component runtime management functions on the component server, allowing local 
platform to access the remote component in the same way as if it was a local component. 
In case of remote/edge components, the component reconfiguration process requires 
seven additional steps: 

1. When the local component is in a safe state, the local implementation is modified. 
The new local component implementation is an instance of a wrapper component 
that is used by all possible remote/edge implementations. 

2. The RIE library read the RIE_URL parameter and requires from the Component 
Implementation Server (CIS) all the information related with the RIE_URL 
parameter. In the RIE methodology, the CIS server has a similar role to a DNS 

Figure 27:  Remote component calls 
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server. The CIS server defines the URL address of the server that will provide 
the component services as well as the component name in the remote server. 

3. The local RIE infrastructure requires to the remote RIE infrastructure information 
about the remote component. 

4. The local provided services are connected to the remote component services. 
5. The remote required services are connected to the local component required 

services. 
6. The remote component is reconfigured to the set point that is defined in the 

RIE_RemoteSetPoint parameter. 
7. The remote component is included in the component list of the local system. After 

this, it will manage in the same way that other local components.  
Although the current RIE implementation version only supports a remote-procedure-call 
infrastructure (e.g. gRPC), the methodology can integrate different communication 
strategies in the same application (e.g gstreamer for some interfaces and gRPC for 
others). 

4.7 Reconfiguration in Managed-Latency Edge-Cloud 
The Managed-Latency Edge-Cloud platform (see deliverable D4.5 for more details) is a 
self-adaptive system which aims at providing soft real-time guarantees on response time 
to services deployed in an edge-cloud infrastructure. To this end, the platform controls 
admission and deployment of services submitted for execution in the cloud, periodically 
monitors performance of the deployed applications, and make short-term predictions of 
service performance. This allows the system not only to intervene after detecting a 
violation of application requirements, but also to act proactively ahead of time if needed. 
At the highest level of abstraction, the managed-latency edge-cloud infrastructure 
implements a MAPE-K self-adaptation loop (shown in Figure 28). A single adaptation 
loop is used to manage both the initial deployment as well as redeployment of services. 
In fact, redeployment is nearly identical to initial deployment—calculation of real-time 
requirements is done periodically and takes into account the current placement of 
services to prevent unnecessary relocations. 
Each phase of the adaptation loop has a distinct responsibility: 

• Monitoring. The monitoring phase is responsible for keeping the internal model of 
the system up-to-date. In the context of the edge-cloud platform, the controller 
monitors the state of the Kubernetes (K8S) cloud (nodes, pods, and other entities 
such as services and deployments) as well as the state and performance of 
individual applications, e.g., how often. 

• Analysis. The analysis phase is responsible for finding a deployment configuration 
(an assignment of application components to nodes in the cloud) that satisfies 
performance guarantees. A Constraint Satisfaction Problem (CSP) solver is used to 
find feasible solutions (in which timing requirements can be expected to hold), while 
the controller is responsible for evaluating the feasible solutions and choosing from 
among them. 

• Planning. In the planning phase, the controller determines if the desired 
configuration differs from the actual configuration and if necessary, prepares a 
sequence of actions (tasks) to bring the cloud to the desired state. 

• Execution. In the execution phase, the controller makes actual changes to the cloud 
platform, following the plan of actions produced in the planning phase. In many 
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cases, the actions can be executed in parallel, except when there are explicit 
precedence constraints among tasks. 

The four phases execute simultaneously, sharing data through a central knowledge 
component. In its simplest form, the knowledge component can be represented by a 
single centralized database. However, it is entirely possible for the knowledge 
component to interface with several storage back-ends that can be used for different 
purposes. 

 
Figure 28: Self-adaptation loop of the managed-latency edge-cloud platform. 

Note that this control loop applies only to management of latency in the edge-cloud 
platform. FitOptiVis systems in the role of edge-cloud applications will implement 
application-specific higher-level (higher-latency) control loops responsible for 
configuring the set-points (e.g., resource limits, desired framerate) for a lower-level (low-
latency) control loop responsible for achieving the desired set-points on the hardware 
components. 
 
4.7.1 Detailed Platform Architecture 
The architecture of the edge-cloud platform shown in Figure 29 comprises a number of 
modules, each with distinct responsibilities in the control loop. Yellow modules (need to) 
run on the master node, green modules do not (need to) run on the master node, and 
blue modules represent a middleware layer. We now elaborate on the role of individual 
modules and their interaction with other modules: 

• Event Cache. The module is responsible for persistent storage of important events, 
such as changes in application deployment (requests to deploy or undeploy an 
application) and connections from unmanaged components. Unmanaged 
components execute outside the edge-cloud platform (e.g., a hardware accelerator) 
and connect (as clients) to the managed components executing in the cloud. 
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• Knowledge. Provides data storage and query capabilities to modules directly 
responsible for implementing the MAPE-K control loop. Knowledge data generally 
concerns cloud nodes (and their subtypes), application types and instances, and 
component types and instances. 

• Cloud Monitor. Implements the monitoring phase of the MAPE-K control loop by 
periodically collecting information about the state of the nodes in the cloud, network 
latencies, and unmanaged components. 

• Analyzer. Implements the analysis phase of the MAPE-K control loop and is 
responsible for finding an application deployment plan that satisfies the timing 
requirements of all deployed applications. The module is internally split into Solver 
and Predictor submodules. 
• Solver. Responsible for finding the best deployment plan within a given time 

limit. Takes into account node utilization, network latencies, and predictions of 
component performance in deployment scenarios considered. 

• Predictor. Predicts performance of managed components, taking into account 
the hardware they are running on and the load induced by other components 
running on the same hardware. 

• Planner. Implements the planning phase of the MAPE-K control loop, which means 
identifying differences between the current application deployment and the desired 
deployment. Constructs an ordered execution plan of tasks that need to be executed 
to transition the system to the next state. 

• Cloud Executor. Implements the execution phase of the MAPE-K control loop by 
executing planned tasks either on the Kubernetes cloud, or on the other (Managed 
and Unmanaged) controllers. 

• Managed Controller. Responsible for invoking probes on managed components 
and for reconnecting dependencies of managed component instances. Can access 
all Node Controllers at runtime. 

• Unmanaged Controller. Responsible for reconnecting dependencies of 
unmanaged component instances from one managed instance to another, invoking 
probes on the client (which invoke managed components) to observe managed 
component performance including communication latency, and monitoring the state 
of unmanaged components. 

• Node Controller. Runs on each node and monitors the utilization of a particular 
node and of all the components executing on that node (using standard K8S facilities 
for resource monitoring). In addition, it serves as a proxy to managed component 
instances for the Managed Controller. 

• Probe Controller. Serves as a central entity through which all requests for probe 
invocation (on Managed and Unmanaged components) have to pass. Caches and 
forwards the results of probe invocations. 

• Network Controller. Responsible for making changes in network configuration and 
for collecting network utilization data and connection latencies. 

On each node, the information about a service obtained during the assessment phase 
is used to assign each deployed service the resources needed to perform its tasks within 
the timing constraints. This resource allocation is strictly enforced using features of the 
operating system, containerization technology, or the virtualization platform. Specifically, 
we rely on resource allocation features of Docker and Linux cgroups. This is necessary 
to prevent services from exceeding their allocated share of resources (due to, e.g., a 
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sudden spike in the number of clients), which could have a negative impact on the 
execution time of other services. 



 
 

 
© FitOptiVis Consortium (Public Document) 

 

WP4 D4.3, version 0.1 

FitOptiVis 

ECSEL2017-2-783162 

 
Figure 29: Detailed architecture of the managed-latency edge-cloud platform. 
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4.7.2 Performance and Interference Models 
To adaptively control deployment and redeployment of components in edge-cloud and 
thus to probabilistically guarantee end-to-end response time, the platform needs to build 
a model of application performance. This model needs to capture several modes of 
execution: baseline performance, when the application is exercised in isolation, 
performance under constrained resources, and performance in presence of other co-
located applications sharing the physical hardware through virtualization. 
Because we do not require the developer to provide the platform with apriori knowledge 
about application performance and resource requirements, the cloud platform needs to 
build the application performance model using experimental evaluation. 
The model then is used to predict application performance in different situations, 
especially during admission control (when deploying a new application), and when 
optimizing the deployment of existing applications (to ensure that real-time guarantees 
are met, or to manage the utilization of cloud resources). 
An important aspect of performance that the cloud platform needs to take into account 
is performance interference on shared resources (CPU caches, memory and IO 
bandwidth, etc.) when co-locating multiple virtual machines and/or containers on the 
same physical machine. 
On the other hand, we generally consider the underlying network bandwidth unlimited 
for modelling purposes. The rationale behind this assumption is that edge-cloud 
applications are likely to be latency-sensitive, but not necessarily bandwidth-intensive—
that would defeat the primary purpose of edge-cloud, which is to reduce communication 
latencies due to distance. 
We also assume that edge-cloud infrastructure can generally be private, i.e., with 
significant level of control (like in hospital use cases). Consequently, we assume that 
the network infrastructure can be configured to assign time-critical network traffic a QoS 
class with high priority; that latency-sensitive services with guaranteed response time 
requirements will not saturate the network with bulk transfers; and that applications with 
excessive bandwidth requirements can be dealt with by proper network infrastructure 
design. In particular, if latency-sensitive traffic needs to coexist with bulk traffic on the 
same network infrastructure, we assume that solutions based on Time-Sensitive 
Networking will be used. 
 
4.7.3 Performance Prediction of Co-located Workloads 
One of the key responsibilities of the Analyzer module (see platform architecture in 
Figure 29) is finding and analysing deployment alternatives. The analysis primarily 
concerns application performance prediction, providing the adaptation controller with 
data for making decisions—both when considering an application for admission as well 
as when reacting to violation of application’s timing requirements. 
The Predictor part of the Analyzer module uses a novel performance prediction 
algorithm which is based on statistical characterization of application performance 
measurements followed by a similarity comparison, revealing performance 
dependencies between background workloads (i.e., services). 
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We first use performance measurements to build a structured data set and the, 
whenever a performance prediction of a particular scenario is needed, the relevant 
prediction data are extracted into a linearized data-fitting model. This model is then 
solved by a constrained least-squares method, giving a reliable order statistics estimate 
of application performance, including its fidelity. 
To build the initial data set, we perform a number of measurements for a number of 
scenarios involving one or more workloads. There is always a scenario in which each 
workloads executes in isolation, without any other workloads running in the background. 
For each workload, we also include various combinations of background workloads. 
Because this may quickly become computationally infeasible, we generally focus on 
collecting information for pairs of co-located workloads, which reveals first-order 
performance impact, i.e., how applications influence each other on given hardware 
platform. Scenarios involving three or more workloads are sampled depending on 
available resources. 
For each scenario, we collect measurements on a number of parameters which 
characterize the application behaviour. In addition to response time, this includes CPU 
utilization, number of I/O operations, and memory utilization. To ensure robustness of 
the predictor, each scenario is measured multiple times to properly sample the influence 
of factors that can influence the measured parameters, but are beyond our control, such 
as virtual memory layout, file system state, or just-in-time compilation. With the initial 
data collected, we can start predicting application performance in different scenarios. 
The prediction algorithm consists of three phases, and is summarized in the schema 
shown in Errore. L'origine riferimento non è stata trovata. Errore. L'origine 
riferimento non è stata trovata.. Here we discuss the individual phases in more detail: 

1. Data pre-processing. The first phase represents all computations that can be 
performed apriori to save the computational costs in later phases. The goal is to 
compute a number of statistical characteristics (for each of the given scenarios) 
in order to capture dependencies of all parameters of interest on the 
measurement conditions. This includes information about statistical distribution 
of the measurements, i.e., the sample mean and median, selected sample 
percentiles, standard and relative deviations, standard error, and the difference 
between the sample maximum and minimum values. 
While the characteristics such as mean or median capture typical behaviour, the 
sample maximum and minimum capture information about extremes. The 
difference between the typical and extreme behaviour is used to effectively 
penalize measurements with lower fidelity, improving performance prediction 
reliability. 
We also compute various quantities that allow revealing dependencies between 
performances of different workloads. In particular, these include slow-down 
parameters corresponding to the difference between sample percentiles of 
measured parameters for cases when a workload executes in isolation and when 
it executes together with other workloads. 

2. Task fitting. Given the initial data, their statistical characterization, and a user-
specific prediction requirement (i.e., a question), we first need to detect 
precomputed scenarios relevant for the prediction. We allow two types of 
scenario questions: 

• Q1: performance prediction for one of the already tested workloads, Wi. 
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• Q2: performance prediction for a new workload, Wn+1, for which we have 
data measured in isolation. 

The situation is simpler for Q1. The prediction must be based on the statistical 
characteristics of the scenarios involving Wi. We therefore build a prediction 
model using all scenarios involving Wi, except the one in which Wi executes in 
isolation. This gives us a data fitting problem, modelling the unknown correlation 
between the question and the preselected initial scenarios, which we then solve 
using the constrained least-squares method with non-negative constraints 
(NLS). 
For Q2, the prediction is based on finding an existing workload Wj that most 
closely resembles the new workload Wn+1. To find such a workload, we first 
compute the statistical workload characterization (see phase 1) for the scenario 
in which Wn+1 executes in isolation and compare it to characterizations of other 
workloads executing in isolation. Using some similarity measure, e.g., a weighted 
vector norms of the difference between mean, median, and deviation for the most 
relevant measured parameters, we look for the lowest difference (best match), 
producing Wj. Finally, we incorporate the statistical characterization of Wn+1 in 
the data set and “rephrase” Q2 as Q1 with Wj in the role of Wi serving as a proxy 
for the new workload Wn+1. 

3. Data-based prediction. In the last phase, we use a weighted combination of 
workload dependencies to predict the behaviour in the scenario from Q1 or Q2. 
Specifically, we estimate percentiles of expected performance of Wi in Q1 by 
shifting the percentile observed for Wi executing in isolation by a linear 
combination of estimated weighted slowdowns. 

 
Figure 30: Overview of the performance prediction algorithm. 
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The interactions among co-located services sharing the underlying physical resources 
are generally complex, and often non-linear—especially when the physical resources 
are nearing exhaustion. Consequently, the prediction accuracy varies with different 
combinations of applications and resources used, and cannot provide actionable results 
for all possible scenarios. 
To ensure that the predictor can be used with confidence within the adaptation loop, it 
is critical to establish the predictor’s operational boundaries and ensure that the 
managed system stays within the boundaries. The boundaries can be expressed as 
limits on the utilization of the CPU, memory, and IO resources used to characterize the 
workloads. 
While our system currently does not support automatic discovery of the operational 
boundaries, our initial evaluation indicates that they could be established experimentally 
for a particular platform. We expect that this could be turned into an automated 
procedure. 
The work presented here has been accepted for publication in the Journal of Systems 
and Software. 

4.8 Situation-aware reconfiguration in closed-loop control 
While vision is an attractive alternative to many sensors targeting closed-loop 
controllers, it comes with high time-varying workload and robustness issues when 
targeted to edge devices with limited energy, memory and computing resources. 
Replacing classical vision processing pipelines, e.g., lane detection using Sobel filter, 
with deep learning algorithms is a way to deal with the robustness issues. At the same 
time, hardware-efficient implementation is crucial for their adaptation for safe closed-
loop systems. However, while implemented on an embedded edge device, the 
performance of these algorithms highly depends on their mapping on the target 
hardware and situation encountered by the system. That is, first, the timing performance 
numbers (e.g., latency, throughput) depends on the algorithm schedule, i.e., what part 
of the AI workload runs where (e.g., GPU, CPU) and their invocation frequency (e.g., 
how frequently we run a classifier).  Second, the perception performance (e.g., detection 
accuracy) is heavily influenced by the situation -- e.g., snowy and sunny weather 
condition provides very different lane detection accuracy. These factors directly affect 
the closed-loop performance, for example, the lane-following accuracy in a lane-keep 
assist system (LKAS). 
The key steps involved in the situation-aware design and reconfiguration are [DE21]: 

1. Situation definition: Situations are combinations of environmental factors that 
potentially influence closed-loop performance. Figure 31 gives an example 
illustration of a situation definition for an LKAS considering lane types, road 
layouts and different weather or environmental conditions. 
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Figure 31: Situation Definition for an LKAS 

 
2. Situation-aware Characterization: The goal is to identify the set of LKAS 

parameters that perform the best under a specific situation at design time. First, 
we determine the system parameters sensitive to the operating situation using 
Monte-Carlo simulations of the entire system using the HiL setup in the IMACS 
framework. We observe that the approximations in the image signal processing 
(ISP), region-of-interest (ROI) selection in perception and vehicular speed 
selection in the controller are the system parameters that heavily influence the 
closed-loop QoC. We will refer to these parameters as configurable knobs. 

3. Situation identification: For selecting the best-tuned knobs, we need to identify 
the situations under which LKAS is operating at runtime. For this, three different 
light-weight CNN classifiers (scene, road & lane) are considered based on the 
Resnet-18 architecture, as shown in Figure 32 (which also gives a brief overview 
of the three classifiers implemented in NVIDIA AGX Xavier). 

Figure 32: Situation identification and classifiers details. 

4. Dynamic runtime reconfiguration: For runtime reconfiguration, the input frames 
are analyzed first, and the operating situation is determined using the classifiers 
identified for a situation. Post situation identification, best situation-specific knob 
tunings are selected based on the situation-aware characterization. Knobs are 
then (re-)configured based on the situation as shown in Figure 33. 
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Figure 33: Dynamic runtime reconfiguration and HiL setting for LKAS 

A situation-aware design of AI perception where the idea is to define the situations by a 
set of relevant environmental factors (e.g., weather, road etc., in an LKAS, shown in Fig. 
30) provides robust LKAS designs with 32% better performance compared to traditional 
approaches. We design the learning algorithms and parameters, overall hardware 
mapping and schedule, taking the situation into account. We show the effectiveness of 
our approach considering a realistic LKAS case study on heterogeneous NVIDIA AGX 
Xavier platform in a hardware-in-the-loop (HIL) validation using the IMACS framework 
(illustrated in Figure 34). 
The IMACS framework (http://www.es.ele.tue.nl/ecs/imacs) consists of a simulation 
engine, an interface between the simulation engine and design-time tools like MATLAB 
and SDF3, and an interface between the simulation engine and run-time implementation 
either as software or in hardware. The simulation engine simulates the physics, 
environment, sensors and actuators. Algorithm design and analysis are done using 
design-time tools like MATLAB and SDF3. Once we have a good design, the codes are 
generated or developed and simulated in a software-in-the-loop framework. Further, the 
codes are validated by an implementation in the NVIDIA platform and an HiL simulation.  



 
 

 
© FitOptiVis Consortium (Public Document) 

 

WP4 D4.3, version 0.1 

FitOptiVis 

ECSEL2017-2-783162 

 
Figure 34: IMACS framework 

Situations are created in the physics simulator, and the software simulated in IMACS 
adapt to the situations by dynamic runtime reconfiguration. 
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 Runtime Monitoring, Profiling and Measuring 
This chapter describes the monitoring, profiling and measuring support developed within 
the FitOptiVis project, and also reports practical setups related to FitOptiVis use cases. 
First, a reference platform for monitoring systems in FitOptiVis is described: this platform 
allows to highlight how specific monitoring requirements are going to be addressed from 
partners. Then, some enabling solutions to perform monitoring in FitOptiVis are 
described: their development comes out after the analysis of requirements coming from 
use-case providers, WP3 (monitor to refine design-time models), and WP4 (monitor for 
runtime management), and their goal is to support on the development of monitoring 
systems. Finally, instances of monitoring systems constituting the FitOptiVis platform 
are described, following the proposed reference platform. 
With the goal of properly identifying the monitoring techniques developed within the 
FitOptiVis project, a reference architecture of a cloud-edge computing system has been 
considered, shown in Figure 35. In this type of architectures, monitoring techniques can 
span at different levels, from cloud to edge; moreover, for each level a monitor can be 
software of hardware, albeit mainly requiring the synergy of both. This means that the 
development of monitoring systems in FitOptiVis scenarios, and corresponding system-
level services, involves several trade-offs from architectural point of view. For these 
reasons, a reference model of a monitoring action has been developed, with the sake of 
clarity. It is reported in Figure 35 and shows the actors involved in a monitoring action. 
 

 
Figure 35: A reference architecture for Cloud-Edge computing systems [ZAN18] 
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Figure 36: Reference model of a monitoring action. Independently on how many layers are involved, some 
components can be always identified: a Unit Under Monitoring (UUM), a monitoring infrastructure that 
extracts raw information from the UUM by means of hardware/software mechanisms, and a Data Storage, 
Analytics and Visualization part that organizes, filters and parses the raw information to obtain the 
monitoring information 

An overview of the connections between the work of Task 4.2 partners and the FitOptiVis 
use-cases is reported in Table 5. 

Table 5: Task 4.2 participant works vs Use-cases 

 UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 

ITI    X       

CUNI  X X X     X X 

TUT  X         

UC          X 

UNIVAQ X          

UNICA X          

UNISS X          

UTIA        X   

UGR   X      X  

TASE          X 

HURJA  X X        

NOK  X         

HIB   X        

7SOLS         X  

 
The work of Task 4.2 provides the foundation for the development of a tool to guide 
designers in the selection of monitoring systems for their applications. The tool is 
available at https://monicatool.cloud [VAL2_21]. 

https://monicatool.cloud/
https://monicatool.cloud/
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5.1 Enabling Solutions to perform monitoring in FitOptiVis 
In the context of Task 4.2, basing on the requirements provided by (i) Use case 
providers, (ii) WP3 tasks (related to design methods refinement using runtime 
information) and (iii) WP4 tasks (related to runtime actions starting from runtime 
information), some solutions have been identified and developed in order to support on 
the construction of monitoring systems. 
In particular, CUNI developed FIVIS, a common data storage, visualization, and analysis 
platform. UC developed an extension to DSL that allows the expression of monitoring 
requirements during the model creation using the DSL [D2.1]. UNIVAQ, UNISS and 
UNICA developed JOINTER, a framework to build custom monitoring systems for edge-
computing platforms. This section reports details about these enabling solutions. 

5.1.1 FIVIS data storage, visualization and analytics platform 
Monitoring is one of the key components of adaptive systems based on the MAPE-k 
loop paradigm because it provides basis for adaptation decisions. In general, monitoring 
requires the ability to periodically store a set of system-specific metrics associated with 
a point in time or with an observable state of a system, and to present the collected data 
to consumers. 
In the simplest case, the data can be consumed in visual form through plots and domain-
specific dashboards, and adaptation can be driven by human decisions. Alternatively 
(and more in line with MAPE-k paradigm) the data can be processed and analysed by a 
machine and acted upon in an autonomous fashion. This requires that the monitoring 
system also provides means for accessing the data (e.g., through time-based queries) 
to external agents. 
Depending on the frequency and the amount of data stored for each observation, the 
amount of data matching a particular query may become too large to send (potentially 
repeatedly) to clients across network for analysis. A monitoring system should therefore 
support some form of scalable data analytics to avoid transporting huge amounts of data 
to clients and instead transport only aggregate analysis results. 
To this end, CUNI provides a common data storage, visualization, and analysis platform, 
FIVIS, which will provide partners with the ability to store data in a central location, build 
custom dashboards, execute analytic tasks, and query both data and analysis results. 

5.1.1.1 Overview 
The FIVIS system provides support for aggregating data from multiple sources and 
enables executing customized analyses on the data to provide both content for 
customized dashboards and reports consumed by humans, as well as transformed data 
streams suitable for consumption by machine, e.g., components responsible for 
adaptation of the monitored system. 
To aid with creating custom visualizations, the system provides predefined widgets for 
displaying data using different types of charts and widgets implementing control 
elements in dashboard user interface (e.g., time range selector, signal selector, chart 
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legend). Specific visualizations are created through a web-based interface provided by 
the system. 
The system is intended to interact with different kinds of users. An end user is a 
consumer of custom visualizations and reports embedded in a use-case specific user 
interface panel. An end user is expected to select or change domain-specific parameters 
of the visual outputs, but not to define new visualizations. 
These are defined by an administrator (use-case or partner specific) by configuring and 
deploying panels into the use-case specific user interface, choosing which data sets to 
display in which panel. No programming skills are necessary. 
The final type of user is a contractor, who is responsible for creating visualization 
templates. These templates instantiate widgets and other elements that make up a 
particular panel. Each template is a snippet of JavaScript code which binds all the 
elements of a panel together. A contractor is expected to possess a basic knowledge of 
web development technologies, such as JavaScript, HTML, and CSS. 
Architecture 
The architecture of the system is shown in Figure 37Figure 37. The system consists of 
a server part (hosted by the system provider) and a client part, which executes in a web 
browser. 
The server part is responsible for managing the data and for providing API endpoints for 
different tasks and users. A data entry API endpoint (Data Sink) allows external systems 
to store (push) signal data into the system. Alternatively, the system can be customized 
to use an application-specific “data pump task” to pull data from an external system. 
Signal data obtained through observation (and pushed to the system) represents master 
data. The system keeps the master data in a MySQL database, but only works with data 
in a temporary storage provided by the ElasticSearch framework. All master data are 
initially indexed by ElasticSearch, but all data derived from the master data (filtered or 
smoothed data, trends, etc.) are only kept in the temporary storage. 
To ensure that the visualization widgets in the client remain responsive when dealing 
with large data sets, the system needs to avoid sending all the data matching a query to 
the client for rendering. Instead, the system computes all aggregates on the server side 
and only sends to the client data points that will be actually visible. This requires 
computing a significant number of aggregates in a short time (in response to information 
about the user’s viewport and selected data). 
To this end, the system uses a combination of the ElasticSearch framework, which 
serves as a distributed noSQL database providing near real-time searches and 
aggregates, and the Spark framework, which provides scalable computational platform 
for data analytics. Analytic data can be included in visualizations and even though they 
can be always recomputed from master data, they are kept in ElasticSearch to improve 
performance. Using ElasticSearch and Spark allows scaling the computational 
resources as necessary to provide smooth user experience. 
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Figure 37: Architecture of the FIVIS system 

 
Data Model 
The system defines a simple meta-model for sensor data, i.e., the data stored 
persistently in a database. The meta-model is shown in Figure 38 below. The data is 
conceptually organized into uniquely identified signal sets. Each signal set groups one 
or more signals, where each signal represents a stream of typed values, e.g., readings 
from a sensor. 
Each signal set is described by a schema, which consists of an ordered set of signal 
descriptors, one for each signal. A signal descriptor captures the signal name and the 
type of values represented by the signal. The system currently supports logical, numeric, 
textual and temporal values, as well as base-64-encoded binary objects. 
The actual signal data is stored in records, each of which contains an ordered set of 
typed values. The ordering of values corresponds to the ordering of signals in the 
schema. The system does not interpret the data in any way—the only requirement is for 
each record to have a unique identifier for which ASCII ordering is well-defined. The 
ordered identifiers allow the system to determine if and where new records with signal 
data were inserted, which is necessary for proper scheduling of data analysis tasks—if 
new records are appended after the existing data, the system may only schedule an 
incremental analysis for the new records. If (for some reason) new records are inserted 
in between existing records, the system may need to recompute the analyses for all 
records. 
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Any other interpretation of the data (including whether the data represent a time-series 
or just a sequence of values without any notion of time) is left to the analysis tasks and 
the visualization templates. 

 
Figure 38: Meta-model of master (sensor) data in persistent storage 

Schema Design 
Apart from the basic structuring of data into signals and signal sets, the system does not 
impose any other constraints on the data. However, it is important to keep in mind that 
the system is primarily intended for storing time-series data and to avoid treating signal 
sets as tables in a relational database. 
The key difference is that in a relational database, a table typically represents an entity 
type, and each row of a table represents (part of) a single entity (uniquely identified by 
the values of the primary-key attributes). The purpose of queries in a relational database 
is to find (or update) the state of the entities matching criteria expressed as restriction 
over attribute values. 
In a time-series database (FIVIS), a signal set represents an actual entity (a data-
producing process with its own timeline), uniquely identified by the signal set name. 
Each record (row of signal values) in a signal set then reflects the state of the entity at a 
certain moment. The purpose of queries in a time-series database is to restrict the set 
of signal records for a known entity to a specific time frame. This difference needs to be 
taken into account when designing the schema for storing sensor data in FIVIS. 
The best way to structure data into signal sets is to think of signal sets as values of 
signals produced "at the same time" by a single process. This means that all signal 
values are temporally-correlated, i.e., associated with the same moment. If there are 
multiple processes producing different signals, they should be stored in separate signal 
sets, because a signal set identifies a process or an independent timeline. 
For example, let us consider that we need to store data from a system monitoring agent. 
The agent monitors the utilization of system resources (e.g., CPU utilization, I/O 
bandwidth, memory, etc.) and uses different threads to sample performance counters 
corresponding to different resources. In this case, each thread represents an 
independent activity with its own timeline. Consequently, the data produced by each 
thread should be stored in a different signal set, because each thread will associate its 
own timestamp with the values stored in a record. In contrast, if the agent sampled all 
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performance counters from a single (main) thread, then the corresponding schema 
would consist of a single signal set. If such a single-threaded agent ran on multiple 
devices, then the schema should contain one signal set for each device. 
In summary, the entities in a time-series database correspond to data-producing 
processes. The state of an entity at a given time is represented by a set of attribute 
values, and a sequence of such sets captures the evolution of a single entity in time. 
This can be directly mapped to FIVIS concepts of a signal set (a data-producing process 
with its own "timeline"), a signal (named process attribute with a specific value type), 
and a record (set of attribute values at a given time). 
Just like it is possible to store time-series data in a relational database (including 
timestamp in the primary key along with entity identifier), it is also possible to store data 
from multiple data-producing processes in a single signal set. This is, however, not a 
good or recommended schema design. The signal records in such a signal set would be 
sparse (i.e., only a subset of signals would be valid at the time associated with the 
record), which greatly complicates time-series data visualization and analysis, because 
data processing code cannot rely on all signal values to be valid all the time (e.g., when 
computing derived signal from two other signals in a record). Visualization queries then 
need to perform database-like filtering to obtain the required data, which may turn out to 
be either impossible or extremely inefficient on storage backends optimized for time-
series data. 

5.1.1.2 Data Server Interface 
The Data Server part of the system provides an interface for data entry. Two modes of 
operation are envisioned (but only one is implemented so far): 

• Push mode. This mode allows an application to push sensor data to the system 
in form of JSON payload transmitted through a REST endpoint. The frequency 
of updates and the amount of data transmitted is determined by the application 
(device) and typically depends on the capacity of internal buffers, connectivity, 
and available processing capacity. 

• Pull mode. This mode is intended for devices that cannot push data to a REST 
endpoint, either because they completely lack a network stack, or because they 
lack resources to issue an HTTP request with JSON payload. In this case, the 
system can be customized to poll the device through a remote agent (e.g., IoT 
gateway) which would be responsible for obtaining the data from the device 
locally (in a device-specific fashion) and converting it to the expected JSON 
payload. No device-specific data formats or agents have been required so far. 
Partners interested in using the system in this mode should contact CUNI for 
assistance. 

Signal Data Payload 
The JSON document with sensor data is represented either by a single payload object, 
or an array of such objects. A payload object is a dictionary with four keys, some of 
which are optional (depending on the circumstances): 

• partnerId: string, identifies a particular partner. This field is required. 
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• signalSetId: string, identifies the signal set to which to store the data. The value 
of signalSetId together with partnerId make up a unique identifier (in the form 
"partnerId:signalSetId") of a signal set in the system. This field is required. 

• schema: object, defines the name and type of values for each signal in a signal set. 
Schema is an object with named slots, where the name of a slot represents the 
signal name and the string value of a slot denotes the signal type. The following 
types are currently supported: 

o boolean, a logical type, accepts boolean values true and  false, 
o integer and long, a 32-bit and 64-bit signed integer types, respectively, 
o float and double, a 32-bit and 64-bit floating point types, respectively, 
o string, represents a short string value (typically used for keywords or 

enumerations) limited to 255 characters , 
o text, represents a text document of unlimited length, 
o datetime, an ISO8601-formatted string representing absolute time with 

millisecond resolution, 
o blob, a BASE64-encoded string representing arbitrary (often binary) data; 

the data is not interpreted by the storage backend (the signal cannot be 
used in queries), but can be used by visualization. 

 
Note that the values for signal types string, text, datetime, and blob are all 
transported as JSON strings, but the system will treat them differently. Notably, 
the length will be limited for the string type, a specific format is expected for the 
datetime type, and specific encoding is expected for the blob type. 
 
The schema field can be omitted in most cases: 

o Including the schema with each payload object allows adding new signals 
to the signal set on demand. However, leaving out an existing signal will 
cause the server to reject the payload to avoid deleting signal data by 
accident. 

o The schema object can be omitted if there is no need to add new signals 
to the signal set. However, in most cases, including the schema object in 
the payload should not cause noticeable overhead and allows to capture 
the state of migration when extending the signal set. 

 
Each signal set has an implicit signal named id, which represents a unique 
identifier for a set of signal values (a record). The identifier is a free-form string 
and the sender of the data is responsible for providing the identifier value for 
each record. The only requirement is that ASCII ordering must be well defined 
on the identifier, because the system uses it to establish record ordering. 
 
The id signal is not part of the user-defined schema and MUST NOT be included 
in the schema object, but MUST be included in each data record. 

• data: object[], an array of records with signal values. Each record object has 
named slots, with slot names corresponding to signal names, and slot values 
holding signal values. Each record must have a slot named id, which represents 
the record’s unique identifier. 

The following listing shows an example of sensor data payload in the JSON format. The 
schema object defines four signals with different types (note the absence of the implicit id 
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signal), and the data field contains two records, each including a record identifier (the id 
signal) in addition to the values of the four user-defined signals: 
 
{ 
    "partnerId": "XXXX", 
    "signalSetId": "YYYY", 
    "schema": { 
        "ts": "datetime", 
        "sig1": "integer", 
        "sig2": "double", 
        "sig3": "boolean" 
}, 
    "data": [ 
        { 
            "id": "0001", "ts" : "2019-02-20T18:25:43.511Z", 
            "sig1": 12, "sig2": 34.2, "sig3": true 
        }, 
            "id": "0002", "ts" : "2019-02-20T18:25:44.000Z", 
            "sig1": 12, "sig2": 34.2, "sig3": true 
        } 
    ] 
} 

 
Figure 39. Example of sensor data payload in JSON format. 

Posting Signal Data 
Sending data to FIVIS requires sending a POST request containing a JSON document with 
the signal data payload to the /api/signals API endpoint. The URL of the endpoint is 
determined by the system operator. The system is currently operated by CUNI, but by 
the end of the project, we aim to provide a virtualized appliance that can be run by any 
partner privately. 
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The Content-Type header of the POST request with the payload should be set to 
application/json and the request should contain an access-token header with a token that 
can be generated/reset in the FIVIS system user interface through the API submenu of 
the Account menu. The following listing shows the payload from the above example 
being posted to FIVIS using the curl utility: 
 
curl https://api.FIVIS.smartarch.cz/api/signals 
  --request POST \ 
  --header "Content-Type: application/json" \ 
  --header 'access-token: 8e3f4bf6bec954b40a0ec08ab0dc0c11d0d18fed'  
  --data ‘{ 
  "partnerId": "cuni", 
  "signalSetId": "test", 
  "schema": { 
    "ts": "datetime", 
    "sig1": "integer", 
    "sig2": "double", 
    "sig3": "boolean" 
  }, 
  "data": [ 
    { 
      "id": "0001", "ts" : "2019-02-20T18:25:43.511Z", 
      "sig1": 12, "sig2": 34.2, "sig3": true 
    }, 
    { 
      "id": "0002", "ts" : "2019-02-20T18:25:44.000Z", 
      "sig1": 12, "sig2": 34.2, "sig3": true 
    } 
  ] 
}’ 

 
Figure 40. Payload posted to FIVIS using the curl utility. 

We provide a simple FIVIS client library (which internally uses libcurl) for resource-
constrained devices with limited support for shell or Python. The library (together with a 
sample CPU monitoring application supporting batched/delayed data transmission) is 
available on GitHub: https://github.com/d-iii-s/FIVIS-client 
Alternatively, ITI provides a plugin to the Telegraf system agent, which allows system-
level and application-specific monitoring data to be sent to FIVIS (in addition to other 
data storage, analysis, and visualization systems). 
Computed Signals 
A signal set can contain additional signals that are computed from other signals in the 
same record. This is useful for rudimentary filtering, e.g., for clamping or filtering values 
that exceed reasonable range, or for fixing data that are known to be broken in a certain 
time period. This allows keeping the master data immutable, yet visualizing correct data. 
For example, lateral and longitudinal acceleration calculated from GPS data can 
produce signals with high variability. If this is a problem for subsequent analysis or 
visualization, one solution would be to average the calculated acceleration over a longer 
time period, or clamp/filter out values that don’t make sense. If we are dealing with GPS 
data from a car, we can reasonably assume that any kind of acceleration outside the 
range of [-2.0, 2.0] G is extremely unlikely for a normal car with normal tires, and we can 
therefore clamp or filter out such values. 

https://github.com/d-iii-s/FIVIS-client
https://github.com/d-iii-s/FIVIS-client
https://github.com/influxdata/telegraf
https://github.com/influxdata/telegraf
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To do that (without touching the master data), we can create an additional signal of type 
Painless Script, and define an expression which produces the value of the signal based 
on the other signal values in the same record. In Painless Script, the document values 
(in our case the record containing signal values) can be accessed from a dictionary 
object named doc. 
To clamp values to a specific range, we would use the following script: 
return Math.min(Math.max(doc.{{lat_acc_g}}.value, -2.0), 2.0) 

Alternatively, we could filter out values outside a given range using the following script: 
def value = doc.{{lat_acc_g}}.value; 
return (-2.0 < value && value < 2.0) ? value : null; 

Deleting Signal Sets 
The entire signal set can be deleted by sending a DELETE request with an empty body to 
the /api/signals/<sigset-cid> API endpoint, where <sigset-cid> is a fully qualified signal set 
identifier containing both the signal set namespace and the signal set identifier. 
In most cases, the namespace will correspond to the partner identifier, because each 
partner has access to a partner-specific namespace in which it can create and delete 
signal sets. For example, if a partner with an identifier 'cuni' wanted to delete a signal 
set with an identifier 'test', the corresponding fully qualified signal set identifier would 
be 'cuni:test'. The following listing shows how to delete such a signal set using the curl 
utility: 
curl https://api.fivis.smartarch.cz/api/signals/cuni:test 
  --request DELETE \ 
  --header 'access-token: 8e3f4bf6bec954b40a0ec08ab0dc0c11d0d18fed' 

5.1.1.3 Data Processing 
The IVIS framework underneath FIVIS provides the concepts of tasks and jobs. These 
make it possible to write custom programs which process existing data, or gather 
additional data from other resources. The framework provides a basic UI for coding, and 
a mechanism for job activation. 
Tasks 
A task is an element containing code, files, and the definition of parameters. Each task 
has a type and is handled according to that type. Two tasks differing in type may use 
different libraries, or completely different programming languages. A task is not directly 
executable—it represents a template computation on a certain type of data, but does 
not define where the data comes from. Instead, it defines parameters which allow 
passing this information into a task, and these are configured in the context of a job. 
Jobs 
A job holds the configuration parameters for a task, i.e., it instantiates the computational 
template defined by a task. Multiple jobs can utilize the same task with different 
parameters. A job can be activated either manually or triggered automatically. 
The framework provides the following triggers for job activation: 

• Periodic trigger, which allows running jobs repeatedly with a set period, and 
• Signal set trigger, which allows running jobs whenever new data is added to a 

given signal set. 

https://www.elastic.co/guide/en/elasticsearch/painless/master/index.html
https://www.elastic.co/guide/en/elasticsearch/painless/master/index.html
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The execution of jobs can be moderated by specifying additional conditions: 

• Minimal interval, which ensures that a job only runs when a set interval since 
last run has elapsed, and 

• Delay, which delays the execution of a job for a set interval after it was triggered. 

5.1.1.4 Client Interface 
The FIVIS system provides means for creating custom data visualizations built using 
web technologies. These visualizations can be embedded in any web application, and 
they can be also displayed in directly in the client user interface, organized into 
dashboards. To enable parametrization and reuse, the visualizations are built using the 
following concepts. 
Workspace 
A workspace is a top-level concept which groups related panels and their configuration. 
The framework provides UI elements to navigate to the workspace and to the panels it 
defines. The framework cannot display any data without a workspace with panels. 
Panel 
A panel is an element that provides a particular view of data in a particular workspace. 
Technically, a panel holds configuration parameters (if any) for an instance of a 
visualization template, which does the actual rendering. All panel parameters (including 
its name and description) are specific to a particular workspace. A workspace without 
panels does not display anything. 
Template 
A template is the most important element of the visualization framework because it does 
the actual rendering. In contrast, workspaces and panels are just containers. A template 
defines how to display data with a particular structure. Technically, a template is a 
React.Component which can receive parameters and defines how to visualize the data. 
React component can also keep state information and modify the visualization in 
response to state changes. 
The framework provides a number of predefined components to enable rapid 
development of simple dashboards. Some components provide support for plotting of 
data from the ElasticSearch backend, while other components provide UI elements that 
can be used for selecting signals or time ranges to be displayed. When using the 
predefined components, most of the template code usually deals with constructing 
configuration objects which tell the components which data to display and/or where to 
store their state (in case of stateful components). 
External Parameters 
Visualization templates are necessarily going to be tailored to specific use cases, which 
often requires making assumptions about the kind of signals found in a signal set. These 
assumptions will be usually encoded in the template code, but in general developers 
should strive to make templates as flexible as possible. 
To enable such flexibility, templates can accept external configuration parameters which 
are associated with an instance of a template in a particular panel of a particular 
workspace. This allows using a single template to display signal data from different 

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/react-component.html
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signal sets, as long as the signal data can be interpreted in the same way. The names 
of the signal sets and the signal names can be provided from outside to make templates 
independent of data storage and management concerns. Similarly, external parameters 
can be used to control certain aspects of a component’s output, e.g., a message to 
display, or a color to use. 
Template parameters are described by a JSON snippet which contains an array of 
parameter specifier objects, one per template parameter. When instantiating a template 
in a particular workspace panel, the framework provides a simple editor for each 
template parameter so that the template can be provided with parameter values specific 
to that particular template instance. 
Further details related to definition of template parameters and accessing them from 
template code are available in technical documentation which is under development.  
Plotting Components 
The client part of the system provides a number of predefined plotting components. 
These are intended to be used in templates to visualize different kinds of data, while the 
role of the templates is to handle the configuration of and interaction with the plotting 
components.  
The system currently provides plotting components to support the following charts: 

• Line charts 
• Area charts 
• Pie charts 
• Histograms 

Creating new plotting components requires extending the underlying framework. 
Support for additional chart types, such as violin plots, are under development. 
The system also provides a set of auxiliary user interface components which allow the 
user to select a time range, define chart legends, and pick signal sets, signals, and 
colors. 

5.1.1.5 System Status 
An instance of the system hosted by CUNI has been set up and is available to project 
partners. Parts of FIVIS dealing with data ingestion, storage, and visualization are fully 
operational, which allows partners to send monitoring data to FIVIS and visualize it in 
custom dashboards. CUNI has developed use-case-specific dashboards for several 
partners involved in use cases UC-3 and UC-9 (c.f. Section 5.2 below). 
Some parts of the system are being finalized, specifically the integration of QRML 
component model with monitoring data (which will enable interactive exploration of 
application architecture and associated quality attributes), and the integration of 
customized analysis tasks that can produce reconfiguration triggers to other systems, 
which will allow FIVIS to serve as a controller in a high-level adaptation loop. 



 
 

 
© FitOptiVis Consortium (Public Document) 

 

WP4 D4.3, version 0.1 

FitOptiVis 

ECSEL2017-2-783162 

5.1.2 QRML extension to express monitoring requirements 
UC has extended QRML [D2.1][BERG20] to SDSL in order to support monitoring 
requirements. The main objective is to provide automatic monitor code generation from 
SDSL.  
The DSL extension includes a new language feature (monitor) that allows defining 
monitors. The monitor definition is independent from a particular component, thus the 
same monitor type can be used in several components. 
The monitor type declaration identifies the monitor and define two fields: 

• Provider: This field allows identifying the agent that provides the traces and it 
depends on the tracing implementation. For example, in FIVIS the provider is the 
FitOptiVis partner. 

• Event: list of signals traced by the monitor. 
 
The following figure provides an example of a monitor declaration (VideoTrace) using 
SDSL. This declaration is oriented to a FIVIS implementation. 
 

 
Figure 41. Monitor declaration using SDSL. 

 
In this case, the monitor (VideoTrace) includes a trace provider (unican) that is a 
FitOptiVis partner name. This is a FIVIS constraint but it is not required in other 
implementations such as lttng. The example also includes an event (Performances), 
although the language supports an arbitrary number of them. The event declaration 
defines the type of every signal that will be monitored. It is interesting to highlight that 
the component name (“Comp” signal of “undef” type because string is not a DSL 
supported type) and the time in which the event is captured (timeStamp) are included in 
the event signal list for FIVIS-oriented monitor generation. 
The monitor types are instantiated in the components. For example, next figure includes 
a monitor (monitor1) in the “Display” component. The “usesmonitor” reserved word is 
used to declare the instance. The monitor signals (EstimatedFps. performances. 
monitor1 and Latency. perfomances. monitor1) are associated to the monitored 
component qualities (EstimatedFps and Latency). The FIVIS oriented signals (Comp 
and timestamp) are not associated to component qualities because the generator 
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produces specific code for them. Additionally, the generator provides a method 
(trace_Performances) that allows reporting the event signals from the user code to the 
tracer. This methodology allows tracing user-defined parameters. In order to trace 
platform parameters (e.g. percentage of used CPU), a specific platform monitoring 
component is normally required.  
 

 
Figure 42. Example of monitor instance in a component. 

UC implementation methodology support the Linux LTTng framework and the FIVIS 
infrastructure. System monitoring is necessary in resilient systems since they need 
some mechanisms to guide reconfiguration process.  

Figure 41 shows an example of FIVIS monitoring usage, where some latency 
parameters are represented. Additionally, Figure 42 shows an example of LTTng 
monitoring traces. 
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5.1.3 JOINTER framework to build custom hardware monitoring 
systems 

5.1.3.1 Overview 
In this section, an enabling solution targeting edge-computing devices is presented. 
Specifically, a framework to support in the runtime monitoring part of the MAPE-K loop 
is proposed: JOINTER (acronym of JOINing flexible monitoring with heTERogeneous 
architectures) allows the generation of monitoring systems targeting architectures 
implemented on FPGAs. JOINTER starts from a basic library of element, takes as input 
the monitoring requirements and the hardware architecture, providing as output a 
monitored system. 

 
Figure 43 FIVIS example graph 

 

 

 
Figure 44  LTTng monitoring traces example 
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5.1.3.2 Monitoring system composition 
JOINTER is based on a library of hardware elements written in VHDL. Basing on 
monitoring requirements, the framework generates a number of hardware monitors, 
distributed within the hardware architecture. The framework allows to generate 
monitoring systems that satisfy different requirements, expressed by means of metrics. 
The list of currently supported metrics is reported in D5.1. 
 

 
Figure 45: Monitor generation in JOINTER 

The monitoring systems automatically generated by JOINTER are based on a number 
of sniffers distributed within the hardware architecture of the system under monitoring. 
The generation of monitoring systems is reported in Figure 45: sniffers are referred as 
small boxes with a number, distributed inside a hardware reference platform for 
heterogeneous embedded systems, shown on the left. 
Each sniffer is composed of an Event Instance Generator (EIG) and multiple Data 
Capture and Filters (DCAPFs). The EIG allows to connect to specific interconnection 
points of the monitored platform, producing event instances associated to events to be 
monitored. Event instances are then managed by DCAPFs to compute metrics: each 
DCAPF is associated to a metric.  
Sniffers are managed by means of some Local Monitoring Information Collectors 
(LMICs), that allow their initialization, their control, and the collection of results. LMICs 
share a unique register space. 
The register space is exposed to other system components by means of a Data Collector 
Interface (DCI): the role of DCI is to make the monitoring results from sniffers, stored in 
LMICs register space, available to be accessed by other components (for example, by 
means of AXI-based protocols). 
All the structure is highly customizable, and it is provided as open source at the following 
link: https://github.com/alkalir/jointer. 

5.1.3.3 Interface 
JOINTER is provided with bare-metal APIs to interact with the generated monitors. In 
the next future, Linux based APIs will be provided. 
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5.2 Instances 
The development of monitoring systems in FitOptiVis scenarios, and corresponding 
system-level services, involves several trade-offs from architectural point of view. In this 
section, the monitoring solutions developed in Task 4.2 (referred to as instances) to 
satisfy the different requirements coming from use cases, WP3, and WP4 tasks, are 
reported. 

5.2.1 Monitoring in 3D industrial inspection system 
ITI has developed a 3D Industrial Inspection system (Zero Gravity 3D) which uses 
sixteen edge computer boards connected to the same number of cameras to obtain the 
images required to compute a 3D reconstruction of a given object. In order to monitor 
the state of this hardware, Telegraf, an open source server agent, is used to collect the 
required data. Each required device or application pushes information to the monitoring 
software hosted in a central server (FIVIS). This server receives the events, stores them, 
and shows the data through a graphical environment.  

Monitoring Requirements 
The 3D Industrial Inspection use case developed by ITI requires a monitoring system at 
the edge, featuring minimal intrusiveness and very small bandwidth consumption. The 
level of interruption depends on the time interval of monitoring events, however, even 
with a small interval, this intrusiveness should be minimal. As a general requirement, 
monitoring must not affect memory and timing performance at the edge. In other words, 
this process must not delay in any way the tasks performed on the edge capturer. This 
restriction can be partially avoided by dividing the monitoring application into two parts. 
First, the client-side agent which is responsible for pushing events. This program 
accomplishes the minimal and non-intrusive requirements. Secondly, the server-side, 
which can be installed on a different dedicated computer, is in charge of storing the 
received data and providing the graphical user interface. 

Regarding the information being gathered, Zero Gravity 3D collects the following data 
for monitoring its state: 

• Network bandwidth. 
• Throughput, measured as parts per minute. 
• CPU load and temperature. 
• GPU load and temperature. 
• RAM usage. 

Unit Under Monitoring 
ITI’s Zero Gravity 3D is built including sixteen edge computing boards. These devices 
must be monitored in a non-intrusive way and all the data produced must be sent to a 
central storage to be interpreted. 
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Monitoring Infrastructure  
Telegraf is a monitoring agent that collects data from different sources such as services 
like databases or web servers and computer built-in sensors. Using Telegraf plugins, 
data can be filtered, transformed, decorated and finally stored on a file or sent to a 
database or any other software. Ideally, the data can be transmitted to a server providing 
storage and computational resources to host an application offering a graphical user 
interface. 
The Telegraf agent has been installed on all the sixteen edge boards of the 3D Industrial 
Inspection Case plus an external Raspberry Pi with internet access to send the collected 
data to FIVIS, the software that plays the role of the aforementioned storage server. To 
send this data, ITI has created a serializer plugin. The plugin is based on a Telegraf 
JSON serializer so that it will be consistent with the Telegraf architecture and provides 
the serialization of data into the JSON payload format required by FIVIS. In the 
Raspberry Pi, serialized data is sent to FIVIS through the Telegraf HTTP output plugin, 
using a POST method as required by CUNI’s monitoring software. 
 

 
Figure 46 Monitoring infrastructure 

 
Similar monitoring scenarios are being studied by other FitOptiVis use cases. The 
Telegraf agent and the serializer plugin can be installed on almost any device capable 
of running Linux and, in this way, easily provide the device with the capacity to send the 
information collected in Telegraf to FIVIS.  

Data Storage, Analytics and Visualization 
FIVIS is the monitoring tool featuring the storage capability indicated above and the 
creation of dashboards from stored data. As said before, ITI has developed a Telegraf 
plugin which can be easily installed on any device capable of running Linux. This solution 
provides a way to send data to FIVIS monitoring tool reducing the development effort 
and giving access to many data sources such as databases, network, CPU, memory 
usage and board sensors. 
In order to display the stored data in a dashboard, FIVIS requires the creation of 
templates adapted to the needs of the monitored system. These templates make use of 
external parameters in JSON format, specifying properties such as type and label. 
According to the specifications described in the previous point, a template to show 
current values of a capturer (an Nvidia Jetson card) was defined. Afterwards, this panel 
was replicated to all the 16 boards. Using the menu on the left, any of the devices can 
be selected to display its dashboard. 
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Figure 47 Fivis dashboard 

5.2.2 Heterogeneous Distributed Computing Adaptation Monitoring  
In the OpenCL-based heterogeneous distributed software stack, runtime monitoring 
data will be exposed to the application developer or the adaptation layer via an OpenCL 
device layer extension under development. This data will be used by the adaptation layer 
to choose different target devices (local or remote) and kernel variations (use a simpler 
algorithm with worse quality results or a more complex one with better results) in case 
of changes in condition. 

Monitoring Requirements 
Since the FitOptiVis software stack is a distributed stack which includes heterogeneous 
platforms with various type of devices having different characteristic, optimizing the 
computation globally is challenging. Therefore, it is crucial to produce accurate and 
interference free profiling data of the application execution globally within the distributed 
context. 
So far during the design of the adaptation layer on top of the pocl-remote, we have 
identified the following data one needs to monitor to drive automatic adaptation and 
reconfiguration:  

• Compute clusters in the close proximity: probing that happens whenever 
network connectivity changes in a roaming situation. This is to discover available 
compute resources to remotely offload computation to. After “the platform 
discovery”, the information of the found remote devices is given using standard 
device queries of the OpenCL API. This information can be used to assess if a 
more complex algorithm could be executed beneficially in the remote node. 

• Network condition (latency, bandwidth) to the connected compute cluster. This 
information is used to drive the adaptation algorithm that figures out if offloading 
to the remote compute node is beneficial and can be done within the latency 
requirements of the application. 

• Device occupancy. In the first version, this only gives information of availability 
of the device for the remote ones. No resource sharing in the remote is yet 
supported. However, for the local devices, monitoring of the local devices 
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(CPU/GPU utilization) is needed since it also drives the decision of when 
offloading is feasible or not. 

Within the schedule of this report, device occupancy was implemented to a 
demonstratable level, network monitoring was implemented to a degree with a time out 
– based detection of network outage to switch between local and remote execution 
whenever network goes out of reach. Computer cluster probing is a work in progress, 
aiming for demonstration level before the end of the project. 

Unit Under Monitoring 
The distributed heterogeneous software runtime encompasses the whole execution 
environment, both locally and in the optional remote servers. The monitoring system 
thus executes in the “host” (the local device) fully, or partially, in case there are remote 
resources that are being monitored. In that case the remote driver or the pocl-daemon 
is responsible of collecting the data from the monitored compute devices. 

Monitoring Infrastructure  
The profiling data that provides a global view to the application optimizer (to help design 
time optimizations of WP3) and the runtime adaptation layer of WP4 includes the start 
and end times of the kernels and their connections (dependencies) via events and 
shared input or output buffers. For providing the profiling data, PoCL was extended with 
a flexible tracing infrastructure, which allows creating data collection plugins for different 
types of output. 
A simple text-output tracing plugin was created to demonstrate the infrastructure. It can 
be enabled by setting environment variable POCL_TRACING=cq. The implication of this 
setting is that all command queues get automatically their profiling data flag set on after 
which they start producing event time stamp information which can be collected lazily 
(whenever there’s a suitable spot in the application execution with minimal interference 
to the collected data). 
In the final year of the FitOptiVis, two additional PoCL tracing plugins were created to 
feed PoCL tracing data to FIVIS servers. Both of these plugins use background OS 
threads to process and send the collected data, to minimize interference with the 
application. 
The “influx“ plugin provides output in `influxdb line format`, a simple text format with one 
line per event. The output can be sent to either a file, or a TCP/UDP/UNIX connection. 
When using the connection-type output, the other side of the connection should be a 
Telegraf  agent with a PoCL Json serializer plugin.  
The “direct connection” plugin provides output in JSON format, suitable for directly 
uploading to FIVIS servers. The advantage of this plugin is that it does not require extra 
infrastructure (a running instance of telegraf with FIVIS plugin). 

Data Storage, Analytics and Visualization 
The data collection server now provides a graphical user interface for visualizing the 
data which will be utilized in the application optimization. FIVIS was extended with a 
specialized dashboard plugin to display tracing data collected by PoCL FIVIS tracing, 
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using swimlane visualization. It supports zooming, scrolling, manual time frame input, 
swimlanes of multiple devices, and visualizing event dependencies. 
Also other interfaces/analyzers for the data are developed so it can be inspected locally 
to produce feedback to the application design time (WP3). One of them is a Chromium 
based one, which utilizes the web request breakdown visualization integrated in the 
Chromium web browser engine for visualizing the execution in a swimlane-type manner. 
The profile data collector is also designed in such a way that it can help runtime 
adaptation decisions in the developed automated adaptation loop: For example, auto-
tuning of kernels (which implementation, parameters of the implementation) could be 
performed during the application execution when such a feedback loop has been 
implemented. This is accomplished by separating the collection of the data from the 
parts that push/dump the data for the consumers. 

5.2.3 Monitoring systems for reconfiguration for Habit Tracking and 
Smart Grid  

UGR is developing a component for monitoring the elderly at their own home for the 
Habit Tracking UC and a smart video-surveillance system for the Smart Grid UC. In both 
cases, UGR is considering run-time reconfiguration based on different metrics explained 
in the subsequent sections. The reconfiguration impacts both, the hardware resources 
and the software components that we run on the available platforms. In both our 
components, UGR sends monitoring data to the FIVIS platform, to visualize the metrics. 

Monitoring Requirements 
In the first place, as we are working with different NVidia SoCs (Jetson TX2 and Xavier), 
we are interested in monitoring the platform metrics shown below because it helps us to 
know the performance of our system. As well as the use of the different hardware 
components (CPU and GPU).   
● Temperature: it is monitored in Celsius (ºC). We are able to measure once every 

second the temperature of the below components, independently.  
● Mainboard 
● CPU 
● GPU 

● Power consumption: it is monitored in Watts (W). We are also able to  monitor it 
for the next hardware components at least once per second. 
● CPU 
● GPU 
● RAM 

● Performance mode: This platform is capable of changing its behaviour and its 
available resources at runtime. So, changing the operating frequency of the CPU 
and the GPU will provide different performance of the system, and also different 
values of power consumption and temperature. For this reason, we want to know 
the current operating frequency of the hardware components at any given time in 
order to find out what resources are being used. Each performance mode has a 
unique id and we measure the hardware status values every time it is changed. 
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● Bandwidth usage: we monitor the network incoming and outgoing bandwidth usage 
on this platform. We analyze it taking into account the network usage when sending 
critical (e.g. alarms) or best effort (e.g. video) data. 

Habit Tracking use case (UC3) 
In the Habit tracking use case, we are measuring some qualities that will help us make 
decisions to do some reconfigurations of the system. 
● Neural Network Performance: It is measured in frames per seconds (FPS). Inside 

the system we have Deep Neural Networks that analyse a video stream and outputs 
the confidence of which indoor action has been performed. It is measured every time 
a Deep Neural Network does an inference over a batch of frames. This helps us 
monitor if the system is working in real-time. 

● Deep Neural Network evaluation metrics: We have trained several neural 
networks that offer a different ratio of their power consumption and provided 
accuracy. Thus, we have measured the quality of each model in terms of accuracy, 
F1-Score, Precision and Recall over a common test set with action videos. This is 
computed only once when the neural model is created. In this way, we are able to 
compare the models that we have, and we will adapt the target model according to 
the system requirements. This metric is measured every time the Deep Neural 
Network is changed due to a reconfiguration. 

● Confidence of recognized actions: When a video stream is fed into the system, 
we get the probabilities of which action has been performed in a sequence of frames. 
Recording this information is useful because it can give us an idea of the system 
accuracy and requirements. For example, monitoring the label confidence of the 
detected actions enable reconfigurations to reduce the power consumption and 
improve the recognition of critical activities. It is measured every time an inference 
over the video is performed.  

● Active operating mode: The action recognizer runs on the node devices. 
Particularly, it can run using different operating modes. Each operating mode uses 
a different DL model to recognize the activities with a different accuracy vs energy 
consumption trade-off. The operating modes are identified with numbers from 0 to 
N, ordered from the least to the most accurate (models for testing on the datasets). 
Note that it is very important to identify which operating mode is active when 
performing reconfigurations. It is measured when reconfiguration commands are 
received. 

Smart-Grid Surveillance system use case (UC9) 
In order to carry out re-configurations in our system, we monitor certain metrics specific 
to the video-surveillance task and the quality of the classification of the machine learning 
models involved: 
● Edge performance: Measured in frames per second (FPS). Since it is a distributed 

system with a server-node structure, the performance of the software running on 
each of the components must be evaluated to determine whether the requirement 
for real-time operation is met. 

● Cloud software performance: Measured in frames per second (FPS). Similarly to 
the above, it has to be determined whether the software on the server side is running 
to meet our real-time requirements.  

● Joint system performance. Measured in frames per second (FPS). As it is a 
distributed system, the aggregated performance of the system has to be determined 
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jointly, considering both the part that is executed at edges and the part of the system 
is executed at the cloud/server. 

● Confidence in people detection: Given anomalous situations in the scene, in which 
certain regions of interest are analyzed, this metric provides a measure of confidence 
in which it is reported whether each of these anomalous situations is given by the 
presence or absence of a human subject. 

● Similarity in people re-identification: When one or more people are detected, the 
extraction of characteristics for re-identification is carried out using the history of 
monitoring carried out to date. By comparing these characteristics of the identified 
subjects with those of the previously identified subjects, a similarity of re-
identification is generated.  This similarity metric serves to alert us if a new human 
subject appears on the scene, not yet considered, and which could give cause to 
reconfigure the system in some way in order to clarify a possible intrusion. 

● Location of tracks: In order to know whether a given intruder/worker is within a 
secure perimeter, its coordinate value (latitude, longitude) is transmitted. 

Tasks assigned to each worker: In order to know whether a certain worker is 
assigned a specific task that allows him/her to stay in a given perimeter, the schedule of 
each worker is transmitted. 

Units Under Monitoring 
Smart-Grid and Habit Tracking Use Cases both make use of two main types of platforms 
to operate. Firstly, the work of both systems at node level, is carried out in one or more 
System on Chip (SoC) NVidia embedded platforms.  
For the Habit Tracking UC we will only use the Jetson Xavier edge node, while the Smart 
Grid UC will make use of a Jetson Xavier edge node and a Jetson TX2 edge node. On 
the other hand, work at the cloud level, where some of the most demanding computing 
is done, runs on a high-performance PC that acts as a server. The main characteristics 
of the SoCs used as nodes in both use cases are described below: 
● NVidia Jetson TX2: The Jetson TX2 module corresponds to a System on a Chip 

platform with a six-core CPU (2 Denver 64-bit CPUs + Quad-Core A57 Complex), 
with 8 GB L128 bit DDR4 memory and a GPU with NVIDIA Pascal™ architecture 
with 256 CUDA cores. This fully-configurable device supports different working 
modes. 

● NVidia Jetson Xavier: The Jetson Xavier module corresponds to a System on a 
Chip platform with a octa-core CPU (8-core Carmel ARM v8.2 64-bit CPU), with 
16GB 256-Bit LPDDR4x memory and a GPU with 512-core Volta with 64 Tensor 
Cores. Again, this device is fully configurable adapting performance, energy 
consumption, or working frequency. 

● High-performance PC: The PC that will act as a server has a 6-core CPU (intel i5-
8400), 32GB-RAM memory, as well as a RTX 2080Ti GPU with 4352 GPU-cores 

For the Smart-Grid use case, the different SoC platforms presented are used for 
distributed processing at edge level. These platforms are in charge of carrying out video 
local surveillance tasks on the video stream coming from the camera connected to each 
of the edge nodes. To bring together the information from the different nodes to carry 
out more complex tasks such as tracking people in a multi-camera environment, part of 
the processing is done at the cloud level. Both the Jetson TX2 and the Jetson Xavier 
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models are used to demonstrate the heterogeneity, adaptability and scalability of the 
video surveillance system. 
As for the Habit Tracking use case, the NVidia Jetson Xavier is the device used to run 
the system. It is connected to a camera that provides a video stream. This video is 
processed and analyzed with a Deep Neural Network inside this SoC platform. Finally, 
it outputs the confidence of which actions have been recognized in the video feed. 
Monitoring tasks in both cases are carried out in the edge nodes of the system, which 
correspond to the SoCs presented above. Qualities such as the temperature of the 
platforms, their energy consumption, or the performance mode in which they operate 
are constantly monitored. Additionally, other domain-specific metrics are also taken into 
account (discussed in the text below in more detail) for example: 1) for the Habit Tracking 
use case, performance or confidence metrics from the Deep Learning models used are 
shown; 2) for the Smart-Grid use case, the system performance at each of the edge 
nodes level, confidence of the algorithms when carrying out detection and/or re-
identification of people. 

Monitoring Infrastructure  
To monitor the metrics and qualities of our systems we are using several tools: 
● Python software: We have developed a Python library that is capable of gathering 

information about temperature, power consumption of the different hardware 
components, as well as the active performance mode. This library collects data from 
checking some sysfs nodes from the device. 
● Temperature: This data is obtained in milliCelsius and then it is converted to 

Celsius. 
● Power consumption: This data is originally in milliWatts and then it is converted 

to Watts. 
● Performance mode: It is a unique value that identifies the active performance 

mode. It is obtained through the command nvpmodel. 
Habit Tracking use case 
● Python main system software: The habit tracking main system is developed in 

Python, and within this system, two qualities are measured: 
● Neural Network Performance: This is measured by dividing the number of 

frames being analyzed in the neural network model inference by the time the 
inference took. 

● Confidence of recognized actions: This is obtained as the output of the neural 
network model, because it assigns to each action a probability that it has 
occurred during the analyzed video between 0 and 1. 

● Python script: This Python script uses Keras and scikit learn to measure the 
evaluation metrics of a Deep Neural model over a test set with videos. 
● Deep Neural Network evaluation metrics: These metrics are computed doing 

an inference over all the videos of the test set, which are videos that the neural 
network has not seen before during training, and then compare if the output of 
the model matches the real action performed in each video. The test set is 
composed of videos from different datasets: 
 Online action recognition datasets: We have compiled 2295 videos 

from a variety of heterogeneous datasets like: 
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Dataset Year Actions Clips 

HMDB51 [KUE11] 2011 51 6766 

UCF-101 [SOO12] 2012 101 13320 

Fall Detection Dataset [CHAR13] 2013 2 222 

Charades [SIG16] 2016 157 66500 

STAIR Dataset [YOS18] 2018 100 102462 

Kinetics [CAR18] 2018 600 495547 
 

 Own recorded videos: We have also recorded more than 200 videos at 
home to test the neural network model with videos similar to those that 
will be analyzed when making a real use of the system.  

 
Dataset Year Actions Clips 

Our own (TBD [UGR20]) 2020 16 233 

Smart Surveillance use case 
● Python edge software: The part of the Smart-Grid Intelligent Video Surveillance 

System that runs in a distributed way in the different nodes has been developed in 
the Python programming language. From this software, the following qualities are 
extracted: 
● Edge software performance: Measured in frames per second (FPS). It is 

calculated by dividing the number of frames of the video stream analyzed in each 
of the nodes, by the time employed in that task. For this timing, we make use of 
the time function of the native Python time library, which returns the number of 
seconds passed since epoch with millisecond precision. 

● Confidence in people detection: Confidence (%) in the classification of each 
of the regions of interest considered is obtained by inferring these regions 
through our machine learning model implemented with TensorFlow. With this, 
we obtain the confidence with which one of our regions of interest includes or not 
a human subject. 

● Python cloud software: The part of the system that ultimately runs in the cloud has 
also been implemented with the Python programming language. These are the 
qualities that are calculated in it and how they are obtained: 
● Cloud software performance: Measured in frames per second (FPS). It is 

calculated by dividing the number of frames corresponding to the same moment 
of time and coming from each of the nodes, by the time needed to process them 
and perform the tracking task on them. For this timing, we make use of the time 
function of the native Python time library, which returns the number of seconds 
passed since epoch with millisecond precision. 
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● Joint system performance. Measured in frames per second (FPS). It is the sum 
of the cloud and edge software performance metrics. 

● Similarity in people re-identification: A characteristic vector of a human 
subject is extracted with a deep learning self-encoder model developed with 
TensorFlow. Subsequently, an assignment problem is solved between this 
feature vector and those of the human subjects already detected previously by 
our system. The inverse of the Euclidean distances between these characteristic 
vectors is the measure of similarity of a human subject in re-identification. 

● System evaluation metrics: In order to have a picture of the system's 
performance in each of its operating modes or configurations, evaluation 
measurements of the system as a whole are also obtained, running on different 
test datasets. Examples of these metrics are: multiple object tracking accuracy 
and precision, human subjects mostly followed and lost, identity switches in re-
identification, etc. These are the different datasets used for the calculation of 
these metrics: 
 Third-party datasets: In order to test the performance of the system in the 

detection, tracking and re-identification of human subjects. 
 

Dataset Reference Description 

INRIA 
Person 
Dataset 

[DAL05] This dataset contains 1805 images and X 
people normalized to 64x128 pixels. The 
people are usually standing, but appear in 
any orientation and against a wide variety 
of background image including crowds 

VIRAT 
Video 
Dataset 

[OH11] This surveillance video dataset is 
characterized by collecting data from 
natural scenes that showed people 
performing normal actions in standard 
contexts, with uncontrolled and disordered 
backgrounds. This dataset includes the 
recording of different types of human 
actions, recorded in multiple locations, in 
more than 29 hours of video feed. 

Oxford 
Town 
Centre 
Dataset 

[HAR19] The Oxford Town Centre dataset is a 
CCTV video of pedestrians in a busy 
downtown area in Oxford and includes 
approximately 2,200 people. The Oxford 
Town Centre dataset is unique in that it 
uses footage from a public surveillance 
camera that would otherwise be 
designated for public safety. 

Duke 
MTMC 

[RIS16] Duke MTMC (Multi-Target, Multi-Camera) 
is a dataset of surveillance video footage 
taken on Duke University's campus. The 
dataset contains over 14 hours of 
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synchronized surveillance video from 8 
cameras at 1080p and 60 FPS, with over 2 
million frames of 2,000 students walking to 
and from classes. 

 
■ Own recorded dataset: Inside the facilities of our university, some shots 

have been recorded simulating the setup and the real situations for which the 
system is designed. These videos are composed of 4 shots from two 
cameras that record the same infrastructure from different perspectives, with 
overlapping and individual recording between cameras. The simulated 
actions in this dataset are listed below: 

■ Normal behaviour of operators in an electrical substation: Walk 
through the facilities, fixing components, etc. 

■ Interaction between operators without occlusions: Two or more 
people walking through the facilities together, conversation 
between operators, etc. 

■ Interaction between operators with occlusions: Salutation with 
contact, occlusions between operators when walking, etc. 

■ Interaction of the operators with the perimeters of the installation: 
Walk around the safe perimeters without entering them (lurking), 
intruding into these perimeters, leaving them, etc. 

Data Storage, Analytics and Visualization 
Currently, we are using the FIVIS platform to store and visualize our monitored data. 
The monitored metrics are sent to FIVIS once they are recorded. Next, we can see some 
illustrative examples for some of the monitored data. 
● Temperature: Here we can see the temperature of the mainboard, the CPU and the 

GPU in Celsius during a concrete period of time. 
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● Power Consumption: This visualization shows the power consumption at each 
second while our system is running. 

 
 

Habit Tracking 
In the Habit Tracking use case, we have two concrete qualities, which are shown in the 
visualizations below. 
● Neural Network Performance: We are able to check here that the system is running 

between 46 and 51 frames per second, achieving real time performance. 

 
● Confidence of recognized actions: In the next visualization, we can appreciate 

how the actions detected vary along time. It mainly detects that someone is eating 
with a high confidence over the 80%, and then other actions are recognized with a 
low and similar percentage. 
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The same data can be visualized in different ways. In the following picture, we 
show a stacked variant of the above picture, which allows to quickly discern the 
dominating recognized action. 

 
 
Smart Grid Surveillance 
In the Smart Grid use case, we have metrics that are shown in the visualizations below. 
• Location and identity of each track: This visualization shows the real-time location 

and trajectory of the persons detected within the monitored infrastructure. 
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• Alarm status and log information: These visualizations represent the main 

events in the surveillance. On the one hand, the alarm panel shows the current 
status of the alarms. On the other hand, the information log includes the main 
events in terms of alarms triggering, installation perimeters exceeding, system 
reconfiguring, etc. 

 
• Camera node operation: clicking on the camera elements provides information on 

the operational status of individual camera nodes, as shown below. 
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5.2.4 Monitoring capabilities for object recognition in space 
applications 

In this section, the monitoring capabilities that will be used in the autonomous space 
exploration use case are described. The methodology provides two types of monitoring 
mechanisms: 

1. Application quality parameter monitoring. This mechanism was described on 
section 5.1.2. The DSL component description defines component qualities. 
These qualities are assigned at runtime by the component code in order to 
provide information about component/system performance and status. A system 
component (runtime reconfiguration manager) uses these qualities for 
autonomous system configuration (resilience systems). 

2. Platform resource monitoring. The platform-monitor components get information 
about resource usage in the hardware platform. Currently, Linux platforms are 
monitored with the libgtop library while NVIDIA platforms are monitored with 
NVIDIA tegra stats utility. 

 
Monitoring results are managed using three different approaches:  

• Tracing information is submitted to the FIVIS framework for data collection and 
visualization. 

• Monitoring events are traced using the Linux LTTng framework. 
• Monitoring qualities may be accessed or reported using the RIE infrastructure. 

Therefore, a system component (e.g., runtime manager) can access quality value in 
runtime. 

Monitoring Requirements 
Hardware platform parameter are monitored with the previously commented platform 
resource monitor. Specifically, the following parameters are monitored: 
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• Memory use: The memory size that is actually used by the application and the free 
memory size are reported. 

• Available cores:  Number of cores that are available to be used. 
• CPU usage: For every core, percentage of use. 
• Power consumption: this monitor reports the CPU power consumption. 

Application components provide user-defined qualities that have to be monitored. They 
use the first approach (Internal quality parameter monitoring) and they are defined in the 
system DSL description. In the UC10 use case, the components use the following 
qualities: 
• Frame rate: Video processing applications provide the frame rate to compare 

provided fps with required fps among components. This event is used to evaluate 
the system performance and the component behaviour. 

• Latency: This quality evaluates the time that a particular service has spent to execute 
its task. The latency of individual components or services is used to detect possible 
bottlenecks and to take reconfiguration decisions if necessary. 

• Compression rate: Video compressor component gives a measure of the 
compression rate that it applies to the input video. Component configuration 
parameters (e.g., compression quality) allows modifying the compression rate and 
improve the system performances. 

• Object recognition percentage: Recognizer component provides a quality that 
indicates the probability of detection of an object. If the probability is too low, the 
runtime manager could modify the convolutional neural network or the trained weight 
in order to improve results. 

• Radiolink rate: The space satellite has a radio link with the ground station. The 
performances of this link can change during the time, therefore it has to be 
continuously traced. 

Unit Under Monitoring 
The space application is executed in several physical platforms, each of them with 
different features and resources: 
• Nvidia Jetson TX2: It is a power-efficient embedded computing device. It's built 

around an NVIDIA Pascal™-family GPU and loaded with 8GB of memory and 
59.7GB/s of memory bandwidth. It contains different kind of hardware interfaces that 
make it easy to integrate it into a wide range of products and applications. 

• Nvidia Jetson Nano: It´s a small powerful embedded system used on applications 
that requires low power consumption. It includes and NVIDIA Maxwell family GPU, 
an ARM Cortex-A57 processor and 4 GB of memory. 

• NVIDIA Jetson AGX Xavier: This board is equipped with a GPU Volta with specific 
Tensor cores, 32 GB of LPDDR4 memory and a memory storage of 32 GB. This 
board provides 20 times higher performance and 10 times higher energy efficiency 
compared to NVIDIA Jetson TX2. 

• Zynq Ultrascale + ZCU106: It Combines four Arm Cortex-A53 high-performance 
energy-efficient 64-bit application processors with two Arm Cortex-R5F real-time 
processors and a programmable logic array (FPGA). This platform provides power 
savings, heterogeneous processing, and programmable acceleration. 
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Monitoring Infrastructure  
From SDSL monitor description, a generator creates a C++ monitor implementation. 
This implementation could use the LINUX lttng library for trace management or other 
infrastructures (e.g. FIVIS).  
Next figure shows a simple video trace of the frame rate parameter for the component 
“Display” using lttng: 

 
Figure 48: Example of fps monitorization trace in a component 

These results are used to dynamically reconfigure the systems, using the RIE 
methodology. For example, if the system needs to produce more frames per second 
than provided, the runtime manager selects a set point in which a component is 
implemented into a FPGA, in order to increase the frame rate. 
Monitoring data can be exported to FIVIS system in order to collect and visualize the 
data. FIVIS allows to represent data using several kinds of graphs, resulting in a more 
effective interpretation of the data rate. 
 
5.2.5 Monitoring of 4x2 array of 8xSIMD Floating point Accelerators 
 
In Y3, UTIA integrated 4x2 array of 8xSIMD floating point accelerators for larger Zynq 
Ultrascale+ device ZU15-EG and developed run-time support for parallel execution on 
these accelerators implemented as Debian OS POSIX threads. 
 
Figure 49 presents complete system.  
 
The 4x2 array of 8xSIMD, run-time reprogrammable, floating point HW accelerators is 
connected to ARM by zero-copy AXI-S HW data movers auto-generated by the SDSoC 
compiler. To reduce the count of needed AXI-S data movers to 8, the SIMD accelerators 
are arrange in the 4x2 array, with direct connections in HW. See Fig. 1. The SIMD 
accelerators perform floating point operations with 214 MHz clock. Accelerators are 
controlled from ARM SW by AXI-lite registers interfaced with 150 MHz clock. 
 
This arrangement saves HW resources, but it also results in reduced data transfer 
performance in comparison to an alternative architecture with 8x1 SIMD accelerators. It 
also enables direct connectivity from accelerator 0 to 1, 2 to 3, 4 to 5 and 7 to 8. See 
Figure 49. 
 
System contains Mult HW block generated by SDSoC 2018.2 compiler. It is designed to 
accelerate floating point (64x64) matrix by matrix multiplication. The accelerator is 
complemented by several alternatives of data movers (zero-copy or DMA or SGDMA) 
auto-generated by Xilinx SDSoC 2018.2 compiler. 
 
The Full HD 60 FPS video input comes from video sensor to a chain of HW IPs 
converting it to 16 bit per pixel representation. Data are moved by Xilinx VDMA HW IP 
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core to frame buffers reserved in the DDR4 of the ARM A53 processor of the Zynq 
Ultrascale+ device. Video input comes via Avnet Imageon LPC FMC card. System works 
with 8 reserved video frame buffers accessible by the axi stream (AXI-S) VDMA data 
mover. Video output is using second AXI-S VDMA controller and generated output video 
frames from the same 8 video frame buffers.  
 
The video image processing algorithm HW accelerator is compiled from Xilinx, OpenCV, 
HLS-compatible library of video processing algorithms. We work with two HW 
accelerated video pipeline algorithms:  

• LK Dense Optical Flow algorithm as an example of large and complex video 
processing algorithm. 

• Edge detection algorithm working with Sobel filter as an example algorithm.  
Both algorithms use 214 MHz clock and operate on Full HD frames with performance 
above 60 FPS. 

Monitoring Requirements 
SW application running on ARM A53 processor has to control the parallel execution of 
the4x2 array of 8x SIMD HW accelerators. Each accelerator can possibly support 
different computing capabilities.  
It is therefore required to provide mechanisms for the SW to identify in the run-time what 
are the capabilities of each HW accelerator currently present 4x2 array of accelerators 
in the programmable logic (PL) Zynq Ultrascale+ device.  
Basing on this information, the processor SW application can decide how to program 
each individual HW accelerator in the 4x2 array and what internal 8xSIMD operations  
use in each accelerator. 

Unit Under Monitoring 
The unit under monitoring is one 8xSIMD run-time reconfigurable floating point HW 
accelerator present in 4x2 array of accelerators. See Figure 49. 
 
If each of the accelerators in the 4x2 array executes instruction VVER, it returns to the 
dedicated place in its internal memory an unsigned 32 bit value with information about 
the capabilities of the unit under monitoring. This information can be read by Arm SW 
application. 
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Figure 49 System with 4x2 array of 8xSIMD Floating point run-time reconfigurable accelerators 

 
Implemented run-time infrastructure for parallel execution 

 
Monitoring processor is ARM A53 running user application under Debian OS. 
• Firmware can be re-programmed at run-time using data streaming. 
• Computation & data streaming can be performed in parallel. 
 
Figure 50 documents the run-time execution loop and Figure 51 shows the code of one 
of the control threads. 
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while (!done) {  
 
  //wait until parking frames are reached by VDMA HW engines 
  reading_timeout = 0; writing_timeout = 0;  
  while (readingFrame != XAxiVdma_CurrFrameStore(&vdma.inst, XAXIVDMA_READ)) { 
  reading_timeout++;}; 
  while (writingFrame != XAxiVdma_CurrFrameStore(&vdma.inst, XAXIVDMA_WRITE)) { 
  writing_timeout++;}; 
  if ((reading_timeout >= TIMEOUT_VAL) || (writing_timeout >= TIMEOUT_VAL)) { 
  printf("VDMA parking - I/O error!!!\r\n"); break;}   
 
// Advance frame buffer indexes 
  advanceFStore(writingFrame); 
  advanceFStore(nextInputFrame); 
  advanceFStore(inputFrame); 
  advanceFStore(outputFrame); 
  advanceFStore(nextOutputFrame); 
  advanceFStore(readingFrame) 
  // Initiate parking to new positions (moved by one)     
  XAxiVdma_StartParking(&vdma.inst, readingFrame, XAXIVDMA_READ);  
  XAxiVdma_StartParking(&vdma.inst, writingFrame, XAXIVDMA_WRITE); 
   
// Asynchronous call to start Sobel filter. Synchronise by: sds_wait(5); 
  sobel_demo_processing((unsigned short*)vFrameStoreStartAddr[inputFrame], 
     (unsigned short*)vFrameStoreStartAddr[outputFrame], 
                         numRows); 
  // Demonstration of run-time change of processed microlines 
  if (numRows == numRowsMax) { numRowsStep = -1;} 
  if (numRows == numRowsMin) { numRowsStep =  1;} 
  numRows += numRowsStep; 
  // Sequence of matrix multiplications on 4x2 array of 8xSIMD accelerators 
  // performed in parallel to HW accelerated video processing 
  hw_sds_clk_start(); 
  pthread_create(&t,   NULL, hw_thrd,   &data); 
  pthread_create(&t_1, NULL, hw_thrd_1, &data_1); 
  pthread_create(&t_2, NULL, hw_thrd_2, &data_2); 
  pthread_create(&t_3, NULL, hw_thrd_3, &data_3); 
  pthread_join(t, NULL); 
  pthread_join(t_1, NULL); 
  pthread_join(t_2, NULL); 
  pthread_join(t_3, NULL); 
  
  // Measure time needed for the sequence of matrix multiplications 
  hw_sds_clk_stop(); 
  
  // Wait here until the Sobel filter HW accelerator is done with currrent frame. 
  sds_wait(5); 
} 
 

Figure 50. SW infrastructure for parallel execution of video pipeline and 4x2 array of accelerators 

In Figure 50, the main application loop is controlling “round_robin” progress of actual 
frame buffer. The Full HD 60 FPS video data copied permanently from the video sensor 
to the video frame buffers by the VDMA HW controller.   
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Implemented SW infrastructure presented in Figure 50 selects the “actual” input frame 
buffer for input and actual output frame buffer for output video data by calls to function 
StartParking(). 
 
The video processing function sobel_demo_processing() can be started at this stage, as 
the input and output video frame buffers are “parked” for SW access. The call is compiled 
for asynchronous. Function starts the Video processing HW accelerator for Sobel 
function based edge detection and returns immediately without waiting for processing of 
complete video frame.   
 
Four threads controlling the 4x2 array of 8xSIMD accelerators are created and executed 
on four cores of the ZU15-EG Arm A53 device. Each thread controls two 8xSIMD 
accelerators organised in four rows, each row with 2 accelerators. See Figure 49.  
 
The main SW loop waits until all four threads are joined and terminated. Time used for 
computation on 4x2 array of accelerators is measured. 
 
Finally, the main loop calls the sds_wait(5) function, which blocks until the HW-
accelerated Sobel video processing pipeline finishes. The Sobel accelerator first writes 
its computation results to the “parked” output video frame and then signals the 
sds_wait(5) function to return to the caller. 
 
The done variable used in the top while loop is controlled by user Ctrl-C and serves for 
proper termination of SW. The VDMA HW data-movers are stopped in this case and 
performance results are reported. See Figure 51. 
 
 
void *hw_thrd(void *ptr) 
{ 
  int j; 
  struct thread_args *data = (struct thread_args *)ptr; 
 
  mat_mult_2s_stage_0(  data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_01, data->B_01_1); 
 
  for (j = 0; j < MATRICES_IN_ONE_FRAME; j++){ 
    mat_mult_2s_stage_1(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_02, data->B_02_1); 
    mat_mult_2s_stage_2(data->fp03x8_0_inst, data->fp03x8_1_inst, 
                        data->B_03, data->B_03_1); 
    mat_mult_2s_stage_3(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_04, data->B_04_1); 
    mat_mult_2s_stage_4(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_05, data->B_05_1); 
    mat_mult_2s_stage_5(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_06, data->B_06_1); 
    mat_mult_2s_stage_6(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_07, data->B_07_1); 
    mat_mult_2s_stage_7(data->fp03x8_0_inst, data->fp03x8_1_inst,  
                        data->B_08, data->B_08_1); 
    mat_mult_2s_stage_8(data->fp03x8_0_inst, data->fp03x8_1_inst, 
                        data->B_01, data->B_01_1); 
 
    // Write matrix A to accelerator 0 and matrix A_1 to accelerator 1 
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    // Read matrix Z from accelerator 0 and matrix A_1 to accelerator 1 
    mat_mult_write_a_read_z_2s(data->fp03x8_0_inst, data->fp03x8_1_inst, 
                      data->A1_A2,   data->A3_A4,   data->A5_A6,   data->A7_A8, 
                      data->A1_A2_1, data->A3_A4_1, data->A5_A6_1, data->A7_A8_1, 
                      data->Z1_Z2,   data->Z3_Z4,   data->Z5_Z6,   data->Z7_Z8, 
                      data->Z1_Z2_1, data->Z3_Z4_1, data->Z5_Z6_1, data->Z7_Z8_1); 
    } 
    return NULL; 
} 
 

Figure 51: One of the four threads controlling the parallel execution of 4x2 array of accelerators 

The code of one of the four threads is shown in Figure 51. It performs a sequence of two 
floating-point matrix multiplications on two connected 8xSIMD HW accelerators data-
>fp03x8_0_inst, data->fp03x8_1_inst. These two instances correspond to 8xSIMD HW 
accelerators with index 0 and 1 in Figure 51. 
 
Matrix B is loaded to accelerator 0 and matrix B_1 to accelerator 1 as 8 matrix slices in 
parallel to the actual floating-point computation on both accelerators. This is done by 
eight sequential calls to  mat_mult_2s_stage_1() … mat_mult_2s_stage_8() functions. 
 
This masked write of 8 slices of B and B_1 is shorter than the actually performed floating 
point computation in accelerator 0 and accelerator 1. 
 
Finally, the thread calls the mat_mult_write_a_read_z_2s() function. It downloads the result 
of the two matrix multiplications to the host memory (as matrices Z and Z1) and (in 
parallel) uploads a pair of new matrices A and A_1 from the host memory to the 
accelerators 0 and 1 for next computation in the loop performed by the thread. 
 
 
Performance results for sequence of floating point matrix multiplications 
 
The array of 4x2 8xSIMD on ZU15-EG, 214 MHz clock provides: 10.82 GFLOPs 
The SDSoC 2018.2 HW on ZU15-EG, 214 MHz clock provides: 7.31 GFLOPs 
The SW version 4 threads, ZU15-EG, 1,05 GHz clock provides: 0.64 GFLOPs 
 
The run-time infrastructure for parallel execution of the 4x2 array of run-time 
reprogrammable 8xSIMD accelerators developed in Y3 of FitOptiVis outperforms (in 
case of computation of a sequence of floating point matrix multiplications) the HW 
accelerator generated for same task by the Xilinx SDSoC 2018.2 compiler. 
Measured GFLOPs performance of the array of 4x2 8xSIMD accelerators, SDSoC 
accelerator and SW implementation of matrix multiplication running in 4 threads on Arm 
A53. Both HW accelerator based implementations use 64x ADD and 64x MULT HW 
floating-point, pipelined units.  
Both compared solutions can be executed in parallel to the edge detection video 
processing by Sobel filter HW accelerator. The video pipeline works in Full HD, 60 FPS 
with HDMI video input and video output.  
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5.2.6 Monitoring of Distributed Execution in the Virtual Reality Use 
Case 

Point clouds for immersive media technology have received substantial interest in recent 
years. Such representation of 3D scenery provides freedom of movement for the viewer. 
However, transmitting and/or storing such content requires large amount of data and it 
is not feasible on today’s network technology. Thus, there is a necessity for having 
efficient compression algorithms in order to facilitate proper transmission and storage of 
such content. 
Recently, projection-based methods have been considered for compressing point cloud 
data. In these methods, the point cloud data are projected onto a 2D image plane in 
order to utilize the current 2D video coding standards for compressing such content. 
These video-based point cloud compression (V-PCC) schemes can provide significant 
improvement over state-of-the-art methods in terms of compression efficiency. 
The real-time augmented reality rendering demo utilizes two remote OpenCL devices, 
one (“streaming custom device”) provides the V-PCC video stream, while the other (a 
GPU, in this case Nvidia 1060) is used to improve the quality of the reconstructed point 
cloud. Execution time stamp data is sent to the FIVIS data collection server using PoCL-
based Telegraf plugin. The visualization of the data in a device-swim-lane format is 
shown in Figure 52. Framerates measured from the application in its different execution 
configurations are shown in Figure 53, and the energy per frame in Figure 54. The 
reconfiguration modes and the overall effects are discussed in D4.5. 
 
 

 
Figure 52: The swimlane visualization of monitoring data gathered during local+remote configuration 
execution of the AR demo. 
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Figure 53: Monitoring results to the FPS in the different remote/local execution configurations in the AR 
demo. 

 
The first two measurements are obtained using the local (mobile) GPU without AR 
(model only) and with AR. The next four measurements offload point sorting to a GPU 
on a PoCL-R remote server, with various PoCL features enabled. 
The power usage of the smartphone was retrieved using Android's Power Stats HAL 
interface. Offloading the sorting of the point cloud compensates for most of the added 
energy consumption from AR positioning even without further optimizations. 

 
Figure 54: Monitoring results of energy consumption per frame in the different remote/local configurations 
of the AR demonstrator. 
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Figure 55: Screenshot of the AR demonstrator with on screen visualization of the monitoring data during 
remote execution. 

 
Figure 56: Screenshot of the AR demonstrator with on screen visualization of the monitoring data during 
local execution. 

 
5.2.7 Monitoring in Salmi-Care System 
HURJA’s AR-based (Augmented Reality) Salmi Care Platform is capable of motivating 
rehabilitation patients to make daily exercises by utilizing AR-based gamification 
techniques, assisting rehabilitation patients & brain damage patients & elderly people in 
their daily tasks, and monitoring daily activities & vital signs of patients as well as 
automatically alerting nurses/relatives in case of emergency. Rehabilitation patients, 
brain damage patients, and elderly people are wearing AR-glasses (HoloLens II) as User 
Interface for Salmi Care service. Service can be used via voice commands, eye-tracking 



 
 

 
© FitOptiVis Consortium (Public Document) 

 

WP4 D4.3, version 0.1 

FitOptiVis 

ECSEL2017-2-783162 

commands, and/or gestures. Service also enables patients to communicate with 
nurses/doctors/relatives/peers via video calls that are directly shown on AR-glasses. 

Monitoring Requirements 
The runtime state of the system includes measured performance and energy usage, 
which can be handled by a generic data model. Relevant metrics to be 
monitored/evaluated are the following: 

• Near real-time (soft real-time) performance: System performance was 
monitored/evaluated in terms of frames-per-second and kilobits-per-second. It is 
worth noting that AR-feature robustness/performance depends highly on the 
selected AR-glass model. We have made our development work using state-of-
the-art HoloLens II AR-glasses to ensure that all possible use cases can be 
implemented easily. We have also investigated the use of other (cheaper and 
less powerful) AR-glass options that may require more optimization of the system 
code to achieve the level of performance comparable with the high-end, state-
of-the-art AR-glasses, but we concluded that it is best to utilize only HoloLens II 
AR-glasses in the FitOptiVis project for optimal efficiency and usability reasons. 

• Optimal energy usage: It is not an easy task to calculate the energy usage for 
the whole Salmi Care system, since continuous camera feed and required 
advanced algorithms will present a challenge in terms of optimizing the energy 
usage of the system as a whole. Thus, we have performed only initial 
measurements on power usage and based on the achieved results, we have 
made adjustments to the implemented algorithms to enable optimal energy 
usage of Salmi Care system. 

Furthermore, the system monitors the achieved level of satisfaction of all end-user 
groups that can be handled by a generic data model: 

• The intended users of the Salmi Care system will be rehabilitation patients 
(assisted living), brain damage patients (assisted living), elderly people (assisted 
living), relatives (monitoring and situational awareness), nurses (home visits), 
and doctors (emergency cases). We have made careful plans to achieve the 
required level of satisfaction for all of these end-users of our Salmi Care system. 
However, we cannot yet completely fulfil all of the below-mentioned end-users 
requirements or all the needed features, but by the end of the project, we will 
have fully functional version of Salmi Care system that fulfils the level of 
satisfaction for all of these end-user groups. 

Unit Under Monitoring 
For achieving near real-time (soft real-time) performance on our low-power mobile AR-
based Salmi Care Platform we have utilized smart feature extraction, segmentation, and 
classification algorithms to reduce bandwidth usage by only sending the necessary parts 
of images/videos. A mobile application called Extent can upon request download a 
JSON packet which consists of a list (descriptions) of wakeup images, objects, entities, 
and actions. Either the request can come from the Salmi MAPS website, from the Salmi 
Care mobile application, or directly from the Extent mobile application if the “free roam” 
state has been switched on (requires GPS). End-users have the option to switch the 
“free roam” state off at any time and when this happens, the Extent mobile application 
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downloads new content only upon request from an external source (currently only the 
Salmi Care Platform related sources are available). The Extent mobile application 
downloads all required wakeup images, 3D-models, textures, audio files, videos, etc. 
based on the instructions received via JSON packet. 
To optimize the run-time performance of the Salmi Care Platform all of these packets 
can be downloaded in advance. All files will be saved locally into end-users’ mobile 
device (smart phone or tablet) and those will be shown to end-users based on 
instructions received via JSON packets as soon as matching wakeup image, object, 
entity, or action has been found, or when an end-user is within a certain pre-defined 
distance from the target. Free roam data will be removed on-the-fly from end-users’ 
devices when each session ends. The Extent mobile application was developed using 
C# programming language on top of the Unity 3D engine and the server back-end side 
was developed using PHP. All description packets are in JSON format. 

Monitoring Infrastructure 
As of M35, the status of implementation of these monitoring data features is as follows:  

• Monitoring of performance of rehabilitation patient’s daily exercises: 
Rehabilitation patient’s daily exercises are monitored and related data is 
collected for further analysis in order to determine how effective training is for 
each patient. The variables under monitoring are total duration of the exercise, 
the duration of each individual sub-session inside the exercise session, and 
amount of correct/incorrect actions made during the exercise session. Data will 
be sent to the cloud server for further analysis in real-time during the exercise 
session.  

• Monitoring of application performance: Application performance will be 
monitored actively and most important target will be refresh frequency of the 
application that represents in the high level how well application works. Refresh 
frequency was measured as Frames-Per-Second (FPS) and in case of HoloLens 
II AR-glasses it is 60 FPS. Especially for AR-based applications it is very 
important that FPS will be at least 60 all the time so that the user experience of 
AR-world is as fluent and as convenient as possible. Another variable used for 
application performance monitoring is the usage of RAM (Random Access 
Memory), but it is not as important as FPS-monitoring since in rehabilitation 
application there are only few really heavy operations in terms of RAM usage. 
However, different operating systems will react differently to the situation when 
RAM runs out and thus in case of HoloLens II we have to make sure that the 
application never uses all the RAM in any circumstances to make sure the 
application remains stable and usable all the time. The application performance 
was monitored by utilizing the real-time development platform Unity’s own tools. 
We were able to monitor, by using Unity’s own performance monitoring tool, the 
following variables during each frame: 
o CPU: Calls, Garbage Collection Allocations, Time ms, and Self ms. 
o Rendering: SetPass Calls, Draw Calls, Total Batches, Triangles, Vertices, 

Used Textures (amt + memory usage), VRAM Usage, and Shadow Casters. 
o Audio: Total Audio Sources, Playing Audio Sources, Paused Audio Sources, 

Audio Clip Count, Audio Voices, Total Audio CPU usage (%), DSP CPU 
usage (%), Streaming CPU usage (%), Other CPU usage usage (%), Total 
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Audio Memory (MB), Streaming File Memory usage (MB), Streaming Decode 
Memory usage (MB), Sample Sound Memory usage (MB), and Other 
Memory usage (MB). 

o Memory: Texture/Mesh/Material/Animation/Audio/GC Memory usage and In-
Depth Analysis can be seen with Unity’s memory snapshot tool: 

 

Data Storage, Analytics, and Visualization 
Collected data will be stored in secure servers. Analytics and visualization was done by 
utilizing appropriate analytics/visualization tools (Microsoft Power BI and AWS 
Analytics/Visualization services). Statistics of the users include the amount of correct 
and incorrect actions, duration of each action, and total duration of the exercise session. 
Data from previous exercise sessions was used to keep track and compare how the 
user has progressed in the rehabilitation. 

5.2.8 TSN support for concurrent monitoring of multiple 
heterogenous systems  

Monitoring infrastructures provided by TSN 
Best effort, lowest priority TSN streams will be provided to collect monitoring information 
for both Habit Tracking and Surveillance for Smart Grid critical infrastructure. These 
traffics will be isolated from payload traffic, such control communication between 
distributed processing nodes or from time critical messages. 
Moreover, timestamping support is provided to distributed nodes under monitoring to 
facilitate coherent processing and the understanding of collected data. Timestamping is 
provided by means of the generalized Precision Time Protocol (gPTP). 
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TSN internal monitoring 
The Time Sensitive Networking bridge for FitOptiVis is a Xilinx Zynq-7000 based 
platform, composed by FPGA logic and software. TSN provides convergence of mixed 
critical traffics relying on stringent time synchronization. For this reason, runtime 
monitoring of gPTP provides information about self-capability and network-wide 
capability of delivering RT-QoS. 
As well as other protocol aspects, the different metrics to be delivered on runtime 
monitoring are defined on IEEE 802.1AS: 

● Current time deviation. The current synchronization deviation is computed at 
every arrival of Sync messages generated by the elected grandMaster. This 
information is used by time-critical applications to verify the enabling conditions 
of deterministic communication. Unusual time deviations can be used to detect 
abnormal functionality of the network components. 

● Link delay. The link delay is used by the synchronization protocol to recover the 
remote network time reference accurately. The link propagation delay is 
computed periodically to maintain the synchronization accuracy isolated from 
propagation delay variations. The link delay is also useful to estimate E2E 
latency for time-critical traffics. 

● RateRatio. Frequency relationship between the network time reference and the 
local clock stored on the PTP Hardware Clock. 

● AsCapable Interface. The AsCapable flag is associated to each time-sensitive 
interface and reports the synchronization capability of the remote peer. A remote 
node not supporting gPTP cannot be considered for grandMaster election and 
cannot support deterministic forwarding. 

● Current grandMaster and synchronization path. The result of the BMCA is 
returned to the end user to check the synchronization network status. It is useful 
to indirect see the status of remote elements 

● Port role. The BMCA also determines the functionality of each active interface in 
the time-aware system under monitoring. The slave interface is the one closest 
to the grandMaster and provides synchronization to the system. Passive ports 
also receive synchronization information and back the passive port in case of 
failure. Master ports are present on bridges and retransmit the synchronization 
information received from the GrandMaster. Finally, ports maybe also disabled 
by the user or due to network failures. 

● Network status. This information is related to local PHY layer and gives 
information about inner hardware status. 

Besides, other monitors have being considered to track the runtime of the TSN bridge 
(i.e. network status). 

Unit Under Monitoring 
The primary scope of gPTP is to obtain time offset and frequency deviations between 
the local PTP Hardware Clock (PHC) and the remote time reference (grandMaster). 
However, link delays and gPTP residence times should also be tracked. The current 
network time reference or grandMaster and the synchronization path linking this node 
to the TSN bridge under monitoring is also available to check the network status. This 
runtime information the basis to detect abnormalities and provide fast failover. 
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Monitoring Infrastructure: The Timestamping Unit (TSU) 
All the quantitative metrics are based on deterministic time references taken at the 
egress and ingress of gPTP event messages. Such determinism is key for 
synchronization accuracy and is enabled by hardware timestamping located closed to 
the physical medium. In this implementation, the hardware timestamping is located at 
the Medium Independent Interface, isolating time synchronization from the variability 
introduced by MAC, Bridge and higher Ethernet layers. 
The hardware timestamping unit (TSU) is continuously tracking the MII interface and 
fetches the local clock time from PHC whenever a start of frame (SoF) delimiter is 
transferred. The TSU delivers the software processor ingress (Rx timestamp) and 
egress (Tx timestamp) times for gPTP messages along with their FCS to allow matching 
between messages and timestamps on gPTP protocol state machines implemented on 
software. 

 
Figure 57: Timestamping Unit 

Furthermore, gPTP defines the protocol mechanisms enabling the computation of the 
current link delay and deviation between local clock and grandMaster clock. 
Propagation delay measurement 
The propagation link delay for full-duplex, point-to-point links is computed following the 
Peer delay mechanism. This is based on a protocol handshake performed periodically 
between every two adjacent time-aware stations and is present on every active 
interface. Peer delay mechanism is depicted below. 
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Figure 58: Regular Handshake on the Peer Delay Mechanism 

The left side of the link acts as peer delay initiator and the right as peer delay responder. 
From the message interchange, four timestamps are captured (t1, t2, t3, t4) and 
delivered to the gPTP executable at the initiator side, which computes the link delay 
following the equation: 

𝐷𝐷 =
(𝑡𝑡4 − 𝑡𝑡1) + (𝑡𝑡3 − 𝑡𝑡2)

2
 

Periodical computation of the link delay allows not only detect propagation delay 
changes, but also estimate the relationship between local clock frequencies of two 
adjacent time-aware systems (neighborRateRatio), by considering successive 
Pdelay_Resp and Pdelay_Resp_Follow_Up messages. The relation between local 
clock and grandMaster clock frequencies (RateRatio) can be derived from successive 
neighborRateRatio computations along the synchronization path. The RateRatio is used 
to reference remote timestamps to the local clock and obtain coherent time estimations. 
Two-step PTP mechanism 
IEEE 802.1AS implements a two-step PTP to recover the current remote time reference. 
A Sync message is generated by the grandMaster and retransmitted by every time-
aware bridge along the synchronization path. The follow-up message carries the 
originTimestamp (i.e. the Sync egress timestamp on the grandMaster) and the 
correction Field or propagation time until the Sync message is timestamped at the 
ingress of the time-aware system of interest. This propagation time is the sum of every 
link propagation delay and residence times on the synchronization path. 
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Figure 59: Two-step PTP mechanism, as defined on IEEE 802.1AS 

Best Master Clock Algorithm (BMCA) monitoring 
The elected grandMaster and the synchronization path give qualitative information about 
the inner quality of the remote time reference and the nodes participating on the 
propagation of the Sync message. This information is maintained by the Best Master 
Clock Algorithm executed on every time-aware system in the network. Finally, the BMCA 
also determines the port role of the time-aware system. 

Data Storage, Analytics and Visualization 
The TSN User API delivers these monitors to the end user. A periodic task is executed 
on the ARMv9 present on the Xilinx Zynq-7000 MPSoC to retrieve monitoring 
periodically. Runtime monitoring is delivered to a central Set-Top-Box by a Best-effort 
TSN stream. Monitors from all TSN stations are stored in FIVIS and available for 
presentation using a custom panel, as shown in Figure 60. The panel can be embedded 
into any use-case-specific dashboard which needs display status of TSN nodes. 
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Figure 60. Dashboard showing status of TSN nodes in FIVIS 

5.2.9 Monitoring systems for localization in space applications 
The Autonomous Exploration use-case is focused on the reconfiguration of a video 
processing chain on board of a spacecraft designated for locating different kinds of 
satellites. Space missions have several stages that are very different in terms of 
performance and environmental conditions. The target is to include into the UC a set of 
monitors that ease the differentiation of the stages of the mission through power 
consumption and radiation monitoring. In the use-case, besides the monitors developed 
by TASE, the ones developed by University of Cantabria will also be used. 

Monitoring Requirements 
The monitors developed by TASE will focus mainly on the hardware side of the complex 
video-processing chain. The three main monitors to report at runtime in order to control 
the reconfiguration mechanisms will be: 

• Radiation dose: off-the-shelf components are currently being used in a lot of 
space missions. These kinds of components are not radiation hardened by 
design. It is really important to monitor the radiation induced failures on them in 
order to keep functionality of the designs. When a high dose of radiation is 
received by the components (in this case an FPGA) a full reconfiguration of the 
system shall be done. 

• Power consumption and temperature: another important driver for 
reconfiguration during a mission is the power consumed by the platform. There 
are several power constraints in space due to the lack of refuelling and the limited 
amount of power delivered by the solar panels on a spacecraft. For example, it 
is very important to minimize power consumption during shade-phases of a 
mission. Power consumption will be monitored in order to verify that 
reconfiguration has been performed successfully and that changes in the 
configuration drive the consumed power to the desired values constrained by the 
phases of the mission. 

• Image processing monitors: In the frame of the FitOptiVis project, two main 
components regarding the processing of the image have been developed by 
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TASE for UC10: The Space Image Processing chain and the Image Collection 
Interface. Both, combined, can obtain an image from a CMOS sensor (which are 
very new in the space industry) and send it to the components developed by the 
University of Cantabria.  

• Monitors to study the quality of the image are currently being used. The goal of 
this monitors is to analyse how the components behave under the different 
setpoints of the system which are closely related with the possible stages of the 
mission of the spacecraft. The monitors for the image processing of the system 
are: fps, image resolution, image size. 

Unit Under Monitoring 
The unit under monitoring will be the FPGA Logic of the Zynq UltraScale+ MPSoC.  

Monitoring Infrastructure and Monitoring Processor 
The monitoring infrastructure consists of the following building blocks: 

• SEM IP: Soft Error Mitigation IP. This IP is provided by Xilinx and has already 
been integrated on the platform. It allows to simulate the failures induced by 
radiation thanks to an ad hoc interface developed by TASE. This interface allows 
to reproduce different radiation doses that are related with several orbits. 

• System Monitor: The System monitor is an interface present on the silicon of the 
FPGA that allows to keep track of the power and temperature of the system 
under test. It is implemented by default by Xilinx 

• The components developed in WP5 (Space Image Processing and Image 
Collection Interface) which are in charge of monitoring the image qualities. 

• A host machine that gathers all the data coming from the previous blocks. This 
machine is in charge of putting together all the monitors together and storing 
them. Once that the monitors are correctly stored, the infrastructure described 
by University of Cantabria (UC) in Section 5.2.4 is in charge of receiving them 
and displaying them with FIVIS. 

Data Storage, Analytics and Visualization 
As described in the previous point, a host machine is in charge of receiving all the 
monitors coming from the different components and to store them into a text file. This 
machine is accessed by the infrastructure developed by UC and described in Section 
5.2.4 in order to visualize the data with FIVIS 

5.2.10 Pose and facial recognition in Habit Tracking with edge-cloud 
adaptivity 

As part of the effort in Habit Tracking use case, HIB has developed a cloud-edge AI 
solution for detecting activities of persons in their homes as well as matches of their 
facial features according to a database of potential users. The main goal is to track 
persons within their homes to detect if they present signs of mild cognitive impairment. 
Technically one of the key features is to mix in the home edge processing with cloud 
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processing, where ‘edge’ corresponds roughly to smart cameras with low computational 
capabilities (typically ARM processors running on batteries) and the ‘cloud’ corresponds 
to x86 architectures in the home with no energy constraints. The edge device is more 
suited to the facial recognition while the cloud recognition engine is more suited for pose 
estimation and activity recognition using a LSTM network working on the joint position 
computed. 
In the following subsections we present the general outline of the adaptations to be 
applied to the demonstrator with the help of WP4 components. 

Monitoring Requirements 
The main overarching requirement is to maintain a specific overall set of recognition 
features while maximizing the usage of energy as some of the processing elements 
could be running on batteries. 
The functional ‘recognition features’ are currently being specified but as of the writing 
of this document they are in summary: 

• Pose estimation engine: using PoseNet1 for TensorFlow which yields a wire-
frame model of persons in still frames. This has been changed from the original 
openpose2 component presented in D4.4. The module is functionally identical 
but the underlying neural network is different. 

• Facial recognition engine: matches faces in still frames with known profiles of 
persons of interest who have been trained in the system. 

The main non-functional requirement of the system is to maintain an overall processing 
of frames at a sufficient rate of frames per second that enables the detection of complex 
behaviours. For the purposes of this in the use case, the figure is around 15 frames per 
second. 

Unit Under Monitoring 
The following Figure represents the overall architecture of the system under analysis: 

 
1 https://www.tensorflow.org/lite/examples/pose_estimation/overview - PoseNet body wireframe 
deep learning system. 
2 https://github.com/CMU-Perceptual-Computing-Lab/openpose - openpose: multiperson human 
body posture detection by Carnegie Mellon University. 

https://www.tensorflow.org/lite/examples/pose_estimation/overview
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 61 HIB architecture for UC3 Habit Tracking 

The Figure 61 depicts the most relevant unit under monitoring which is the edge 
processing device. In this case it is an Nvidia Jetson Nano single board computer (that 
integrates a multi core ARM CPU and a GPU focused on AI operations). For the 
adaptation purposes of the system the edge board(s) will be running not connecting to 
the mains power but using a dedicated UPS power supply using 18650 LiOn batteries. 
This is connected to the Jetson Nano by means of two wires: one (depicted in a thick 
edge) that supplies the nano of the required 5V/2A required for normal processing and 
another (depicted in thin edges) connecting a port in the UPS board to the GPIO pins in 
the Jetson Nano board. This, encoded in the industry-standard device-to-device protocol 
i2C3, is used to monitor the current level of the onboard batteries. 
In the living lab deployment under test by HIB this edge system is connected via a 
network connection to a Foscam FI9800P camera and also via network connections to 
the ‘cloud’ server and the Internet at large. 

Monitoring Infrastructure 
The overall infrastructure is depicted in Figure 61. In addition to the aforementioned 
hardware units (the Nvidia Jetson Nano and the GeekwormT200 UPS kit with i2C battery 

 
3 https://en.wikipedia.org/wiki/I%C2%B2C – Inter-Integrated Circuit protocol. 

https://en.wikipedia.org/wiki/I%C2%B2C
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level monitoring), there is a ‘local’ adaptation engine running on the Nvidia board local 
environment as well as a ‘cloud’ adaptation engine running offline in a we server. 
The local adaptation monitors the battery levels and the desired QoS parameters (chiefly 
the minimum fps). Combining the power draw that is required from the board’s 
components (collected using the tegrastats command line tool provided in the default 
OS for the board) and the available battery level in the UPS board (collected using i2c 
polling on the appropriate port in the board), the system computes a battery life estimate. 
Whenever the battery estimate falls below the threshold set at design time, the local 
adaptation engine changes the execution environment for the feature recognition 
engines by tweaking the active cores (using the nvpmodel command line tool provided 
in the Ubuntu distribution for the Nvidia board) of the clock frequency of the cores and 
GPU (using the jetson_clocks command line tool). 

Lowering the execution performance with these increases the estimated battery life. If 
by monitoring the performance we detect that it falls below the desired fps/QoS, then 
the system might transition to a different cloud/edge configuration. This is mostly done 
by the ‘cloud’ adaptivity system which is described in the following subsection. 

Data Storage, Analytics and Visualization 
The system continually collects values for the metrics of interest in the adaptation and 
the execution of the system (the most important of which are the fps for the recognition 
systems, the battery percentage from the UPS board). These are collected as a group 
and sent to the remote monitoring system which uses the FIVIS environment by CUNI 
as a unified signal set (called HIB_signal_set). In the FIVIS environment they are 
collected and can be analyzed later on by the system operators. 
The overall performance of the system is managed by a joint ‘cloud’ adaptation system 
that is aware of all the computing elements in the deployment. Based on the 
configuration selected by the system operator, different ‘edge’ (Nvidia Jetson Nano 
boards) or ‘cloud’ (x86 PCs running a Linux environment and a more powerful GPU 
based activity detection system) can be switched on and off on demand. 
 
5.2.11 Monitoring of high-performance embedded applications for 

Water-Supply maintenance 
In a typical edge-computing scenario, there can be functional and strict non-functional 
requirements to be satisfied. This leads to heterogeneous platforms, and in FitOptiVis 
there are tools aimed at supporting in the development of these platforms. In this regard, 
MDC impacts in the development of processor to coprocessors systems, offering a 
coarse-grained functional and non-functional reconfiguration (Section 4.3). In this 
section, the described runtime monitoring is part of the self-adaptive loop where the 
MDC reconfiguration acts: the monitoring systems are generated by using the JOINTER 
framework (Section 5.1.3). The framework to use JOINTER applied to MDC generated 
coprocessors can be accessed in the repository at the following link: 
https://github.com/alkalir/jointer. The final monitoring system has been applied to 
monitor the edge-computing platform associated to Water-Supply Use-case (UC1). 

https://github.com/alkalir/jointer
https://github.com/alkalir/jointer
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Monitoring Requirements 
Being at the edge, it has to be considered that the impact of monitoring actions on non-
functional parameters needs to be limited. On the other hand, monitoring of the current 
execution of the system is necessary to properly trigger the reconfiguration. 
The following monitoring requirements are given when the coprocessor systems have 
to be monitored: 

• MON1 - Limited SW overhead 
• MON2 - Measure of accelerator latency 
• MON3 - Measure of accelerator performance 
• MON4 - Runtime verification of the accelerator 

Unit Under Monitoring 
The Unit Under Monitoring is given by MDC, which is able to deploy a processor-
coprocessor system according to the user choice: 

1. Type of processor: hard-core (ARM available on Zynq7000 FPGAs) or soft-core 
(Microblaze). 

2. Processor-coprocessor coupling: stream based or memory mapped. 
3. Use of DMA. 

At the moment, the Unit Under Monitoring is given by the memory-mapped processor 
coprocessor system, in which the DMA is used. Both ARM and Microblaze are possible 
selections. Figure 62 shows the IP generated by MDC. 
 

 
Figure 62: The figure shows the IP generated by MDC. The MDC CGR accelerator is a coarse grain 
reconfigurable datapath capable of executing different functionalities, by opportunely multiplexing resources 
in time. This datapath is automatically encapsulated into a ready to use Xilinx IP and into a processor-
coprocessor system, according to the user choices during the design time. 
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Monitoring Infrastructure 
The monitoring infrastructure has been generated using the JOINTER framework: this 
allows to satisfy the MON1 requirement, since JOINTER produces hardware monitoring 
systems that limit the timing impact on SW execution. Three different sniffers can be 
selected to monitor the coprocessor. Figure 63 shows the sniffers and their placement 
with respect to the internal circuitry of the accelerator. The sniffer at level 1 (red) monitors 
the processed data by the accelerator, by counting the number of writes on the AXI4-
Full bus: this sniffer allows to satisfy MON3. The sniffer at level 2 (yellow) monitors the 
accelerator latency, allowing the satisfaction of MON2. Finally, the sniffer at level 3 
(violet) allows to perform a runtime verification of internal transitions, thus satisfying 
MON4. 
 

 
Figure 63: Sniffer generation for MDC coprocessors 
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Data Storage, Analytics and Visualization 
Data output by the monitoring system are organized as reported in Table 2. 
 
Table 6: Event instances of monitors. EVENT_ATTRIBUTE contains an attribute for internal usage, ACC_ID 
provides a code to indicate the ID of the monitored coprocessor, LEVEL_ID indicates the monitored level, 
EVENT_INFORMATION contains the raw information. 

EVENT_ATTRIBUTE 
(5 BITS) 

ACC_ID (4 BITS) LEVEL_ID (2 BITS) EVENT_INFORMATION 
(REMAINING BITS) 

Further information, together with two working examples related to JOINTER for MDC 
and the application of JOINTER to generated monitoring systems for the Water-Supply 
Use-case (UC1), are reported in [VAL21][VAL20][MUT20] and in the project repository: 
https://github.com/alkalir/jointer.  
 

https://github.com/alkalir/jointer
https://github.com/alkalir/jointer
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 Conclusions 
In our summary of the final outcomes of Task 4.2 and Task 4.3 from the last year of the 
project, we reported specific developments of the technologies and methods reported in 
D4.3 and certain new technologies and methods developed over the last year to provide 
runtime support for adaptive applications. Many use-case specific results are reported 
in the direction of monitoring and profiling as well as runtime reconfiguration.  
In line with D4.3, D4.4 reports specific extension and use-case-specific adaptation and 
results of various runtime reconfiguration mechanisms under three main categories of 
reconfigurations related to adding/removing components, changing the component 
configuration and composition. We reported seven reconfiguration mechanisms 
developed and extended over the reporting period targeting platforms and applications 
ranging from hard real-time (CompSOC, HW accelerator) to industrial platforms (NVIDIA 
Jetson and AGX), and to TSN-based distributed systems to edge-cloud systems. They 
are further evaluated, validated, and verified in various use case scenarios. In turn, these 
mechanisms enable deployment of the FitOptiVis QRM framework in the context of 
various use cases. 
The reconfiguration process is activated using runtime monitoring, profiling and 
measurement mechanisms spanning over different levels. In line with D4.3, D4.4 reports 
different enabling technologies and instances of monitoring mechanisms under the 
FitOptiVis reference platform. In particular, three enabling technologies have been 
proposed withing FitOptiVis, FIVIS, QRML extension, and JOINTER, each one 
associated with various dissemination activities. The final obtained instances made use 
of these enabling technologies, and spanned at different levels, from cloud to edge, with 
solutions requiring the synergy between hardware monitoring systems and software 
ones. This was the key to properly control the intrusiveness of monitoring systems, and 
also to properly find the architectural trade-offs. 
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